Boiling process assessment for absorption heat pumps: A review
Absorption technology becomes an attractive option for cooling or heating when driven by solar thermal energy, residual heat from different processes, or geothermal energy. Further development of this technology could help to cover current cooling or heating requirements and have a much lower impact...
- Autores:
-
Amaris, Carlos
Bourouis, Mahmoud
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8546
- Acceso en línea:
- https://hdl.handle.net/11323/8546
https://repositorio.cuc.edu.co/
- Palabra clave:
- Absorption heat pumps
boiling heat transfer correlations
boiling process
convective boiling
desorber
nucleate boiling
- Rights
- embargoedAccess
- License
- CC0 1.0 Universal
id |
RCUC2_2abd26e59feb39a4503194132b6b3327 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8546 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Boiling process assessment for absorption heat pumps: A review |
title |
Boiling process assessment for absorption heat pumps: A review |
spellingShingle |
Boiling process assessment for absorption heat pumps: A review Absorption heat pumps boiling heat transfer correlations boiling process convective boiling desorber nucleate boiling |
title_short |
Boiling process assessment for absorption heat pumps: A review |
title_full |
Boiling process assessment for absorption heat pumps: A review |
title_fullStr |
Boiling process assessment for absorption heat pumps: A review |
title_full_unstemmed |
Boiling process assessment for absorption heat pumps: A review |
title_sort |
Boiling process assessment for absorption heat pumps: A review |
dc.creator.fl_str_mv |
Amaris, Carlos Bourouis, Mahmoud |
dc.contributor.author.spa.fl_str_mv |
Amaris, Carlos Bourouis, Mahmoud |
dc.subject.spa.fl_str_mv |
Absorption heat pumps boiling heat transfer correlations boiling process convective boiling desorber nucleate boiling |
topic |
Absorption heat pumps boiling heat transfer correlations boiling process convective boiling desorber nucleate boiling |
description |
Absorption technology becomes an attractive option for cooling or heating when driven by solar thermal energy, residual heat from different processes, or geothermal energy. Further development of this technology could help to cover current cooling or heating requirements and have a much lower impact on the environment than mechanical compression cooling and heat pumps systems. Moreover, the rising cost of electrical energy added to the issue of climate change are reasons to move towards the development of environmental and sustainable energy technologies. The desorbers are key components of absorption heat pump technologies. Studies in the open literature on desorbers show advances in new design concepts to enhance heat and mass transfer with different working fluids. Therefore, the objective of this review is to identify, summarise, and discuss the experimental studies that deal with the boiling process in desorbers and boiling correlations specifically for use in absorption heat pump technologies. It includes a comprehensive scrutiny on the boiling phenomenon in pool desorbers, falling-film desorbers, and forced flow desorbers for conventional and promising working fluids, and details the experimental techniques and the latest advances in desorber design concepts. Finally, the review contains proposals for future studies to be carried out so as to contribute to the further development of absorption heat pump technologies. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-08-18T15:34:37Z |
dc.date.available.none.fl_str_mv |
2021-08-18T15:34:37Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.embargoEnd.none.fl_str_mv |
2023-11 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
00179310 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8546 |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.ijheatmasstransfer.2021.121723 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
00179310 10.1016/j.ijheatmasstransfer.2021.121723 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8546 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] G.A. Florides, S.A. Tassou, S.A. Kalogirou, L.C. Wrobel, Review of solar and low energy cooling technologies for buildings, Renew. Sustain. Energy Rev. 6 (2002) 557–572. [2] K.R. Ullah, R. Saidur, H.W. Ping, R.K. Akikur, N.H. Shuvo, A review of solar thermal refrigeration and cooling methods, Renew. Sustain. Energy Rev. 24 (2013) 499–513, doi:10.1016/J.RSER.2013.03.024. [3] R. Best, I. Pilatowsky, Solar assisted cooling with sorption systems: status of the research in Mexico and Latin America, Int. J. Refrig. 21 (1998) 100–115, doi:10.1016/S0140-7007(97)00051-0. [4] J. Mendoza, J. Rhenals, A. Avila, A. Martinez, T. De la Vega, E. Durango, Heat absorption cooling with renewable energies: a case study with photovoltaic solar energy and biogas in Cordoba, Colombia, INGE CUC 17 (2021) 1–10, doi:10.17981/ingecuc.17.2.2021.01. [5] S. Yang, Y. Qian, Y. Wang, S. Yang, A novel cascade absorption heat transformer process using low grade waste heat and its application to coal to synthetic natural gas, Appl. Energy. 202 (2017) 42–52, doi:10.1016/j.apenergy. 2017.04.028. [6] C. Amaris, B.C. Miranda, M. Balbis-Morejón, Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system, Therm. Sci. Eng. Prog. (2020) 20, doi:10.1016/j.tsep.2020.100684. [7] M. Moya, J.C. Bruno, P. Eguia, E. Torres, I. Zamora, A. Coronas, Performance analysis of a trigeneration system based on a micro gas turbine and an aircooled, indirect fired, ammonia-water absorption chiller, Appl. Energy. 88 (2011) 4424–4440, doi:10.1016/j.apenergy.2011.05.021. [8] Y.T. Ge, S.A. Tassou, I. Chaer, N. Suguartha, Performance evaluation of a trigeneration system with simulation and experiment, Appl. Energy. 86 (2009) 2317–2326, doi:10.1016/j.apenergy.2009.03.018. [9] D.S. Ayou, J.C. Bruno, R. Saravanan, A. Coronas, An overview of combined absorption power and cooling cycles, Renew. Sustain. Energy Rev. 21 (2013) 728–748, doi:10.1016/j.rser.2012.12.068. [10] X. Wang, A. Bierwirth, A. Christ, P. Whittaker, K. Regenauer-Lieb, H.T. Chua, Application of geothermal absorption air-conditioning system: a case study, Appl. Therm. Eng., Pergamon. (2013) 71–80, doi:10.1016/j.applthermaleng. 2012.05.011. [11] P. Srikhirin, S. Aphornratana, S. Chungpaibulpatana, A review of absorption refrigeration technologies, Renew. Sustain. Energy Rev. 5 (2001) 343–372, doi:10.1016/S1364-0321(01)00003-X. [12] C. Oronel, C. Amaris, M. Bourouis, M. Vallès, Heat and mass transfer in a bubble plate absorber with NH3/LiNO3 and NH3/(LiNO3 + H2O) mixtures, Int. J. Therm. Sci. 63 (2013), doi:10.1016/j.ijthermalsci.2012.07.007. [13] C. Amaris, M.E. Alvarez, M. Vallès, M. Bourouis, Performance assessment of an NH3/LiNO3 bubble plate absorber applying a semi-empirical model and artificial neural networks, Energies 13 (2020), doi:10.3390/en13174313. [14] C. Amaris, M. Bourouis, M. Vallès, Effect of advanced surfaces on the ammonia absorption process with NH3/LiNO3 in a tubular bubble absorber, Int. J. Heat Mass Transf. 72 (2014), doi:10.1016/j.ijheatmasstransfer.2014.01.031. [15] C. Amaris, Intensification of NH3 Bubble Absorption Process Using Advanced Surfaces and Carbon Nanotubes For NH3/LiNO3 Absorption Chillers, Universitat Rovira i Virgili, Tarragona, Spain, 2013 https://www.tdx.cat/ handle/10803/128504. [16] C. Amaris, M. Bourouis, M. Vallès, Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber, Energy 68 (2014) 519–528, doi:10.1016/j. energy.2014.02.039. [17] C. Amaris, M. Vallès, M. Bourouis, Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: a review, Appl. Energy. 231 (2018) 826–853, doi:10.1016/j.apenergy.2018.09.071. [18] R.L. Mohanty, M.K. Das, A critical review on bubble dynamics parameters influencing boiling heat transfer, Renew. Sustain. Energy Rev. 78 (2017) 466– 494, doi:10.1016/j.rser.2017.04.092. [19] M.R. Kærn, A. Modi, J.K. Jensen, J.G. Andreasen, F. Haglind, An assessment of in-tube flow boiling correlations for ammonia-water mixtures and their influence on heat exchanger size, Appl. Therm. Eng. 93 (2016) 623–638, doi:10.1016/j.applthermaleng.2015.09.106. [20] P. Gupta, M. Hayat, R. Srivastava, A review on nucleate pool boiling heat transfer of binary mixtures, Asian J. Water, Environ. Pollut. 16 (2019) 27–34, doi:10.3233/AJW190016. [21] J. Xu, Y. Wang, R. Yang, W. Liu, H. Wu, Y. Ding, Y. Li, A review of boiling heat transfer characteristics in binary mixtures, Int. J. Heat Mass Transf. 164 (2021), doi:10.1016/j.ijheatmasstransfer.2020.120570. [22] D. Jung, H. Lee, D. Bae, S. Oho, Nucleate boiling heat transfer coefficients of flammable refrigerants, Int. J. Refrig. 27 (2004) 409–414, doi:10.1016/j.ijrefrig. 2003.11.007. [23] D. Jung, Y. Kim, Y. Ko, K. Song, Nucleate boiling heat transfer coefficients of pure halogenated refrigerants, Int. J. Refrig. 26 (2003) 240–248, doi:10.1016/ S0140-7007(02)00040-3. [24] M.G. Cooper, Saturation nucleate pool boiling - a simple correlation., Inst. Chem. Eng. Symp. Ser. (1984) 785–793, doi:10.1016/b978-0-85295-175-0. 50013-8. [25] I.L. Mostinski, Application of the rule of corresponding states for calculation of heat transfer and critical heat flux. 4, 66., Teploenergetika 4 (1963) 66. [26] K. Stephan, M. Abdelsalam, Heat-transfer correlations for natural convection boiling, Int. J. Heat Mass Transf. 23 (1980) 73–87, doi:10.1016/0017-9310(80) 90140-4. [27] D. Gorenflo, D. Kenning, Pool Boiling, in: VDI Heat Atlas, 2nd ed., Springer, 2010, pp. 757–792, doi:10.1007/978-3-540-77877-6. [28] S.G. Kandlikar, A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes, J. Heat Transfer. 112 (1990) 219– 228, doi:10.1115/1.2910348. [29] G. Barthau, Active nucleation site density and pool boiling heat transfer-an experimental study, Int. J. Heat Mass Transf. 35 (1992) 271–278, doi:10.1016/ 0017-9310(92)90266-U. [30] R.J. Benjamin, A.R. Balakrishnan, Nucleation Site Density in Pool Boiling of Saturated Pure Liquids: effect of Surface Microroughness and Surface and Liquid Physical Properties, Exp. Therm. Fluid Sci. 15 (1997) 32–42, doi:10.1016/ S0894-1777(96)00168-9. [31] R.J. Benjamin, A.R. Balakrishnan, Nucleate pool boiling heat transfer of pure liquids at low to moderate heat fluxes, Int. J. Heat Mass Transf. 39 (1996) 2495–2504, doi:10.1016/0017-9310(95)00320-7. [32] G. Sateesh, S.K. Das, A.R. Balakrishnan, Analysis of pool boiling heat transfer: effect of bubbles sliding on the heating surface, Int. J. Heat Mass Transf. 48 (2005) 1543–1553, doi:10.1016/j.ijheatmasstransfer.2004.10.033. [33] H. Chu, B. Yu, A new comprehensive model for nucleate pool boiling heat transfer of pure liquid at low to high heat fluxes including CHF, Int. J. Heat Mass Transf. 52 (2009) 4203–4210, doi:10.1016/j.ijheatmasstransfer.2009.04. 010. [34] C. Gerardi, J. Buongiorno, L.-.W. Hu, T. McKrell, Study of bubble growth in water pool boiling through synchronized, infrared thermometry and highspeed video, Int. J. Heat Mass Transf. 53 (2010) 4185–4192, doi:10.1016/j. ijheatmasstransfer.2010.05.041. [35] B. Yu, P. Cheng, A fractal model for nucleate pool boiling heat transfer, J. Heat Transf. 124 (2002) 1117–1124, doi:10.1115/1.1513580. [36] U. Wenzel, F. Balzer, M. Jamialahmadi, H. MÜller-Steinhagen, Pool boiling heat transfer coefficients for binary mixtures of acetone, isopropanol, and water, Heat Transf. Eng. 16 (1995) 36–43, doi:10.1080/ 01457639508939843. [37] K.E. Gungor, R.H.S. Winterton, A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transf. 29 (1986) 351–358, doi:10.1016/ 0017-9310(86)90205-X. [38] K.E. Gungor, R.H.S. Winterton, Simplified general correlation for saturated flow boiling and comparisons of correlations with data., Chem. Eng. Res. Des. 65 (1987) 148–156. [39] S.G. Kandlikar, A model for correlating flow boiling heat transfer in augmented tubes and compact evaporators, J. Heat Transf. 113 (1991) 966–972, doi:10.1115/1.2911229. [40] D.L. Bennett, J.C. Chen, Forced convective boiling in vertical tubes for saturated pure components and binary mixtures, AIChE J. 26 (1980) 454–461, doi:10.1002/aic.690260317. [41] E.U. Schlunder, Heat transfer in nucleate boiling of mixtures, Int. Chem. Eng. 23 (1983) 589–599. [42] J.R. Thome, S. Shakir, A new correlation for nucleate pool boiling of aqueous mixtures, AIChE Symp. Ser. (1987) 46–51. [43] J.R. Thome, R.A.W. Shock, Boiling of Multicomponent Liquid Mixtures, Adv. Heat Transf. 16 (1984) 59–156, doi:10.1016/S0065-2717(08)70204- 1. [44] Y. Fujita, Q. Bai, Critical heat flux of binary mixtures in pool boiling and its correlation in terms of Marangoni number, Int. J. Refrig. 20 (1997) 616–622, doi:10.1016/S0140-7007(97)00026-1. [45] G.V. Rao, A.R. Balakrishnan, Heat transfer in nucleate pool boiling of multicomponent mixtures, Exp. Therm. Fluid Sci. 29 (2004) 87–103, doi:10.1016/j. expthermflusci.2004.02.001. [46] S.A. Alavi Fazel, M. Mahboobpour, Pool boiling heat transfer in monoethyleneglycol aqueous solutions, Exp. Therm. Fluid Sci. 48 (2013) 177–183, doi:10.1016/j.expthermflusci.2013.02.021. [47] S.J.D. Van Stralen, The mechanism of nucleate boiling in pure liquids and in binary mixtures-part I, Int. J. Heat Mass Transf. 9 (1966), doi:10.1016/ 0017-9310(66)90025-1. [48] W.F. Calus, P. Rice, Pool boiling-binary liquid mixtures, Chem. Eng. Sci. 27 (1972) 1687–1697, doi:10.1016/0009-2509(72)80083-6. [49] W.F. Calus, D.J. Leonidopoulos, Pool boiling-Binary liquid mixtures, Int. J. Heat Mass Transf. 17 (1974) 249–256, doi:10.1016/0017-9310(74)90086- 6. [50] H. Jungnickel, P. Wassilew, W.E. Kraus, Investigations on the heat transfer of boiling binary refrigerant mixtures, Int. J. Refrig. 3 (1980) 129–133, doi:10. 1016/0140-7007(80)90092-4. [51] J.R. Thome, Prediction of binary mixture boiling heat transfer coefficients using only phase equilibrium data | Prevision du transfert thermique par ebullition d’un melange binaire, a partir des donnees d’equilibre de phase | Berechnung von Wärmeübergangskoeffiziente, Int. J. Heat Mass Transf. 26 (1983) 965–974, doi:10.1016/S0017-9310(83)80121-5. [52] T. Inoue, N. Kawae, M. Monde, Characteristics of heat transfer coefficient during nucleate pool boiling of binary mixtures: improvement of correlation and its physical meaning, Heat Mass Transf. Und Stoffuebertragung. 33 (1998) 337–344, doi:10.1007/s002310050199. [53] D. Steiner, J. Taborek, Flow boiling heat transfer in vertical tubes correlated by an asymptotic model, Heat Transf. Eng. 13 (1992) 43–69, doi:10.1080/ 01457639208939774. [54] M.P. Mishra, H.K. Varma, C.P. Sharma, Heat Transfer Coefficients in Forced Convection Evaporation of Refrigerants Mixtures, Lett. Heat Mass Transf. 8 (1981) 127–136. [55] M. Li, C. Dang, E. Hihara, Flow boiling heat transfer of HFO1234yf and HFC32 refrigerant mixtures in a smooth horizontal tube: part II. Prediction method, Int. J. Heat Mass Transf. 64 (2013) 591–608, doi:10.1016/j.ijheatmasstransfer. 2013.04.047. [56] I.L. Pioro, W. Rohsenow, S.S. Doerffer, Nucleate pool-boiling heat transfer. II: assessment of prediction methods, Int. J. Heat Mass Transf. 47 (2004) 5045– 5057, doi:10.1016/j.ijheatmasstransfer.2004.06.020. [57] B. Thonon, A. Feldman, L. Margat, C. Marvillet, Transition from nucleate boiling to convective boiling in compact heat exchangers, Int. J. Refrig. 20 (1997) 592–597, doi:10.1016/S0140-7007(97)00049-2. [58] Y.T. Kang, Y. Kunugi, T. Kashiwagi, Review of advanced absorption cycles: performance improvement and temperature lift enhancement, Int. J. Refrig. 23 (2000) 388–401. [59] W. Wu, B. Wang, W. Shi, X. Li, Absorption heating technologies: a review and perspective, Appl. Energy. 130 (2014), doi:10.1016/j.apenergy.2014.05. 027. [60] J. Sun, L. Fu, S. Zhang, A review of working fluids of absorption cycles, Renew. Sustain. Energy Rev. 16 (2012) 1899–1906, doi:10.1016/j.rser.2012.01.011. [61] F. Táboas, Estudio Del Proceso De Ebullición Forzada De La Mezcla Amoniaco/Agua En Intercambiadores De Placas Para Equipos De Refrigeración Por Absorción, Universitat Rovira i Virgili, Tarragona, Spain, 2006 https://www.tesisenred.net/handle/10803/8491. [62] W.W.S. Charters, V.R. Megler, W.D. Chen, Y.F. Wang, Atmospheric and subatmospheric boiling of H2O and LiBr/H2O solutions, Int. J. Refrig. 5 (1982) 107–114, doi:10.1016/0140-7007(82)90085-8. [63] H.K. Varma, R.K. Mehrotra, K.N. Agrawal, S. Singh, Heat transfer during pool boiling of LiBr-water solutions at subatmospheric pressures, Int. Commun. Heat Mass Transf. 21 (1994) 539–548, doi:10.1016/0735-1933(94)90053-1. [64] T. Inoue, M. Monde, Y. Teruya, Pool boiling heat transfer in binary mixtures of ammonia/water, Int. J. Heat Mass Transf. 45 (2002) 4409–4415, doi:10.1016/ S0017-9310(02)00153-9. [65] H. Arima, M. Monde, Y. Mitsutake, Heat transfer in pool boiling of ammonia/water mixture, Heat Mass Transf. Und Stoffuebertragung. 39 (2003) 535– 543, doi:10.1007/s00231-002-0302-2. [66] F. Táboas, M. Vallès, M. Bourouis, A. Coronas, Pool boiling of ammonia/water and its pure components: comparison of experimental data in the literature with the predictions of standard correlations, Int. J. Refrig. 30 (2007) 778– 788, doi:10.1016/j.ijrefrig.2006.12.009. [67] T. Inoue, M. Monde, Prediction of pool boiling heat transfer coefficient in ammonia/water mixtures, Heat Transf. - Asian Res. 38 (2009) 65–72, doi:10. 1002/htj.20234. [68] A. Sathyabhama, T.P. Ashok Babu, Nucleate pool boiling heat transfer measurement and flow visualization for ammonia-water mixture, J. Heat Transf. 133 (2011), doi:10.1115/1.4004258. [69] A. Sathyabhama, T.P. Ashok Babu, Experimental investigation in pool boiling heat transfer of ammonia/water mixture and heat transfer correlations, Int. J. Heat Fluid Flow. 32 (2011) 719–729, doi:10.1016/j.ijheatfluidflow.2011.02.007. [70] T. Inoue, Y. Teruya, M. Monde, Enhancement of pool boiling heat transfer in water and ethanol/water mixtures with surface-active agent, Int. J. Heat Mass Transf. 47 (2004) 5555–5563, doi:10.1016/j.ijheatmasstransfer.2004.05.037. [71] W.F. Calus, P. Rice, Pool boiling-binary mixtures, Chem. Eng. Sci. 27 (1972) 1687–1697. [72] K. Stephan, M. Korner, Calculation of heat transfer in evaporating binary liquid mixtures, Chem.-Ing. Tech. 41 (1969) 409–417. [73] A. Sathyabhama, T.P. Ashok Babu, Experimental study of nucleate pool boiling heat transfer to ammonia-water-lithium bromide solution, Exp. Therm. Fluid Sci. 35 (2011) 1046–1054, doi:10.1016/j.expthermflusci.2011.02.007. [74] T. Inoue, M. Monde, Enhancement of nucleate pool boiling heat transfer in ammonia/water mixtures with a surface-active agent, Int. J. Heat Mass Transf. 55 (2012) 3395–3399, doi:10.1016/j.ijheatmasstransfer.2012.03.004. [75] A. Sathyabhama, T.P. Ashok Babu, Experimental investigation of pool boiling heat transfer in ammonia-water-lithium nitrate solution, Exp. Heat Transf. 25 (2012) 127–138, doi:10.1080/08916152.2011.582568. [76] J.-.Y. Jung, E.S. Kim, Y. Nam, Y.T. Kang, The study on the critical heat flux and pool boiling heat transfer coefficient of binary nanofluids (H2O/LiBr + Al2O3), Int. J. Refrig. 36 (2013) 1056–1061, doi:10.1016/j.ijrefrig.2012.11.021. [77] X.-.D. Han, S.-.W. Zhang, Y. Tang, W. Yuan, B. Li, Mass transfer enhancement for LiBr solution using ultrasonic wave, J. Cent. South Univ. 23 (2016) 405– 412, doi:10.1007/s11771-016-3085-1. [78] T. Inoue, M. Monde, Enhancement of nucleate pool boiling heat transfer in ammonia/water mixtures with a surface-active agent, Int. J. Heat Mass Transf. 55 (2012) 3395–3399, doi:10.1016/j.ijheatmasstransfer.2012.03.004. [79] D. Kim, M. Kim, Heat transfer enhancement characteristics for falling-film evaporation on horizontal enhanced tubes with aqueous LiBr solution, J. Enhanc. Heat Transf. 6 (1999) 61–69, doi:10.1615/JEnhHeatTransf.v6.i1.60. [80] K. Tuzla, K. Warn, J.C. Chen, Boiling inception in falling films of binary mixtures, Exp. Heat Transf. 8 (1995) 177–184, doi:10.1080/08916159508946499. [81] C. Shi, C. Xu, H. Hu, Y. Ying, Study on falling film generation heat transfer of lithium bromide solution in vertical tubes, J. Therm. Sci. 18 (2009) 241–245, doi:10.1007/s11630-009-0241-z. [82] C. Shi, Q. Chen, T.-.C. Jen, W. Yang, Heat transfer performance of lithium bromide solution in falling film generator, Int. J. Heat Mass Transf. 53 (2010) 3372–3376, doi:10.1016/j.ijheatmasstransfer.2010.02.051. [83] M.D. Determan, S. Garimella, Ammonia-water desorption heat and mass transfer in microchannel devices, Int. J. Refrig. 34 (2011) 1197–1208, doi:10. 1016/j.ijrefrig.2011.02.004 [84] Y. Lazcano-Véliz, J. Siqueiros, D. Juárez-Romero, L.I. Morales, J. Torres-Merino, Analysis of effective wetting area of a horizontal generator for an absorption heat transformer, Appl. Therm. Eng. 62 (2014) 845–849, doi:10.1016/j. applthermaleng.2013.09.043. [85] C.M. Keinath, D. Hoysall, J.C. Delahanty, M.D. Determan, S. Garimella, Experimental assessment of a compact branched tray generator for ammoniawater desorption, Sci. Technol. Built Environ. 21 (2015) 348–356, doi:10.1080/ 23744731.2014.1000797. [86] J.C. Delahanty, S. Garimella, M.A. Garrabrant, Design of compact microscale geometries for ammonia-water desorption, Sci. Technol. Built Environ. 21 (2015) 365–374, doi:10.1080/23744731.2015.1015906. [87] M. Olbricht, J. Addy, A. Luke, Heat and Mass Transfer in a Falling Film Evaporator with Aqueous Lithium Bromide Solution, J. Phys. Conf. Ser. 745 (2016) 032056. [88] M. Mortazavi, M. Schmid, S. Moghaddam, Compact and efficient generator for low grade solar and waste heat driven absorption systems, Appl. Energy. 198 (2017) 173–179, doi:10.1016/j.apenergy.2017.04.054. [89] R. Nasr Isfahani, K. Sampath, S. Moghaddam, Nanofibrous membrane-based absorption refrigeration system, Int. J. Refrig. (2013), doi:10.1016/j.ijrefrig. 2013.07.019. [90] Y. Lazcano-Véliz, J.A. Hernández, D. Juárez-Romero, A. Huicochea-Rodríguez, A. Álvarez-Gallegos, J. Siqueiros, Improved of effective wetting area and film thickness on a concentric helical bank of a generator for an absorption heat transformer, Appl. Therm. Eng. 106 (2016) 1319–1328, doi:10.1016/j. applthermaleng.2016.06.127. [91] Y. Lazcano-Véliz, J.A. Hernández, D. Juárez-Romero, M. Bourouis, A. Coronas, J. Siqueiros, Energy efficiency assessment in the generator of an absorption heat transformer from measurement falling film thickness on helical coils, Appl. Energy. 208 (2017) 1274–1284, doi:10.1016/j.apenergy.2017.09. 026. [92] T. Hu, X. Xie, Y. Jiang, Design and experimental study of a plate-type fallingfilm generator for a LiBr/H2O absorption heat pump | Conception et étude expérimentale d’un générateur à film tombant de type plaque pour une pompe à chaleur à absorption au LiBR/H2, Int. J. Refrig. 74 (2017) 302–310, doi:10.1016/j.ijrefrig.2016.09.024. [93] M.A. Staedter, S. Garimella, Design and modeling of a microscale diabatic distillation column for small capacity ammonia-water absorption systems, Int. J. Refrig. 94 (2018) 161–173, doi:10.1016/j.ijrefrig.2018.06.018. [94] M.A. Staedter, S. Garimella, Heat and mass transfer in microscale diabatic distillation columns for ammonia-water desorption and rectification | Transfert de chaleur et de masse dans les colonnes de distillation diabatique pour la désorption et la rectification du mélange ammoniac-ea, Int. J. Refrig. 95 (2018) 10–20, doi:10.1016/j.ijrefrig.2018.07.034. [95] M.A. Staedter, S. Garimella, Direct-coupled desorption for small capacity ammonia-water absorption systems, Int. J. Heat Mass Transf. 127 (2018) 196– 205, doi:10.1016/j.ijheatmasstransfer.2018.06.118. [96] C.M. Keinath, A. Krishna Nagavarapu, J.C. Delahanty, S. Garimella, M.A. Garrabrant, Experimental assessment of alternative compact configurations for ammonia-water desorption, Appl. Therm. Eng. (2019) 161, doi:10.1016/j.applthermaleng.2019.113852. [97] J.A. Hernández-Magallanes, W. Rivera, Boiling heat transfer coefficients in a falling film helical coil heat exchanger for the NH3-LiNO3 mixture, J. Heat Transfer. (2019) 141, doi:10.1115/1.4043300. [98] J.C. Delahanty, M. Hughes, S. Garimella, Desorber and rectifier geometries for ammonia-water absorption systems; part I: experimental approach and heat transfer, Int. J. Refrig. (2020), doi:10.1016/j.ijrefrig.2020.10.020. [99] T. Hu, X. Xie, Y. Jiang, A detachable plate falling film generator and condenser coupling using lithium bromide and water as working fluids | Générateur de film tombant à plaque détachable raccordé à un condenseur utilisant du bromure de lithium et de l’eau comme fluides actifs, Int. J. Refrig. 98 (2019) 120– 128, doi:10.1016/j.ijrefrig.2018.10.007. [100] J. Jurng, C. Woo Park, On the performance of a desorber for absorption heat pumps with a thermosyphon and a surfaceflame burner, Appl. Therm. Eng. 18 (1998) 83. [101] W. Rivera, R. Best, Boiling heat transfer coefficients inside a vertical smooth tube for water/ammonia and ammonia/lithium nitrate mixtures, Int. J. Heat Mass Transf. 42 (1999) 905–921, doi:10.1016/S0017-9310(98)00211-7. [102] S.B. Riffat, S. Wu, B. Bol, Pervaporation membrane process for vapour absorption system, Int. J. Refrig. 27 (2004) 604–611, doi:10.1016/j.ijrefrig.2004. 03.005. [103] T. Khir, A. Ben Brahim, R.K. Jassim, Boiling for convection force of mixing water-ammonia in a vertical tube | Ébullition par convection forcée des mélanges eau-ammoniac dans un tube vertical, Can. J. Chem. Eng. 83 (2005) 466–476, doi:10.1002/cjce.5450830309. [104] T. Khir, R.K. Jassim, N. Ghaffour, A.B. Brahim, Experimental study on forced convective boiling of ammonia-water mixtures in a vertical smooth tube, Arab, J. Sci. Eng. 30 (2005) 47–64. [105] J.D. Thorud, J. Liburdy, D. Pence, Microchannel membrane separation applied to confined thin film desorption, Exp. Therm. Fluid Sci. 30 (2006) 713–723. [106] J.D. Marcos, M. Izquierdo, R. Lizarte, E. Palacios, C.A. Infante Ferreira, Experimental boiling heat transfer coefficients in the high temperature generator of a double effect absorption machine for the lithium bromide/water mixture, Int. J. Refrig. 32 (2009) 627–637, doi:10.1016/j.ijrefrig.2009.02.003. [107] B. Thonon, Design method for plate evaporators and condensers, 1st Int. Conf. Process Intensif. Chem. Ind 18 (1995) 37–47. [108] G. Hewitt, G.L. Shires, T.R. Bott, Process Heat Transfer, Begell House, 1994. [109] Z. Wang, Z. Gu, S. Feng, Y. Li, Application of vacuum membrane distillation to lithium bromide absorption refrigeration system, Int. J. Refrig. 32 (2009) 1587–1596, doi:10.1016/j.ijrefrig.2009.07.002. [110] F. Táboas, M. Vallès, M. Bourouis, A. Coronas, Flow boiling heat transfer of ammonia/water mixture in a plate heat exchanger, Int. J. Refrig. 33 (2010) 695–705, doi:10.1016/j.ijrefrig.2009.12.005. [111] A. Zacarías, R. Ventas, M. Venegas, A. Lecuona, Boiling heat transfer and pressure drop of ammonia-lithium nitrate solution in a plate generator, Int. J. Heat Mass Transf. 53 (2010) 4768–4779, doi:10.1016/j.ijheatmasstransfer.2010. 06.015. [112] P. Balamurugan, A. Mani, Experimental studies on heat and mass transfer in tubular generator for R134a-DMF absorption refrigeration system, Int. J. Therm. Sci. 61 (2012) 118–128, doi:10.1016/j.ijthermalsci.2012.06.001. [113] P. Balamurugan, A. Mani, Heat and mass transfer studies on compact generator of R134a/DMF vapour absorption refrigeration system, Int. J. Refrig. 35 (2012) 506–517, doi:10.1016/j.ijrefrig.2012.01.009. [114] P. Balamurugan, A. Mani, Comparison of compact and tubular generators performance for R134a-DMF, Exp. Therm. Fluid Sci. 45 (2013) 54–62, doi:10.1016/ j.expthermflusci.2012.10.007. [115] M. Venegas, A. Zacarías, C. Vereda, A. Lecuona, R. Ventas, Subcooled and saturated boiling of ammonia-lithium nitrate solution in a plate-type generator for absorption machines, Int. J. Heat Mass Transf. 55 (2012) 4914–4922, doi:10.1016/j.ijheatmasstransfer.2012.04.061. [116] F. Táboas, M. Vallès, M. Bourouis, A. Coronas, Assessment of boiling heat transfer and pressure drop correlations of ammonia/water mixture in a plate heat exchanger, Int. J. Refrig. 35 (2012) 633–644, doi:10.1016/j.ijrefrig.2011.10. 003. [117] D.-.H. Han, K.-.J. Lee, Y.-.H. Kim, Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations, Appl. Therm. Eng. 23 (2003) 1209–1225, doi:10.1016/ S1359-4311(03)00061-9. [118] V.D. Donowski, S.G. Kandlikar, Correlating evaporation heat transfer coefficient of refrigerant R134a in a plate heat exchanger, Eng. Found. Conf. Pool Flow Boil. (2000). [119] R. Nasr Isfahani, A. Fazeli, S. Bigham, S. Moghaddam, Physics of lithium bromide (LiBr) solution dewatering through vapor venting membranes, Int. J. Multiph. Flow. 58 (2014) 27–38, doi:10.1016/j.ijmultiphaseflow.2013.08. 005. [120] S. Bigham, R. Nasr Isfahani, S. Moghaddam, Direct molecular diffusion and micro-mixing for rapid dewatering of LiBr solution, Appl. Therm. Eng. 64 (2014) 371–375, doi:10.1016/j.applthermaleng.2013.12.031. [121] C. Amaris, M. Bourouis, M. Vallès, D. Salavera, A. Coronas, Thermophysical properties and heat and mass transfer of new working fluids in plate heat exchangers for absorption refrigeration systems, Heat Transf. Eng. 36 (2015) 388–395, doi:10.1080/01457632.2014.923983. [122] F. Táboas, M. Bourouis, M. Valles, Boiling heat transfer and pressure drop of NH3/LiNO3 and NH3/(LiNO3+H2O) in a plate heat exchanger, Int. J. Therm. Sci. 105 (2016) 182–194, doi:10.1016/j.ijthermalsci.2016.02.003. [123] C. Oronel, C. Amaris, M. Vallès, M. Bourouis, Experiments on the characteristics of saturated boiling heat transfer in a plate heat exchanger for ammonia/lithium nitrate and ammonia/(lithium nitratewater), in: 2010 3rd Int, Conf. Therm. Issues Emerg. Technol. Theory Appl. - Proceedings (2010) 217– 225 ThETA3 2010, doi:10.1109/THETA.2010.5766401. [124] J. Jiang, G. He, Y. Liu, Y. Liu, D. Cai, Flow boiling heat transfer characteristics and pressure drop of ammonia-lithium nitrate solution in a smooth horizontal tube, Int. J. Heat Mass Transf. 108 (2017) 220–231, doi:10.1016/j. ijheatmasstransfer.2016.12.004. [125] J. Jiang, Y. Liu, G. He, Y. Liu, D. Cai, X. Liang, Experimental investigations and an updated correlation of flow boiling heat transfer coefficients for ammonia/lithium nitrate mixture in horizontal tubes, Int. J. Heat Mass Transf. 112 (2017) 224–235, doi:10.1016/j.ijheatmasstransfer.2017.04.135. [126] J. Ibarra-Bahena, U. Dehesa-Carrasco, R.J. Romero, B. Rivas-Herrera, W. Rivera, Experimental assessment of a hydrophobic membrane-based desorber/condenser with H2O/LiBr mixture for absorption systems, Exp. Therm. Fluid Sci. 88 (2017) 145–159, doi:10.1016/j.expthermflusci.2017.05.024. [127] S.J. Hong, E. Hihara, C. Dang, Analysis of adiabatic heat and mass transfer of microporous hydrophobic hollow fiber membrane-based generator in vapor absorption refrigeration system, J. Memb. Sci. 564 (2018) 415–427, doi:10.1016/j.memsci.2018.07.048. [128] D. Cai, Y. Liu, X. Liang, J. Jiang, M. Fan, G. He, Experimental investigation of flow boiling heat transfer characteristics in smooth horizontal tubes using NH3/NaSCN solution as working fluid, Int. J. Heat Mass Transf. 127 (2018) 799–812, doi:10.1016/j.ijheatmasstransfer.2018.08.078. [129] M. Venegas, N. García-Hernando, M. de Vega, Experimental evaluation of a membrane-based microchannel desorber operating at low desorption temperatures, Appl. Therm. Eng. 167 (2020), doi:10.1016/j.applthermaleng.2019. 114781. [130] J. Ibarra-Bahena, E. Venegas-Reyes, Y.R. Galindo-Luna, W. Rivera, R.J. Romero, A. Rodríguez-Martínez, U. Dehesa-Carrasco, Feasibility analysis of a membrane desorber powered by thermal solar energy for absorption cooling systems, Appl. Sci. 10 (2020), doi:10.3390/app10031110. [131] K. Li, G. He, J. Jiang, Y. Li, D. Cai, Flow boiling heat transfer characteristics and pressure drop of R290/oil solution in smooth horizontal tubes, Int. J. Heat Mass Transf. 119 (2018) 777–790, doi:10.1016/j.ijheatmasstransfer.2017.11. 134. [132] S. Zhou, X. Zhao, D. Cai, J. Deng, Y. Gao, G. He, Experimental evaluation on flow boiling heat transfer of R290/POE-oil working fluid for absorption refrigeration in smooth horizontal tubes, Int. J. Therm. Sci. 159 (2021), doi:10. 1016/j.ijthermalsci.2020.106641. [133] L. Cheng, L. Liu, Boiling and two-phase flow phenomena of refrigerant-based nanofluids: fundamentals, applications and challenges, Int. J. Refrig., Elsevier (2013) 421–446, doi:10.1016/j.ijrefrig.2012.11.010. [134] Y. Fujita, M. Tsutsui, Heat transfer in nucleate boiling of binary mixtures (Development of a heat transfer correlation), JSME Int. Journal, Ser. B Fluids Therm. Eng. 40 (1997) 134–141, doi:10.1299/jsmeb.40.134. [135] T. Inoue, S. Kawae, M. Monde, Characteristics of heat transfer during nucleate pool boiling of binary mixtures, Trans. JSME. (1997) 1312–1319. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.source.spa.fl_str_mv |
International Journal of Heat and Mass Transfer |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0017931021008292 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/ec37b0a6-b6ed-43b1-8ed4-932d6b8f543e/download https://repositorio.cuc.edu.co/bitstreams/dc0bafc2-5a24-426c-81cf-155e80216af9/download https://repositorio.cuc.edu.co/bitstreams/8f2a1f8f-24b3-4541-aeba-40e776babb9c/download https://repositorio.cuc.edu.co/bitstreams/d58a332c-035c-4145-8812-3aee1e9d17a3/download https://repositorio.cuc.edu.co/bitstreams/10764173-2170-4824-ad11-b2739413fd99/download https://repositorio.cuc.edu.co/bitstreams/67226197-4a4d-4049-9760-340445003d25/download |
bitstream.checksum.fl_str_mv |
42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 0c2681e89a1176fa632df692511670e2 e178488864b0e959c20b7c3782845c80 e178488864b0e959c20b7c3782845c80 69cc91b68c3a1ff6f5391320b2bbc226 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166808455086080 |
spelling |
Amaris, CarlosBourouis, Mahmoud2021-08-18T15:34:37Z2021-08-18T15:34:37Z20212023-1100179310https://hdl.handle.net/11323/854610.1016/j.ijheatmasstransfer.2021.121723Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Absorption technology becomes an attractive option for cooling or heating when driven by solar thermal energy, residual heat from different processes, or geothermal energy. Further development of this technology could help to cover current cooling or heating requirements and have a much lower impact on the environment than mechanical compression cooling and heat pumps systems. Moreover, the rising cost of electrical energy added to the issue of climate change are reasons to move towards the development of environmental and sustainable energy technologies. The desorbers are key components of absorption heat pump technologies. Studies in the open literature on desorbers show advances in new design concepts to enhance heat and mass transfer with different working fluids. Therefore, the objective of this review is to identify, summarise, and discuss the experimental studies that deal with the boiling process in desorbers and boiling correlations specifically for use in absorption heat pump technologies. It includes a comprehensive scrutiny on the boiling phenomenon in pool desorbers, falling-film desorbers, and forced flow desorbers for conventional and promising working fluids, and details the experimental techniques and the latest advances in desorber design concepts. Finally, the review contains proposals for future studies to be carried out so as to contribute to the further development of absorption heat pump technologies.Amaris, CarlosBourouis, Mahmoudapplication/pdfengCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfInternational Journal of Heat and Mass Transferhttps://www.sciencedirect.com/science/article/pii/S0017931021008292Absorption heat pumpsboiling heat transfer correlationsboiling processconvective boilingdesorbernucleate boilingBoiling process assessment for absorption heat pumps: A reviewArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] G.A. Florides, S.A. Tassou, S.A. Kalogirou, L.C. Wrobel, Review of solar and low energy cooling technologies for buildings, Renew. Sustain. Energy Rev. 6 (2002) 557–572.[2] K.R. Ullah, R. Saidur, H.W. Ping, R.K. Akikur, N.H. Shuvo, A review of solar thermal refrigeration and cooling methods, Renew. Sustain. Energy Rev. 24 (2013) 499–513, doi:10.1016/J.RSER.2013.03.024.[3] R. Best, I. Pilatowsky, Solar assisted cooling with sorption systems: status of the research in Mexico and Latin America, Int. J. Refrig. 21 (1998) 100–115, doi:10.1016/S0140-7007(97)00051-0.[4] J. Mendoza, J. Rhenals, A. Avila, A. Martinez, T. De la Vega, E. Durango, Heat absorption cooling with renewable energies: a case study with photovoltaic solar energy and biogas in Cordoba, Colombia, INGE CUC 17 (2021) 1–10, doi:10.17981/ingecuc.17.2.2021.01.[5] S. Yang, Y. Qian, Y. Wang, S. Yang, A novel cascade absorption heat transformer process using low grade waste heat and its application to coal to synthetic natural gas, Appl. Energy. 202 (2017) 42–52, doi:10.1016/j.apenergy. 2017.04.028.[6] C. Amaris, B.C. Miranda, M. Balbis-Morejón, Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system, Therm. Sci. Eng. Prog. (2020) 20, doi:10.1016/j.tsep.2020.100684.[7] M. Moya, J.C. Bruno, P. Eguia, E. Torres, I. Zamora, A. Coronas, Performance analysis of a trigeneration system based on a micro gas turbine and an aircooled, indirect fired, ammonia-water absorption chiller, Appl. Energy. 88 (2011) 4424–4440, doi:10.1016/j.apenergy.2011.05.021.[8] Y.T. Ge, S.A. Tassou, I. Chaer, N. Suguartha, Performance evaluation of a trigeneration system with simulation and experiment, Appl. Energy. 86 (2009) 2317–2326, doi:10.1016/j.apenergy.2009.03.018.[9] D.S. Ayou, J.C. Bruno, R. Saravanan, A. Coronas, An overview of combined absorption power and cooling cycles, Renew. Sustain. Energy Rev. 21 (2013) 728–748, doi:10.1016/j.rser.2012.12.068.[10] X. Wang, A. Bierwirth, A. Christ, P. Whittaker, K. Regenauer-Lieb, H.T. Chua, Application of geothermal absorption air-conditioning system: a case study, Appl. Therm. Eng., Pergamon. (2013) 71–80, doi:10.1016/j.applthermaleng. 2012.05.011.[11] P. Srikhirin, S. Aphornratana, S. Chungpaibulpatana, A review of absorption refrigeration technologies, Renew. Sustain. Energy Rev. 5 (2001) 343–372, doi:10.1016/S1364-0321(01)00003-X.[12] C. Oronel, C. Amaris, M. Bourouis, M. Vallès, Heat and mass transfer in a bubble plate absorber with NH3/LiNO3 and NH3/(LiNO3 + H2O) mixtures, Int. J. Therm. Sci. 63 (2013), doi:10.1016/j.ijthermalsci.2012.07.007.[13] C. Amaris, M.E. Alvarez, M. Vallès, M. Bourouis, Performance assessment of an NH3/LiNO3 bubble plate absorber applying a semi-empirical model and artificial neural networks, Energies 13 (2020), doi:10.3390/en13174313.[14] C. Amaris, M. Bourouis, M. Vallès, Effect of advanced surfaces on the ammonia absorption process with NH3/LiNO3 in a tubular bubble absorber, Int. J. Heat Mass Transf. 72 (2014), doi:10.1016/j.ijheatmasstransfer.2014.01.031.[15] C. Amaris, Intensification of NH3 Bubble Absorption Process Using Advanced Surfaces and Carbon Nanotubes For NH3/LiNO3 Absorption Chillers, Universitat Rovira i Virgili, Tarragona, Spain, 2013 https://www.tdx.cat/ handle/10803/128504.[16] C. Amaris, M. Bourouis, M. Vallès, Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber, Energy 68 (2014) 519–528, doi:10.1016/j. energy.2014.02.039.[17] C. Amaris, M. Vallès, M. Bourouis, Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: a review, Appl. Energy. 231 (2018) 826–853, doi:10.1016/j.apenergy.2018.09.071.[18] R.L. Mohanty, M.K. Das, A critical review on bubble dynamics parameters influencing boiling heat transfer, Renew. Sustain. Energy Rev. 78 (2017) 466– 494, doi:10.1016/j.rser.2017.04.092.[19] M.R. Kærn, A. Modi, J.K. Jensen, J.G. Andreasen, F. Haglind, An assessment of in-tube flow boiling correlations for ammonia-water mixtures and their influence on heat exchanger size, Appl. Therm. Eng. 93 (2016) 623–638, doi:10.1016/j.applthermaleng.2015.09.106.[20] P. Gupta, M. Hayat, R. Srivastava, A review on nucleate pool boiling heat transfer of binary mixtures, Asian J. Water, Environ. Pollut. 16 (2019) 27–34, doi:10.3233/AJW190016.[21] J. Xu, Y. Wang, R. Yang, W. Liu, H. Wu, Y. Ding, Y. Li, A review of boiling heat transfer characteristics in binary mixtures, Int. J. Heat Mass Transf. 164 (2021), doi:10.1016/j.ijheatmasstransfer.2020.120570.[22] D. Jung, H. Lee, D. Bae, S. Oho, Nucleate boiling heat transfer coefficients of flammable refrigerants, Int. J. Refrig. 27 (2004) 409–414, doi:10.1016/j.ijrefrig. 2003.11.007.[23] D. Jung, Y. Kim, Y. Ko, K. Song, Nucleate boiling heat transfer coefficients of pure halogenated refrigerants, Int. J. Refrig. 26 (2003) 240–248, doi:10.1016/ S0140-7007(02)00040-3.[24] M.G. Cooper, Saturation nucleate pool boiling - a simple correlation., Inst. Chem. Eng. Symp. Ser. (1984) 785–793, doi:10.1016/b978-0-85295-175-0. 50013-8.[25] I.L. Mostinski, Application of the rule of corresponding states for calculation of heat transfer and critical heat flux. 4, 66., Teploenergetika 4 (1963) 66.[26] K. Stephan, M. Abdelsalam, Heat-transfer correlations for natural convection boiling, Int. J. Heat Mass Transf. 23 (1980) 73–87, doi:10.1016/0017-9310(80) 90140-4.[27] D. Gorenflo, D. Kenning, Pool Boiling, in: VDI Heat Atlas, 2nd ed., Springer, 2010, pp. 757–792, doi:10.1007/978-3-540-77877-6.[28] S.G. Kandlikar, A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes, J. Heat Transfer. 112 (1990) 219– 228, doi:10.1115/1.2910348.[29] G. Barthau, Active nucleation site density and pool boiling heat transfer-an experimental study, Int. J. Heat Mass Transf. 35 (1992) 271–278, doi:10.1016/ 0017-9310(92)90266-U.[30] R.J. Benjamin, A.R. Balakrishnan, Nucleation Site Density in Pool Boiling of Saturated Pure Liquids: effect of Surface Microroughness and Surface and Liquid Physical Properties, Exp. Therm. Fluid Sci. 15 (1997) 32–42, doi:10.1016/ S0894-1777(96)00168-9.[31] R.J. Benjamin, A.R. Balakrishnan, Nucleate pool boiling heat transfer of pure liquids at low to moderate heat fluxes, Int. J. Heat Mass Transf. 39 (1996) 2495–2504, doi:10.1016/0017-9310(95)00320-7.[32] G. Sateesh, S.K. Das, A.R. Balakrishnan, Analysis of pool boiling heat transfer: effect of bubbles sliding on the heating surface, Int. J. Heat Mass Transf. 48 (2005) 1543–1553, doi:10.1016/j.ijheatmasstransfer.2004.10.033.[33] H. Chu, B. Yu, A new comprehensive model for nucleate pool boiling heat transfer of pure liquid at low to high heat fluxes including CHF, Int. J. Heat Mass Transf. 52 (2009) 4203–4210, doi:10.1016/j.ijheatmasstransfer.2009.04. 010.[34] C. Gerardi, J. Buongiorno, L.-.W. Hu, T. McKrell, Study of bubble growth in water pool boiling through synchronized, infrared thermometry and highspeed video, Int. J. Heat Mass Transf. 53 (2010) 4185–4192, doi:10.1016/j. ijheatmasstransfer.2010.05.041.[35] B. Yu, P. Cheng, A fractal model for nucleate pool boiling heat transfer, J. Heat Transf. 124 (2002) 1117–1124, doi:10.1115/1.1513580.[36] U. Wenzel, F. Balzer, M. Jamialahmadi, H. MÜller-Steinhagen, Pool boiling heat transfer coefficients for binary mixtures of acetone, isopropanol, and water, Heat Transf. Eng. 16 (1995) 36–43, doi:10.1080/ 01457639508939843.[37] K.E. Gungor, R.H.S. Winterton, A general correlation for flow boiling in tubes and annuli, Int. J. Heat Mass Transf. 29 (1986) 351–358, doi:10.1016/ 0017-9310(86)90205-X.[38] K.E. Gungor, R.H.S. Winterton, Simplified general correlation for saturated flow boiling and comparisons of correlations with data., Chem. Eng. Res. Des. 65 (1987) 148–156.[39] S.G. Kandlikar, A model for correlating flow boiling heat transfer in augmented tubes and compact evaporators, J. Heat Transf. 113 (1991) 966–972, doi:10.1115/1.2911229.[40] D.L. Bennett, J.C. Chen, Forced convective boiling in vertical tubes for saturated pure components and binary mixtures, AIChE J. 26 (1980) 454–461, doi:10.1002/aic.690260317.[41] E.U. Schlunder, Heat transfer in nucleate boiling of mixtures, Int. Chem. Eng. 23 (1983) 589–599.[42] J.R. Thome, S. Shakir, A new correlation for nucleate pool boiling of aqueous mixtures, AIChE Symp. Ser. (1987) 46–51.[43] J.R. Thome, R.A.W. Shock, Boiling of Multicomponent Liquid Mixtures, Adv. Heat Transf. 16 (1984) 59–156, doi:10.1016/S0065-2717(08)70204- 1.[44] Y. Fujita, Q. Bai, Critical heat flux of binary mixtures in pool boiling and its correlation in terms of Marangoni number, Int. J. Refrig. 20 (1997) 616–622, doi:10.1016/S0140-7007(97)00026-1.[45] G.V. Rao, A.R. Balakrishnan, Heat transfer in nucleate pool boiling of multicomponent mixtures, Exp. Therm. Fluid Sci. 29 (2004) 87–103, doi:10.1016/j. expthermflusci.2004.02.001.[46] S.A. Alavi Fazel, M. Mahboobpour, Pool boiling heat transfer in monoethyleneglycol aqueous solutions, Exp. Therm. Fluid Sci. 48 (2013) 177–183, doi:10.1016/j.expthermflusci.2013.02.021.[47] S.J.D. Van Stralen, The mechanism of nucleate boiling in pure liquids and in binary mixtures-part I, Int. J. Heat Mass Transf. 9 (1966), doi:10.1016/ 0017-9310(66)90025-1.[48] W.F. Calus, P. Rice, Pool boiling-binary liquid mixtures, Chem. Eng. Sci. 27 (1972) 1687–1697, doi:10.1016/0009-2509(72)80083-6.[49] W.F. Calus, D.J. Leonidopoulos, Pool boiling-Binary liquid mixtures, Int. J. Heat Mass Transf. 17 (1974) 249–256, doi:10.1016/0017-9310(74)90086- 6.[50] H. Jungnickel, P. Wassilew, W.E. Kraus, Investigations on the heat transfer of boiling binary refrigerant mixtures, Int. J. Refrig. 3 (1980) 129–133, doi:10. 1016/0140-7007(80)90092-4.[51] J.R. Thome, Prediction of binary mixture boiling heat transfer coefficients using only phase equilibrium data | Prevision du transfert thermique par ebullition d’un melange binaire, a partir des donnees d’equilibre de phase | Berechnung von Wärmeübergangskoeffiziente, Int. J. Heat Mass Transf. 26 (1983) 965–974, doi:10.1016/S0017-9310(83)80121-5.[52] T. Inoue, N. Kawae, M. Monde, Characteristics of heat transfer coefficient during nucleate pool boiling of binary mixtures: improvement of correlation and its physical meaning, Heat Mass Transf. Und Stoffuebertragung. 33 (1998) 337–344, doi:10.1007/s002310050199.[53] D. Steiner, J. Taborek, Flow boiling heat transfer in vertical tubes correlated by an asymptotic model, Heat Transf. Eng. 13 (1992) 43–69, doi:10.1080/ 01457639208939774.[54] M.P. Mishra, H.K. Varma, C.P. Sharma, Heat Transfer Coefficients in Forced Convection Evaporation of Refrigerants Mixtures, Lett. Heat Mass Transf. 8 (1981) 127–136.[55] M. Li, C. Dang, E. Hihara, Flow boiling heat transfer of HFO1234yf and HFC32 refrigerant mixtures in a smooth horizontal tube: part II. Prediction method, Int. J. Heat Mass Transf. 64 (2013) 591–608, doi:10.1016/j.ijheatmasstransfer. 2013.04.047.[56] I.L. Pioro, W. Rohsenow, S.S. Doerffer, Nucleate pool-boiling heat transfer. II: assessment of prediction methods, Int. J. Heat Mass Transf. 47 (2004) 5045– 5057, doi:10.1016/j.ijheatmasstransfer.2004.06.020.[57] B. Thonon, A. Feldman, L. Margat, C. Marvillet, Transition from nucleate boiling to convective boiling in compact heat exchangers, Int. J. Refrig. 20 (1997) 592–597, doi:10.1016/S0140-7007(97)00049-2.[58] Y.T. Kang, Y. Kunugi, T. Kashiwagi, Review of advanced absorption cycles: performance improvement and temperature lift enhancement, Int. J. Refrig. 23 (2000) 388–401.[59] W. Wu, B. Wang, W. Shi, X. Li, Absorption heating technologies: a review and perspective, Appl. Energy. 130 (2014), doi:10.1016/j.apenergy.2014.05. 027.[60] J. Sun, L. Fu, S. Zhang, A review of working fluids of absorption cycles, Renew. Sustain. Energy Rev. 16 (2012) 1899–1906, doi:10.1016/j.rser.2012.01.011.[61] F. Táboas, Estudio Del Proceso De Ebullición Forzada De La Mezcla Amoniaco/Agua En Intercambiadores De Placas Para Equipos De Refrigeración Por Absorción, Universitat Rovira i Virgili, Tarragona, Spain, 2006 https://www.tesisenred.net/handle/10803/8491.[62] W.W.S. Charters, V.R. Megler, W.D. Chen, Y.F. Wang, Atmospheric and subatmospheric boiling of H2O and LiBr/H2O solutions, Int. J. Refrig. 5 (1982) 107–114, doi:10.1016/0140-7007(82)90085-8.[63] H.K. Varma, R.K. Mehrotra, K.N. Agrawal, S. Singh, Heat transfer during pool boiling of LiBr-water solutions at subatmospheric pressures, Int. Commun. Heat Mass Transf. 21 (1994) 539–548, doi:10.1016/0735-1933(94)90053-1.[64] T. Inoue, M. Monde, Y. Teruya, Pool boiling heat transfer in binary mixtures of ammonia/water, Int. J. Heat Mass Transf. 45 (2002) 4409–4415, doi:10.1016/ S0017-9310(02)00153-9.[65] H. Arima, M. Monde, Y. Mitsutake, Heat transfer in pool boiling of ammonia/water mixture, Heat Mass Transf. Und Stoffuebertragung. 39 (2003) 535– 543, doi:10.1007/s00231-002-0302-2.[66] F. Táboas, M. Vallès, M. Bourouis, A. Coronas, Pool boiling of ammonia/water and its pure components: comparison of experimental data in the literature with the predictions of standard correlations, Int. J. Refrig. 30 (2007) 778– 788, doi:10.1016/j.ijrefrig.2006.12.009.[67] T. Inoue, M. Monde, Prediction of pool boiling heat transfer coefficient in ammonia/water mixtures, Heat Transf. - Asian Res. 38 (2009) 65–72, doi:10. 1002/htj.20234.[68] A. Sathyabhama, T.P. Ashok Babu, Nucleate pool boiling heat transfer measurement and flow visualization for ammonia-water mixture, J. Heat Transf. 133 (2011), doi:10.1115/1.4004258.[69] A. Sathyabhama, T.P. Ashok Babu, Experimental investigation in pool boiling heat transfer of ammonia/water mixture and heat transfer correlations, Int. J. Heat Fluid Flow. 32 (2011) 719–729, doi:10.1016/j.ijheatfluidflow.2011.02.007.[70] T. Inoue, Y. Teruya, M. Monde, Enhancement of pool boiling heat transfer in water and ethanol/water mixtures with surface-active agent, Int. J. Heat Mass Transf. 47 (2004) 5555–5563, doi:10.1016/j.ijheatmasstransfer.2004.05.037.[71] W.F. Calus, P. Rice, Pool boiling-binary mixtures, Chem. Eng. Sci. 27 (1972) 1687–1697.[72] K. Stephan, M. Korner, Calculation of heat transfer in evaporating binary liquid mixtures, Chem.-Ing. Tech. 41 (1969) 409–417.[73] A. Sathyabhama, T.P. Ashok Babu, Experimental study of nucleate pool boiling heat transfer to ammonia-water-lithium bromide solution, Exp. Therm. Fluid Sci. 35 (2011) 1046–1054, doi:10.1016/j.expthermflusci.2011.02.007.[74] T. Inoue, M. Monde, Enhancement of nucleate pool boiling heat transfer in ammonia/water mixtures with a surface-active agent, Int. J. Heat Mass Transf. 55 (2012) 3395–3399, doi:10.1016/j.ijheatmasstransfer.2012.03.004.[75] A. Sathyabhama, T.P. Ashok Babu, Experimental investigation of pool boiling heat transfer in ammonia-water-lithium nitrate solution, Exp. Heat Transf. 25 (2012) 127–138, doi:10.1080/08916152.2011.582568.[76] J.-.Y. Jung, E.S. Kim, Y. Nam, Y.T. Kang, The study on the critical heat flux and pool boiling heat transfer coefficient of binary nanofluids (H2O/LiBr + Al2O3), Int. J. Refrig. 36 (2013) 1056–1061, doi:10.1016/j.ijrefrig.2012.11.021.[77] X.-.D. Han, S.-.W. Zhang, Y. Tang, W. Yuan, B. Li, Mass transfer enhancement for LiBr solution using ultrasonic wave, J. Cent. South Univ. 23 (2016) 405– 412, doi:10.1007/s11771-016-3085-1.[78] T. Inoue, M. Monde, Enhancement of nucleate pool boiling heat transfer in ammonia/water mixtures with a surface-active agent, Int. J. Heat Mass Transf. 55 (2012) 3395–3399, doi:10.1016/j.ijheatmasstransfer.2012.03.004.[79] D. Kim, M. Kim, Heat transfer enhancement characteristics for falling-film evaporation on horizontal enhanced tubes with aqueous LiBr solution, J. Enhanc. Heat Transf. 6 (1999) 61–69, doi:10.1615/JEnhHeatTransf.v6.i1.60.[80] K. Tuzla, K. Warn, J.C. Chen, Boiling inception in falling films of binary mixtures, Exp. Heat Transf. 8 (1995) 177–184, doi:10.1080/08916159508946499.[81] C. Shi, C. Xu, H. Hu, Y. Ying, Study on falling film generation heat transfer of lithium bromide solution in vertical tubes, J. Therm. Sci. 18 (2009) 241–245, doi:10.1007/s11630-009-0241-z.[82] C. Shi, Q. Chen, T.-.C. Jen, W. Yang, Heat transfer performance of lithium bromide solution in falling film generator, Int. J. Heat Mass Transf. 53 (2010) 3372–3376, doi:10.1016/j.ijheatmasstransfer.2010.02.051.[83] M.D. Determan, S. Garimella, Ammonia-water desorption heat and mass transfer in microchannel devices, Int. J. Refrig. 34 (2011) 1197–1208, doi:10. 1016/j.ijrefrig.2011.02.004[84] Y. Lazcano-Véliz, J. Siqueiros, D. Juárez-Romero, L.I. Morales, J. Torres-Merino, Analysis of effective wetting area of a horizontal generator for an absorption heat transformer, Appl. Therm. Eng. 62 (2014) 845–849, doi:10.1016/j. applthermaleng.2013.09.043.[85] C.M. Keinath, D. Hoysall, J.C. Delahanty, M.D. Determan, S. Garimella, Experimental assessment of a compact branched tray generator for ammoniawater desorption, Sci. Technol. Built Environ. 21 (2015) 348–356, doi:10.1080/ 23744731.2014.1000797.[86] J.C. Delahanty, S. Garimella, M.A. Garrabrant, Design of compact microscale geometries for ammonia-water desorption, Sci. Technol. Built Environ. 21 (2015) 365–374, doi:10.1080/23744731.2015.1015906.[87] M. Olbricht, J. Addy, A. Luke, Heat and Mass Transfer in a Falling Film Evaporator with Aqueous Lithium Bromide Solution, J. Phys. Conf. Ser. 745 (2016) 032056.[88] M. Mortazavi, M. Schmid, S. Moghaddam, Compact and efficient generator for low grade solar and waste heat driven absorption systems, Appl. Energy. 198 (2017) 173–179, doi:10.1016/j.apenergy.2017.04.054.[89] R. Nasr Isfahani, K. Sampath, S. Moghaddam, Nanofibrous membrane-based absorption refrigeration system, Int. J. Refrig. (2013), doi:10.1016/j.ijrefrig. 2013.07.019.[90] Y. Lazcano-Véliz, J.A. Hernández, D. Juárez-Romero, A. Huicochea-Rodríguez, A. Álvarez-Gallegos, J. Siqueiros, Improved of effective wetting area and film thickness on a concentric helical bank of a generator for an absorption heat transformer, Appl. Therm. Eng. 106 (2016) 1319–1328, doi:10.1016/j. applthermaleng.2016.06.127.[91] Y. Lazcano-Véliz, J.A. Hernández, D. Juárez-Romero, M. Bourouis, A. Coronas, J. Siqueiros, Energy efficiency assessment in the generator of an absorption heat transformer from measurement falling film thickness on helical coils, Appl. Energy. 208 (2017) 1274–1284, doi:10.1016/j.apenergy.2017.09. 026.[92] T. Hu, X. Xie, Y. Jiang, Design and experimental study of a plate-type fallingfilm generator for a LiBr/H2O absorption heat pump | Conception et étude expérimentale d’un générateur à film tombant de type plaque pour une pompe à chaleur à absorption au LiBR/H2, Int. J. Refrig. 74 (2017) 302–310, doi:10.1016/j.ijrefrig.2016.09.024.[93] M.A. Staedter, S. Garimella, Design and modeling of a microscale diabatic distillation column for small capacity ammonia-water absorption systems, Int. J. Refrig. 94 (2018) 161–173, doi:10.1016/j.ijrefrig.2018.06.018.[94] M.A. Staedter, S. Garimella, Heat and mass transfer in microscale diabatic distillation columns for ammonia-water desorption and rectification | Transfert de chaleur et de masse dans les colonnes de distillation diabatique pour la désorption et la rectification du mélange ammoniac-ea, Int. J. Refrig. 95 (2018) 10–20, doi:10.1016/j.ijrefrig.2018.07.034.[95] M.A. Staedter, S. Garimella, Direct-coupled desorption for small capacity ammonia-water absorption systems, Int. J. Heat Mass Transf. 127 (2018) 196– 205, doi:10.1016/j.ijheatmasstransfer.2018.06.118.[96] C.M. Keinath, A. Krishna Nagavarapu, J.C. Delahanty, S. Garimella, M.A. Garrabrant, Experimental assessment of alternative compact configurations for ammonia-water desorption, Appl. Therm. Eng. (2019) 161, doi:10.1016/j.applthermaleng.2019.113852.[97] J.A. Hernández-Magallanes, W. Rivera, Boiling heat transfer coefficients in a falling film helical coil heat exchanger for the NH3-LiNO3 mixture, J. Heat Transfer. (2019) 141, doi:10.1115/1.4043300.[98] J.C. Delahanty, M. Hughes, S. Garimella, Desorber and rectifier geometries for ammonia-water absorption systems; part I: experimental approach and heat transfer, Int. J. Refrig. (2020), doi:10.1016/j.ijrefrig.2020.10.020.[99] T. Hu, X. Xie, Y. Jiang, A detachable plate falling film generator and condenser coupling using lithium bromide and water as working fluids | Générateur de film tombant à plaque détachable raccordé à un condenseur utilisant du bromure de lithium et de l’eau comme fluides actifs, Int. J. Refrig. 98 (2019) 120– 128, doi:10.1016/j.ijrefrig.2018.10.007.[100] J. Jurng, C. Woo Park, On the performance of a desorber for absorption heat pumps with a thermosyphon and a surfaceflame burner, Appl. Therm. Eng. 18 (1998) 83.[101] W. Rivera, R. Best, Boiling heat transfer coefficients inside a vertical smooth tube for water/ammonia and ammonia/lithium nitrate mixtures, Int. J. Heat Mass Transf. 42 (1999) 905–921, doi:10.1016/S0017-9310(98)00211-7.[102] S.B. Riffat, S. Wu, B. Bol, Pervaporation membrane process for vapour absorption system, Int. J. Refrig. 27 (2004) 604–611, doi:10.1016/j.ijrefrig.2004. 03.005.[103] T. Khir, A. Ben Brahim, R.K. Jassim, Boiling for convection force of mixing water-ammonia in a vertical tube | Ébullition par convection forcée des mélanges eau-ammoniac dans un tube vertical, Can. J. Chem. Eng. 83 (2005) 466–476, doi:10.1002/cjce.5450830309.[104] T. Khir, R.K. Jassim, N. Ghaffour, A.B. Brahim, Experimental study on forced convective boiling of ammonia-water mixtures in a vertical smooth tube, Arab, J. Sci. Eng. 30 (2005) 47–64.[105] J.D. Thorud, J. Liburdy, D. Pence, Microchannel membrane separation applied to confined thin film desorption, Exp. Therm. Fluid Sci. 30 (2006) 713–723.[106] J.D. Marcos, M. Izquierdo, R. Lizarte, E. Palacios, C.A. Infante Ferreira, Experimental boiling heat transfer coefficients in the high temperature generator of a double effect absorption machine for the lithium bromide/water mixture, Int. J. Refrig. 32 (2009) 627–637, doi:10.1016/j.ijrefrig.2009.02.003.[107] B. Thonon, Design method for plate evaporators and condensers, 1st Int. Conf. Process Intensif. Chem. Ind 18 (1995) 37–47.[108] G. Hewitt, G.L. Shires, T.R. Bott, Process Heat Transfer, Begell House, 1994.[109] Z. Wang, Z. Gu, S. Feng, Y. Li, Application of vacuum membrane distillation to lithium bromide absorption refrigeration system, Int. J. Refrig. 32 (2009) 1587–1596, doi:10.1016/j.ijrefrig.2009.07.002.[110] F. Táboas, M. Vallès, M. Bourouis, A. Coronas, Flow boiling heat transfer of ammonia/water mixture in a plate heat exchanger, Int. J. Refrig. 33 (2010) 695–705, doi:10.1016/j.ijrefrig.2009.12.005.[111] A. Zacarías, R. Ventas, M. Venegas, A. Lecuona, Boiling heat transfer and pressure drop of ammonia-lithium nitrate solution in a plate generator, Int. J. Heat Mass Transf. 53 (2010) 4768–4779, doi:10.1016/j.ijheatmasstransfer.2010. 06.015.[112] P. Balamurugan, A. Mani, Experimental studies on heat and mass transfer in tubular generator for R134a-DMF absorption refrigeration system, Int. J. Therm. Sci. 61 (2012) 118–128, doi:10.1016/j.ijthermalsci.2012.06.001.[113] P. Balamurugan, A. Mani, Heat and mass transfer studies on compact generator of R134a/DMF vapour absorption refrigeration system, Int. J. Refrig. 35 (2012) 506–517, doi:10.1016/j.ijrefrig.2012.01.009.[114] P. Balamurugan, A. Mani, Comparison of compact and tubular generators performance for R134a-DMF, Exp. Therm. Fluid Sci. 45 (2013) 54–62, doi:10.1016/ j.expthermflusci.2012.10.007.[115] M. Venegas, A. Zacarías, C. Vereda, A. Lecuona, R. Ventas, Subcooled and saturated boiling of ammonia-lithium nitrate solution in a plate-type generator for absorption machines, Int. J. Heat Mass Transf. 55 (2012) 4914–4922, doi:10.1016/j.ijheatmasstransfer.2012.04.061.[116] F. Táboas, M. Vallès, M. Bourouis, A. Coronas, Assessment of boiling heat transfer and pressure drop correlations of ammonia/water mixture in a plate heat exchanger, Int. J. Refrig. 35 (2012) 633–644, doi:10.1016/j.ijrefrig.2011.10. 003.[117] D.-.H. Han, K.-.J. Lee, Y.-.H. Kim, Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations, Appl. Therm. Eng. 23 (2003) 1209–1225, doi:10.1016/ S1359-4311(03)00061-9.[118] V.D. Donowski, S.G. Kandlikar, Correlating evaporation heat transfer coefficient of refrigerant R134a in a plate heat exchanger, Eng. Found. Conf. Pool Flow Boil. (2000).[119] R. Nasr Isfahani, A. Fazeli, S. Bigham, S. Moghaddam, Physics of lithium bromide (LiBr) solution dewatering through vapor venting membranes, Int. J. Multiph. Flow. 58 (2014) 27–38, doi:10.1016/j.ijmultiphaseflow.2013.08. 005.[120] S. Bigham, R. Nasr Isfahani, S. Moghaddam, Direct molecular diffusion and micro-mixing for rapid dewatering of LiBr solution, Appl. Therm. Eng. 64 (2014) 371–375, doi:10.1016/j.applthermaleng.2013.12.031.[121] C. Amaris, M. Bourouis, M. Vallès, D. Salavera, A. Coronas, Thermophysical properties and heat and mass transfer of new working fluids in plate heat exchangers for absorption refrigeration systems, Heat Transf. Eng. 36 (2015) 388–395, doi:10.1080/01457632.2014.923983.[122] F. Táboas, M. Bourouis, M. Valles, Boiling heat transfer and pressure drop of NH3/LiNO3 and NH3/(LiNO3+H2O) in a plate heat exchanger, Int. J. Therm. Sci. 105 (2016) 182–194, doi:10.1016/j.ijthermalsci.2016.02.003.[123] C. Oronel, C. Amaris, M. Vallès, M. Bourouis, Experiments on the characteristics of saturated boiling heat transfer in a plate heat exchanger for ammonia/lithium nitrate and ammonia/(lithium nitratewater), in: 2010 3rd Int, Conf. Therm. Issues Emerg. Technol. Theory Appl. - Proceedings (2010) 217– 225 ThETA3 2010, doi:10.1109/THETA.2010.5766401.[124] J. Jiang, G. He, Y. Liu, Y. Liu, D. Cai, Flow boiling heat transfer characteristics and pressure drop of ammonia-lithium nitrate solution in a smooth horizontal tube, Int. J. Heat Mass Transf. 108 (2017) 220–231, doi:10.1016/j. ijheatmasstransfer.2016.12.004.[125] J. Jiang, Y. Liu, G. He, Y. Liu, D. Cai, X. Liang, Experimental investigations and an updated correlation of flow boiling heat transfer coefficients for ammonia/lithium nitrate mixture in horizontal tubes, Int. J. Heat Mass Transf. 112 (2017) 224–235, doi:10.1016/j.ijheatmasstransfer.2017.04.135.[126] J. Ibarra-Bahena, U. Dehesa-Carrasco, R.J. Romero, B. Rivas-Herrera, W. Rivera, Experimental assessment of a hydrophobic membrane-based desorber/condenser with H2O/LiBr mixture for absorption systems, Exp. Therm. Fluid Sci. 88 (2017) 145–159, doi:10.1016/j.expthermflusci.2017.05.024.[127] S.J. Hong, E. Hihara, C. Dang, Analysis of adiabatic heat and mass transfer of microporous hydrophobic hollow fiber membrane-based generator in vapor absorption refrigeration system, J. Memb. Sci. 564 (2018) 415–427, doi:10.1016/j.memsci.2018.07.048.[128] D. Cai, Y. Liu, X. Liang, J. Jiang, M. Fan, G. He, Experimental investigation of flow boiling heat transfer characteristics in smooth horizontal tubes using NH3/NaSCN solution as working fluid, Int. J. Heat Mass Transf. 127 (2018) 799–812, doi:10.1016/j.ijheatmasstransfer.2018.08.078.[129] M. Venegas, N. García-Hernando, M. de Vega, Experimental evaluation of a membrane-based microchannel desorber operating at low desorption temperatures, Appl. Therm. Eng. 167 (2020), doi:10.1016/j.applthermaleng.2019. 114781.[130] J. Ibarra-Bahena, E. Venegas-Reyes, Y.R. Galindo-Luna, W. Rivera, R.J. Romero, A. Rodríguez-Martínez, U. Dehesa-Carrasco, Feasibility analysis of a membrane desorber powered by thermal solar energy for absorption cooling systems, Appl. Sci. 10 (2020), doi:10.3390/app10031110.[131] K. Li, G. He, J. Jiang, Y. Li, D. Cai, Flow boiling heat transfer characteristics and pressure drop of R290/oil solution in smooth horizontal tubes, Int. J. Heat Mass Transf. 119 (2018) 777–790, doi:10.1016/j.ijheatmasstransfer.2017.11. 134.[132] S. Zhou, X. Zhao, D. Cai, J. Deng, Y. Gao, G. He, Experimental evaluation on flow boiling heat transfer of R290/POE-oil working fluid for absorption refrigeration in smooth horizontal tubes, Int. J. Therm. Sci. 159 (2021), doi:10. 1016/j.ijthermalsci.2020.106641.[133] L. Cheng, L. Liu, Boiling and two-phase flow phenomena of refrigerant-based nanofluids: fundamentals, applications and challenges, Int. J. Refrig., Elsevier (2013) 421–446, doi:10.1016/j.ijrefrig.2012.11.010.[134] Y. Fujita, M. Tsutsui, Heat transfer in nucleate boiling of binary mixtures (Development of a heat transfer correlation), JSME Int. Journal, Ser. B Fluids Therm. Eng. 40 (1997) 134–141, doi:10.1299/jsmeb.40.134.[135] T. Inoue, S. Kawae, M. Monde, Characteristics of heat transfer during nucleate pool boiling of binary mixtures, Trans. JSME. (1997) 1312–1319.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/ec37b0a6-b6ed-43b1-8ed4-932d6b8f543e/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/dc0bafc2-5a24-426c-81cf-155e80216af9/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALBoiling process assessment for absorption heat pumps A review.pdfBoiling process assessment for absorption heat pumps A review.pdfapplication/pdf6049052https://repositorio.cuc.edu.co/bitstreams/8f2a1f8f-24b3-4541-aeba-40e776babb9c/download0c2681e89a1176fa632df692511670e2MD51THUMBNAILBoiling process assessment for absorption heat pumps A review.pdf.jpgBoiling process assessment for absorption heat pumps A review.pdf.jpgimage/jpeg71620https://repositorio.cuc.edu.co/bitstreams/d58a332c-035c-4145-8812-3aee1e9d17a3/downloade178488864b0e959c20b7c3782845c80MD54THUMBNAILBoiling process assessment for absorption heat pumps A review.pdf.jpgBoiling process assessment for absorption heat pumps A review.pdf.jpgimage/jpeg71620https://repositorio.cuc.edu.co/bitstreams/10764173-2170-4824-ad11-b2739413fd99/downloade178488864b0e959c20b7c3782845c80MD54TEXTBoiling process assessment for absorption heat pumps A review.pdf.txtBoiling process assessment for absorption heat pumps A review.pdf.txttext/plain123508https://repositorio.cuc.edu.co/bitstreams/67226197-4a4d-4049-9760-340445003d25/download69cc91b68c3a1ff6f5391320b2bbc226MD5511323/8546oai:repositorio.cuc.edu.co:11323/85462024-09-17 14:12:22.428http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |