Design of a hydrokinetic turbine capable of satisfying electricity demand for housing on the margin of the Magdalena river through analysis by finite elements

This research is aimed to design a hydrokinetic turbine for electric generation taking advantage of available energy of the Magdalena River, which has a great flow near to its mouth in the Atlantic Ocean of Northern Colombian. The turbine design consists of a tri-bladed horizontal axis turbine total...

Full description

Autores:
Fábregas Villegas, Jonathan
Santamaría De La Cruz, Henry
Márquez Santos, Mauricio
Fontalvo Calvo, Camilo
Carpintero Durango, Javier Andrés
Villa Dominguez, Jennifer
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5263
Acceso en línea:
https://hdl.handle.net/11323/5263
https://repositorio.cuc.edu.co/
Palabra clave:
Hydrokinetic turbine
CFD modelling
Wind energy
Finite elements
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_2b3ca6c77f7b496890548255867c9f6f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5263
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Design of a hydrokinetic turbine capable of satisfying electricity demand for housing on the margin of the Magdalena river through analysis by finite elements
title Design of a hydrokinetic turbine capable of satisfying electricity demand for housing on the margin of the Magdalena river through analysis by finite elements
spellingShingle Design of a hydrokinetic turbine capable of satisfying electricity demand for housing on the margin of the Magdalena river through analysis by finite elements
Hydrokinetic turbine
CFD modelling
Wind energy
Finite elements
title_short Design of a hydrokinetic turbine capable of satisfying electricity demand for housing on the margin of the Magdalena river through analysis by finite elements
title_full Design of a hydrokinetic turbine capable of satisfying electricity demand for housing on the margin of the Magdalena river through analysis by finite elements
title_fullStr Design of a hydrokinetic turbine capable of satisfying electricity demand for housing on the margin of the Magdalena river through analysis by finite elements
title_full_unstemmed Design of a hydrokinetic turbine capable of satisfying electricity demand for housing on the margin of the Magdalena river through analysis by finite elements
title_sort Design of a hydrokinetic turbine capable of satisfying electricity demand for housing on the margin of the Magdalena river through analysis by finite elements
dc.creator.fl_str_mv Fábregas Villegas, Jonathan
Santamaría De La Cruz, Henry
Márquez Santos, Mauricio
Fontalvo Calvo, Camilo
Carpintero Durango, Javier Andrés
Villa Dominguez, Jennifer
dc.contributor.author.spa.fl_str_mv Fábregas Villegas, Jonathan
Santamaría De La Cruz, Henry
Márquez Santos, Mauricio
Fontalvo Calvo, Camilo
Carpintero Durango, Javier Andrés
Villa Dominguez, Jennifer
dc.subject.spa.fl_str_mv Hydrokinetic turbine
CFD modelling
Wind energy
Finite elements
topic Hydrokinetic turbine
CFD modelling
Wind energy
Finite elements
description This research is aimed to design a hydrokinetic turbine for electric generation taking advantage of available energy of the Magdalena River, which has a great flow near to its mouth in the Atlantic Ocean of Northern Colombian. The turbine design consists of a tri-bladed horizontal axis turbine totally submerged; the rotor is fixed to a metallic platform with tanks acting as floats. It also contains an asynchronous electric engine as a generator and electrical lines. The turbine power shaft is transmitted to the engine by a system of toothed belts, which performs the role of gearbox and multiplier. As a result, CFD simulations shows several variables of interest in order to evaluate power generation, such as torque, angular velocity, power, turbine efficiency, and hydrokinetic and structural analysis are obtained by means of finite elements.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2019-09-12T15:43:59Z
dc.date.available.none.fl_str_mv 2019-09-12T15:43:59Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0975-4024
2319-8613
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5263
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0975-4024
2319-8613
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5263
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv doi: 10.14419/ijet.v7i4.26843
dc.relation.references.spa.fl_str_mv [1] Kumar and R. Saini. (2017) Performance analysis of a savonius hydrokinetic turbine having twisted blades, Enewable energy 108, 502–522. https://doi.org/10.1016/j.renene.2017.03.006. [2] G. Tampier, C. Troncoso and F. Zilic. (2017) Numerical analysis of a diffuser-augmented hydrokinetic turbine, Ocean engineering 145, 138–147. https://doi.org/10.1016/j.oceaneng.2017.09.004. [3] T. Kinsey and G. Dumas. (2017) Impact of channel blockage on the performance of axial and cross- fl ow hydrokinetic turbines, Renewable energy 103, 239–254. https://doi.org/10.1016/j.renene.2016.11.021. [4] A. José, P. Jerson, A. Alexandre and C. Claudio. (2015) An approach for the dynamic behavior of hydrokinetic turbines, Energy procedia 75, 271–276. https://doi.org/10.1016/j.egypro.2015.07.334. [5] B. Daskiran, J. Riglin, W. Schleicher and A. Oztekin. (2016) Transient analysis of micro-hydrokinetic turbines for river applications, Ocean engineering 129, 291–300. https://doi.org/10.1016/j.oceaneng.2016.11.020. [6] P. Fernández. (2002) IV.- Parámetros de diseño, Energía eólica 6, 65 – 91. [7] E. battle, J. Romero, J. Fabregas, J. Villa, F. Quesada and J. Unfried. (2016) Strain analysis of an electromechanical device for force measurement in friction stir welding developed in a universal milling machine, Prospectiva 14, 36 – 44. https://doi.org/10.15665/rp.v14i2.749.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv International Journal of Engineering & Technology
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a4860f4c-1e95-491d-97cd-ee4c84f16eea/download
https://repositorio.cuc.edu.co/bitstreams/fe3a6b57-d00a-465d-9599-8b30ffac3074/download
https://repositorio.cuc.edu.co/bitstreams/92d26611-f5c0-420d-a5a0-93eb0f5ad4e1/download
https://repositorio.cuc.edu.co/bitstreams/bf13f17a-b7b0-4ad9-a088-1e4283c7a488/download
https://repositorio.cuc.edu.co/bitstreams/e29e918b-7f0d-4bae-a038-751adb3a67c8/download
bitstream.checksum.fl_str_mv 3376442fbe5814ef230721ea9cdfe447
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
e99923a44f68167e18ee25d6a80f433c
6e5b162b2d8352d61aa55b49fd74e3f0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760710414237696
spelling Fábregas Villegas, JonathanSantamaría De La Cruz, HenryMárquez Santos, MauricioFontalvo Calvo, CamiloCarpintero Durango, Javier AndrésVilla Dominguez, Jennifer2019-09-12T15:43:59Z2019-09-12T15:43:59Z20180975-40242319-8613https://hdl.handle.net/11323/5263Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This research is aimed to design a hydrokinetic turbine for electric generation taking advantage of available energy of the Magdalena River, which has a great flow near to its mouth in the Atlantic Ocean of Northern Colombian. The turbine design consists of a tri-bladed horizontal axis turbine totally submerged; the rotor is fixed to a metallic platform with tanks acting as floats. It also contains an asynchronous electric engine as a generator and electrical lines. The turbine power shaft is transmitted to the engine by a system of toothed belts, which performs the role of gearbox and multiplier. As a result, CFD simulations shows several variables of interest in order to evaluate power generation, such as torque, angular velocity, power, turbine efficiency, and hydrokinetic and structural analysis are obtained by means of finite elements.Universidad Autónoma del Caribe, Universidad De La Costa.Fábregas Villegas, Jonathan-will be generated-orcid-0000-0003-1924-8666-600Santamaría De La Cruz, HenryMárquez Santos, MauricioFontalvo Calvo, CamiloCarpintero Durango, Javier Andrés-will be generated-orcid-0000-0002-1758-0596-600Villa Dominguez, JenniferengInternational Journal of Engineering & Technologydoi: 10.14419/ijet.v7i4.26843[1] Kumar and R. Saini. (2017) Performance analysis of a savonius hydrokinetic turbine having twisted blades, Enewable energy 108, 502–522. https://doi.org/10.1016/j.renene.2017.03.006. [2] G. Tampier, C. Troncoso and F. Zilic. (2017) Numerical analysis of a diffuser-augmented hydrokinetic turbine, Ocean engineering 145, 138–147. https://doi.org/10.1016/j.oceaneng.2017.09.004. [3] T. Kinsey and G. Dumas. (2017) Impact of channel blockage on the performance of axial and cross- fl ow hydrokinetic turbines, Renewable energy 103, 239–254. https://doi.org/10.1016/j.renene.2016.11.021. [4] A. José, P. Jerson, A. Alexandre and C. Claudio. (2015) An approach for the dynamic behavior of hydrokinetic turbines, Energy procedia 75, 271–276. https://doi.org/10.1016/j.egypro.2015.07.334. [5] B. Daskiran, J. Riglin, W. Schleicher and A. Oztekin. (2016) Transient analysis of micro-hydrokinetic turbines for river applications, Ocean engineering 129, 291–300. https://doi.org/10.1016/j.oceaneng.2016.11.020. [6] P. Fernández. (2002) IV.- Parámetros de diseño, Energía eólica 6, 65 – 91. [7] E. battle, J. Romero, J. Fabregas, J. Villa, F. Quesada and J. Unfried. (2016) Strain analysis of an electromechanical device for force measurement in friction stir welding developed in a universal milling machine, Prospectiva 14, 36 – 44. https://doi.org/10.15665/rp.v14i2.749.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hydrokinetic turbineCFD modellingWind energyFinite elementsDesign of a hydrokinetic turbine capable of satisfying electricity demand for housing on the margin of the Magdalena river through analysis by finite elementsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALDesign of a hydrokinetic turbine capable of satisfying.pdfDesign of a hydrokinetic turbine capable of satisfying.pdfapplication/pdf527935https://repositorio.cuc.edu.co/bitstreams/a4860f4c-1e95-491d-97cd-ee4c84f16eea/download3376442fbe5814ef230721ea9cdfe447MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/fe3a6b57-d00a-465d-9599-8b30ffac3074/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/92d26611-f5c0-420d-a5a0-93eb0f5ad4e1/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILDesign of a hydrokinetic turbine capable of satisfying.pdf.jpgDesign of a hydrokinetic turbine capable of satisfying.pdf.jpgimage/jpeg77978https://repositorio.cuc.edu.co/bitstreams/bf13f17a-b7b0-4ad9-a088-1e4283c7a488/downloade99923a44f68167e18ee25d6a80f433cMD55TEXTDesign of a hydrokinetic turbine capable of satisfying.pdf.txtDesign of a hydrokinetic turbine capable of satisfying.pdf.txttext/plain15749https://repositorio.cuc.edu.co/bitstreams/e29e918b-7f0d-4bae-a038-751adb3a67c8/download6e5b162b2d8352d61aa55b49fd74e3f0MD5611323/5263oai:repositorio.cuc.edu.co:11323/52632024-09-17 10:44:45.36http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=