Comparative analysis of the compressive strength of concrete under different curing methods

Concrete is the most widely used material in construction, which possesses different characteristics and possible manufacturing methods. Concrete is, also, characterized by its high resistance to compression and durability, factors that could have been directly influenced by the curing method in ear...

Full description

Autores:
Murillo, Michel
Abudinen, D
Del Río, M
Serrato, N
Patrón, L
Ramírez, J
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8138
Acceso en línea:
https://hdl.handle.net/11323/8138
https://repositorio.cuc.edu.co/
Palabra clave:
Strength of concrete
Curing methods
Concrete
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_2c414a357f45bcd9f0702314e833e16e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8138
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Comparative analysis of the compressive strength of concrete under different curing methods
title Comparative analysis of the compressive strength of concrete under different curing methods
spellingShingle Comparative analysis of the compressive strength of concrete under different curing methods
Strength of concrete
Curing methods
Concrete
title_short Comparative analysis of the compressive strength of concrete under different curing methods
title_full Comparative analysis of the compressive strength of concrete under different curing methods
title_fullStr Comparative analysis of the compressive strength of concrete under different curing methods
title_full_unstemmed Comparative analysis of the compressive strength of concrete under different curing methods
title_sort Comparative analysis of the compressive strength of concrete under different curing methods
dc.creator.fl_str_mv Murillo, Michel
Abudinen, D
Del Río, M
Serrato, N
Patrón, L
Ramírez, J
dc.contributor.author.spa.fl_str_mv Murillo, Michel
Abudinen, D
Del Río, M
Serrato, N
Patrón, L
Ramírez, J
dc.subject.spa.fl_str_mv Strength of concrete
Curing methods
Concrete
topic Strength of concrete
Curing methods
Concrete
description Concrete is the most widely used material in construction, which possesses different characteristics and possible manufacturing methods. Concrete is, also, characterized by its high resistance to compression and durability, factors that could have been directly influenced by the curing method in early ages. The objective of this research is to demonstrate the importance of the concrete curing process, as well as to analyze the influence of the chosen curing method on the compression resistance. 48 concrete test samples were manufactured, by the standard requirements. Subsequently, the samples were divided into eight batches, subjected to different types of curing: immersion curing, twice a day; outdoor curing; total immersion curing in different waters, application of commercial curing agent; with polyethylene foil coating and without curing. Performing compression testing at 7 and 28 days. Among the results obtained, the batch that underwent the method of curing with polyethylene coating presented a more efficient effect in terms of resistance to compression; followed by the techniques of immersion in water.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-04-13T22:09:24Z
dc.date.available.none.fl_str_mv 2021-04-13T22:09:24Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1757-8981
1757-899X
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8138
dc.identifier.doi.spa.fl_str_mv doi:10.1088/1757-899X/1126/1/012002
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1757-8981
1757-899X
doi:10.1088/1757-899X/1126/1/012002
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8138
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] W. Zhang, Q. Zheng, A. Ashour and H. Baoguo 2019 Self-healing cement concrete composites for resilient infrastructures: A review Composites Part B: Engineering 189 107892
[2] M. López, L. Kahn and K. Kirtis 2005 Internal curing in high performance concretes - a new paradigm Ingeniería de Construcción 20 2 pp 117-126
[3] B. Liu, G. Luo and Y. Xie 2018 Effect of curing conditions on the permeability of concrete with high ume mineral admixtures Construction and Building Materials 167 pp 359-371
[4] S. Rodríguez and N. Torres 2019 Evaluation of internal curing effects on concrete Ingeniería e investigación 39 2
[5] O. D. Atoyebi, P. P. Ikubanni, A. Adesina, O. V. Araoye and I. E. E. Davies 2020 Effect of curing methods on the strength of interlocking paving blocks Cogent Engineering 13 pp 2-6
[6] C. R. Gagg 2014 Cement and concrete as an engineering material: An historic appraisal and case study analysis Engineering Failure Analysis 40 pp 114-140
[7] YukoOgawa, P. T. Bui, K. Kawai and R. Sato 2020 Effects of porous ceramic roof tile waste aggregate on strength development and carbonation resistance of steam-cured fly ash concrete Construction and Building Materials 236
[8] M. López, L. Kahn and K. Kirtis 2005 Internal curing in high performance concretes - a new paradigm Ingeniería de Construcción 20 2 pp 117-126
[9] M.-F. Ba, C.-x. Qian, X.-j. Guo and X.-y. Han 2011 Effects of steam curing on strength and porous structure of concrete with low water/binder ratio Construction and Building Materials 25 1 pp 123-128
[10] Y. Xie, X. Wang, G. Long and C. Ma 2019 Quantitative analysis of the influence of subfreezing temperature on the mechanical properties of steam-cured concrete Construction and Building Materials 206 pp 504-511
[11] R. K 2008 Effect of curing method on characteristics of cold bonded fly ash aggregates Cement and Concrete Composites 30 9 pp 848-853
[12] B. Liua, J. Jianga, S. Shenb, F. Zhoua, J. Shia and Z. He 2020 Effects of curing methods of concrete after steam curing on mechanical strength and permeability Construction and Builidng Materials 256
[13] J. Shia, B. Liua, S. Shenb, J. Tana, J. Daia and R. Ji 2020 Effect of curing regime on long-term mechanical strength and transport properties of steam-cured concrete Construction and Building Materials 255 119407
[14] L. GuangCheng, W. Meng, X. YouJun and M. KunLin 2014 Experimental investigation on dynamic mechanical characteristics and microstructure of steam-cured concrete Science China Technological Sciences 57 10 pp 1902-1908
[15] C. Zou, G. Long, C. Ma and Y. Xie 2018 Effect of subsequent curing on surface permeability and compressive strength of steam-cured concrete Construction and Building Materials 188 pp 424-432
[16] Y. Ogawaa, P. T. Buib, K. Kawaia and R. Sato 2020 Effects of porous ceramic roof tile waste aggregate on strength development and carbonation resistance of steam-cured fly ash concrete Construction and Building Materials 236 117462
[17] Y. Lv, G. Ye y G. D. Schutter 2019 Utilization of miscanthus combustion ash as internal curing agent in cement-based materials: Effect on autogenous shrinkage Construction and Building Materials 207 pp 585-591
[18] M. El-Feky, M. Kohail, A. El-Tair and I. Serag 2020 Effect of microwave curing as compared with conventional regimes on the performance of alkali activated slag pastes Construction and Building Materials 253
[19] M. Nematollahzade, A. Tajadini, I. Afshoon and F. Aslani 2020 Influence of different curing conditions and water to cement ratio on properties of self-compacting concretes Construction and Building Materials 237 117570
[20] Zhi-min, L. Guang-Cheng and X. you-jun 2012 Influence of subsequent curing on water sorptivity and pore structure of steam-cured concrete Journal of Central South University 19 pp 1155-1162
[21] M. Wang, Y. Xie, G. Long and C. Ma 2019 Microhardness characteristics of high-strength cement paste and interfacial transition zone at different curing regimes Construction and Building Materials 221 pp 151-162
[22] J.-G. Teng, Y. Xiang, T. Yu and Z. Fang 2019 Development and mechanical behaviour of ultrahigh-performance seawater sea-sand concrete SAGE Journals pp 2-8 22(14):3100-3120.
[23] Dasara, D. Patah, H. Hamada, Y. Sagawa and D. Yamamoto 2020 Applicability of seawater as a mixing and curing agent in 4-year-old concrete Building and Construction Materials 259
[24] Debska and L. Licholai 2016 The effect of the type of curing agent on selected properties of epoxy mortar modified with PET glycolisate Construction and Building Materials 124 pp 11-19
[25] Falliano, D. D. Domenico, G. Ricciardia and E. Gugliandolo 2018 Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density Construction and Building Materials 165 pp 735-749
[26] B. Liu, G. Luo and Y. Xie Effect of curing conditions on the permeability of concrete with high ume mineral admixtures Construction and Building Materials 167 pp. 359-371
[27] ASTM International 2018 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens ASTM Concrete and Aggregates 04.02
[28] ASTM International 2018 Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine ASTM Concrete and Aggregates 04.02
[29] ASTM International 2018 Standard Specification for Concrete Aggregates Concrete and Aggregates 04.02
[30] ASTM Subcommittee: C09.60 2018 Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method Concrete and Aggregates 04.02
[31] ACI Committee 212 2016 ACI PRC-212.3-16 Report on Chemical Admixtures for Concrete American Concrete Institute
[32] ASTM International 2016 Standard Test Method for Refractive Index and Refractive Dispersion of Hydrocarbon Liquids Petroleum Products, Liquid Fuels, and Lubricants (II): C1234 – D4176 05.01
[33] ASTM Subcommittee: C09.60 2018 Standard Test Method for Slump of Hydraulic-Cement Concrete Concrete and Aggregates 04.02
[34] C. A. 214 2017 Guía para la evaluación de resultados de ensayos de resistencia del concreto American Concrete Institute ACI 214
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv IOP Conference Series: Materials Science and Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://iopscience.iop.org/article/10.1088/1757-899X/1126/1/012002
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/dcb54af2-11de-4639-9e3f-6086ff1b33a8/download
https://repositorio.cuc.edu.co/bitstreams/52cff0dd-6bf2-4c08-922d-e5228ca29031/download
https://repositorio.cuc.edu.co/bitstreams/2548cdb9-927c-4a58-8d32-d37e09609001/download
https://repositorio.cuc.edu.co/bitstreams/0cfe81fc-12d7-4a85-9ed6-290d793ab2bc/download
https://repositorio.cuc.edu.co/bitstreams/714ec7c5-796c-4556-afc0-ccc08df3eb47/download
https://repositorio.cuc.edu.co/bitstreams/a1ce8583-4930-4861-ab92-ca02acf9dca1/download
bitstream.checksum.fl_str_mv 50cbb189eac0ecab665f263756003e19
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
5102a0a993c6b9e14b7aabcba29cac2f
5102a0a993c6b9e14b7aabcba29cac2f
8e05de0bd71fa55828df019d99248c07
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760788615987200
spelling Murillo, MichelAbudinen, DDel Río, MSerrato, NPatrón, LRamírez, J2021-04-13T22:09:24Z2021-04-13T22:09:24Z20211757-89811757-899Xhttps://hdl.handle.net/11323/8138doi:10.1088/1757-899X/1126/1/012002Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Concrete is the most widely used material in construction, which possesses different characteristics and possible manufacturing methods. Concrete is, also, characterized by its high resistance to compression and durability, factors that could have been directly influenced by the curing method in early ages. The objective of this research is to demonstrate the importance of the concrete curing process, as well as to analyze the influence of the chosen curing method on the compression resistance. 48 concrete test samples were manufactured, by the standard requirements. Subsequently, the samples were divided into eight batches, subjected to different types of curing: immersion curing, twice a day; outdoor curing; total immersion curing in different waters, application of commercial curing agent; with polyethylene foil coating and without curing. Performing compression testing at 7 and 28 days. Among the results obtained, the batch that underwent the method of curing with polyethylene coating presented a more efficient effect in terms of resistance to compression; followed by the techniques of immersion in water.Murillo, Michel-will be generated-orcid-0000-0002-2674-1048-600Abudinen, DDel Río, MSerrato, NPatrón, LRamírez, Japplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2IOP Conference Series: Materials Science and Engineeringhttps://iopscience.iop.org/article/10.1088/1757-899X/1126/1/012002Strength of concreteCuring methodsConcreteComparative analysis of the compressive strength of concrete under different curing methodsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] W. Zhang, Q. Zheng, A. Ashour and H. Baoguo 2019 Self-healing cement concrete composites for resilient infrastructures: A review Composites Part B: Engineering 189 107892[2] M. López, L. Kahn and K. Kirtis 2005 Internal curing in high performance concretes - a new paradigm Ingeniería de Construcción 20 2 pp 117-126[3] B. Liu, G. Luo and Y. Xie 2018 Effect of curing conditions on the permeability of concrete with high ume mineral admixtures Construction and Building Materials 167 pp 359-371[4] S. Rodríguez and N. Torres 2019 Evaluation of internal curing effects on concrete Ingeniería e investigación 39 2[5] O. D. Atoyebi, P. P. Ikubanni, A. Adesina, O. V. Araoye and I. E. E. Davies 2020 Effect of curing methods on the strength of interlocking paving blocks Cogent Engineering 13 pp 2-6[6] C. R. Gagg 2014 Cement and concrete as an engineering material: An historic appraisal and case study analysis Engineering Failure Analysis 40 pp 114-140[7] YukoOgawa, P. T. Bui, K. Kawai and R. Sato 2020 Effects of porous ceramic roof tile waste aggregate on strength development and carbonation resistance of steam-cured fly ash concrete Construction and Building Materials 236[8] M. López, L. Kahn and K. Kirtis 2005 Internal curing in high performance concretes - a new paradigm Ingeniería de Construcción 20 2 pp 117-126[9] M.-F. Ba, C.-x. Qian, X.-j. Guo and X.-y. Han 2011 Effects of steam curing on strength and porous structure of concrete with low water/binder ratio Construction and Building Materials 25 1 pp 123-128[10] Y. Xie, X. Wang, G. Long and C. Ma 2019 Quantitative analysis of the influence of subfreezing temperature on the mechanical properties of steam-cured concrete Construction and Building Materials 206 pp 504-511[11] R. K 2008 Effect of curing method on characteristics of cold bonded fly ash aggregates Cement and Concrete Composites 30 9 pp 848-853[12] B. Liua, J. Jianga, S. Shenb, F. Zhoua, J. Shia and Z. He 2020 Effects of curing methods of concrete after steam curing on mechanical strength and permeability Construction and Builidng Materials 256[13] J. Shia, B. Liua, S. Shenb, J. Tana, J. Daia and R. Ji 2020 Effect of curing regime on long-term mechanical strength and transport properties of steam-cured concrete Construction and Building Materials 255 119407[14] L. GuangCheng, W. Meng, X. YouJun and M. KunLin 2014 Experimental investigation on dynamic mechanical characteristics and microstructure of steam-cured concrete Science China Technological Sciences 57 10 pp 1902-1908[15] C. Zou, G. Long, C. Ma and Y. Xie 2018 Effect of subsequent curing on surface permeability and compressive strength of steam-cured concrete Construction and Building Materials 188 pp 424-432[16] Y. Ogawaa, P. T. Buib, K. Kawaia and R. Sato 2020 Effects of porous ceramic roof tile waste aggregate on strength development and carbonation resistance of steam-cured fly ash concrete Construction and Building Materials 236 117462[17] Y. Lv, G. Ye y G. D. Schutter 2019 Utilization of miscanthus combustion ash as internal curing agent in cement-based materials: Effect on autogenous shrinkage Construction and Building Materials 207 pp 585-591[18] M. El-Feky, M. Kohail, A. El-Tair and I. Serag 2020 Effect of microwave curing as compared with conventional regimes on the performance of alkali activated slag pastes Construction and Building Materials 253[19] M. Nematollahzade, A. Tajadini, I. Afshoon and F. Aslani 2020 Influence of different curing conditions and water to cement ratio on properties of self-compacting concretes Construction and Building Materials 237 117570[20] Zhi-min, L. Guang-Cheng and X. you-jun 2012 Influence of subsequent curing on water sorptivity and pore structure of steam-cured concrete Journal of Central South University 19 pp 1155-1162[21] M. Wang, Y. Xie, G. Long and C. Ma 2019 Microhardness characteristics of high-strength cement paste and interfacial transition zone at different curing regimes Construction and Building Materials 221 pp 151-162[22] J.-G. Teng, Y. Xiang, T. Yu and Z. Fang 2019 Development and mechanical behaviour of ultrahigh-performance seawater sea-sand concrete SAGE Journals pp 2-8 22(14):3100-3120.[23] Dasara, D. Patah, H. Hamada, Y. Sagawa and D. Yamamoto 2020 Applicability of seawater as a mixing and curing agent in 4-year-old concrete Building and Construction Materials 259[24] Debska and L. Licholai 2016 The effect of the type of curing agent on selected properties of epoxy mortar modified with PET glycolisate Construction and Building Materials 124 pp 11-19[25] Falliano, D. D. Domenico, G. Ricciardia and E. Gugliandolo 2018 Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density Construction and Building Materials 165 pp 735-749[26] B. Liu, G. Luo and Y. Xie Effect of curing conditions on the permeability of concrete with high ume mineral admixtures Construction and Building Materials 167 pp. 359-371[27] ASTM International 2018 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens ASTM Concrete and Aggregates 04.02[28] ASTM International 2018 Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine ASTM Concrete and Aggregates 04.02[29] ASTM International 2018 Standard Specification for Concrete Aggregates Concrete and Aggregates 04.02[30] ASTM Subcommittee: C09.60 2018 Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method Concrete and Aggregates 04.02[31] ACI Committee 212 2016 ACI PRC-212.3-16 Report on Chemical Admixtures for Concrete American Concrete Institute[32] ASTM International 2016 Standard Test Method for Refractive Index and Refractive Dispersion of Hydrocarbon Liquids Petroleum Products, Liquid Fuels, and Lubricants (II): C1234 – D4176 05.01[33] ASTM Subcommittee: C09.60 2018 Standard Test Method for Slump of Hydraulic-Cement Concrete Concrete and Aggregates 04.02[34] C. A. 214 2017 Guía para la evaluación de resultados de ensayos de resistencia del concreto American Concrete Institute ACI 214PublicationORIGINALComparative analysis of the compressive strength of concrete under.pdfComparative analysis of the compressive strength of concrete under.pdfapplication/pdf1913421https://repositorio.cuc.edu.co/bitstreams/dcb54af2-11de-4639-9e3f-6086ff1b33a8/download50cbb189eac0ecab665f263756003e19MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/52cff0dd-6bf2-4c08-922d-e5228ca29031/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/2548cdb9-927c-4a58-8d32-d37e09609001/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILComparative analysis of the compressive strength of concrete under.pdf.jpgComparative analysis of the compressive strength of concrete under.pdf.jpgimage/jpeg36588https://repositorio.cuc.edu.co/bitstreams/0cfe81fc-12d7-4a85-9ed6-290d793ab2bc/download5102a0a993c6b9e14b7aabcba29cac2fMD54THUMBNAILComparative analysis of the compressive strength of concrete under.pdf.jpgComparative analysis of the compressive strength of concrete under.pdf.jpgimage/jpeg36588https://repositorio.cuc.edu.co/bitstreams/714ec7c5-796c-4556-afc0-ccc08df3eb47/download5102a0a993c6b9e14b7aabcba29cac2fMD54TEXTComparative analysis of the compressive strength of concrete under.pdf.txtComparative analysis of the compressive strength of concrete under.pdf.txttext/plain31104https://repositorio.cuc.edu.co/bitstreams/a1ce8583-4930-4861-ab92-ca02acf9dca1/download8e05de0bd71fa55828df019d99248c07MD5511323/8138oai:repositorio.cuc.edu.co:11323/81382024-09-17 11:09:44.029http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==