Recovery of scientific data using Intelligent Distributed Data Warehouse
A Retrieval System requires several components that define its functionality and behavior. In the case of a meta-search engine for the retrieval of scientific data, a schema that defines the way to store such data is considered a necessary element for its evolution. Unified profiles have been develo...
- Autores:
-
Viloria, Amelec
Neira Rodado, Dionicio
Pineda Lezama, Omar Bonerge
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/4842
- Acceso en línea:
- https://hdl.handle.net/11323/4842
https://repositorio.cuc.edu.co/
- Palabra clave:
- scientific data
meta-data
meta-search engine
recovery of information
intelligent distributed data warehouse
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_2ab6cca42ab7e67aa91d5105491f9a4f |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/4842 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Recovery of scientific data using Intelligent Distributed Data Warehouse |
title |
Recovery of scientific data using Intelligent Distributed Data Warehouse |
spellingShingle |
Recovery of scientific data using Intelligent Distributed Data Warehouse scientific data meta-data meta-search engine recovery of information intelligent distributed data warehouse |
title_short |
Recovery of scientific data using Intelligent Distributed Data Warehouse |
title_full |
Recovery of scientific data using Intelligent Distributed Data Warehouse |
title_fullStr |
Recovery of scientific data using Intelligent Distributed Data Warehouse |
title_full_unstemmed |
Recovery of scientific data using Intelligent Distributed Data Warehouse |
title_sort |
Recovery of scientific data using Intelligent Distributed Data Warehouse |
dc.creator.fl_str_mv |
Viloria, Amelec Neira Rodado, Dionicio Pineda Lezama, Omar Bonerge |
dc.contributor.author.spa.fl_str_mv |
Viloria, Amelec Neira Rodado, Dionicio Pineda Lezama, Omar Bonerge |
dc.subject.spa.fl_str_mv |
scientific data meta-data meta-search engine recovery of information intelligent distributed data warehouse |
topic |
scientific data meta-data meta-search engine recovery of information intelligent distributed data warehouse |
description |
A Retrieval System requires several components that define its functionality and behavior. In the case of a meta-search engine for the retrieval of scientific data, a schema that defines the way to store such data is considered a necessary element for its evolution. Unified profiles have been developed for the data storage of the entities involved in the scientific data management, generated from the fact of publishing a scientific paper. Such profiles are considered the beginning of the generation of new components for the meta-search engine that, using the proprietary information, can deliver information relevant for the user of the tool. To this end, the use of an intelligent distributed data warehouse is proposed. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-06-10T14:17:27Z |
dc.date.available.none.fl_str_mv |
2019-06-10T14:17:27Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
0000-2010 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/4842 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0000-2010 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/4842 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Garciarena Ucelay, M.J., Villegas, M.P., Cagnina, L., Errecalde, M.L.: Cross domain author profiling task in spanish language: an experimental study. J. Comput. Sci. Technol. 15, no. 2, (2015). [2] Bose, R., Frew, J.: Lineage retrieval for scientific data processing: a survey. ACM Computing. Surveys. CSUR. 37, 1–28 (2005). [3] Bhaduri K., Wolf R., Giannella C., and Kargupta H., “Distributed decision-tree induction in peer-to-peer systems.”, Statistical Analysis and Data Mining, Vol. 1, Issue 2, pp. 85–103, 2008. [4] Duan L., Xu L., Liu Y. and Lee J., “Cluster-based outlier detection.”, Annals of Operations Research 168, pp. 151–168, 2009. [5] Abhay Kumar Agarwal and Neelendra Badal “Data Storing in Intelligent and Distributed Data Warehouse using Unique Identification Number” published in International Journal of Grid and Distributed Computing, Publisher: SERSC Australia, (ISSN: 2005-4262 (Print) ISSN: 2207-6379 (Online)), Volume 10, No. 9, pp. 13-32, September 2017. [6] Agrawal R. and Srikant R., “Fast algorithms for mining association rules in large databases.”, In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, VLDB, Chile, pp. 487–499, 1994. [7] Chiang D., Lin C. and Chen M., “The adaptive approach for storage assignment by mining data of warehouse management system for distribution centre’s.”, Enterp. Inf. Syst, Vol. 5, Issue 2, pp. 219–234, 2001. [8] Abhay Kumar Agarwal and N. Badal “A Novel Approach for Intelligent Distribution of Data Warehouses” published in Egyptian Informatics Journal-Elsevier, Egypt, (ISSN: 1110-8665), http://dx.doi.org/10.1016/j.eij.2015.10.002, Volume 17, pp. 147-159, October, 2015. [9] Savasere A., Omiecinski E. and Navathe S., “An efficient algorithm for data mining association rules in large databases”, In Proceedings of 21st Very Large Data Base Conference, pp. 432- 444, 1995. [10] Stolfo S., Prodromidis A. L., Tselepis S., Lee W. and Fan D. W., “Jam: Java agents for meta- learning over distributed databases.”, In Proceedings of 3rd International Conference on Knowledge Discovery and Data Mining., pp. 74-81, 1997. [11] Prodromidis A., Chan P. K., Stolfo S. J., “Meta learning in distributed data mining systems: Issues and approaches.”, In Kargupta H., Chan P. (eds) Book on Advances in Distributed and Parallel Knowledge Discovery, AAAI/MIT Press, 2000. [12] Grossman R. l., Bailey S. M., Sivakumar H. and Turinsky A. L., “papyrus: A system for data mining over local and wide area clusters and super-clusters.”, In Proceedings of ACM/IEEE Conference on Supercomputing, Article No. 63, 1999. [13] Chattratichat J., Darlington J., Guo Y., Hedvall S., Kohler M. and Syed J.“An architecture for distributed enterprise data mining.”, In Proceedings of 7th International Conference on High- Performance Computing and Networking, Netherlands, pp. 573-582, 1999. [14] Wang L., et. al., "G-Hadoop: MapReduce across Distributed Data Centers for Data-Intensive Computing.", Future Generation Computer Systems, Vol. 29, Issue 3, pp. 739-750, 2013. [15] Butenhof D. R., “Programming with POSIX threads.”, Addison-Wesley Longman Publishing Company, USA, 1997. [16] Gaitán-Angulo M., Cubillos Díaz J., Viloria A., Lis-Gutiérrez JP., Rodríguez-Garnica P.A. (2018) Bibliometric Analysis of Social Innovation and Complexity (Databases Scopus and Dialnet 2007–2017). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [17] Torres-Samuel M., Vásquez C.L., Viloria A., Varela N., Hernández-Fernandez L., Portillo-Medina R. (2018)a Analysis of Patterns in the University World Rankings Webometrics, Shanghai, QS and SIR-SCimago: Case Latin America. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [18] Torres-Samuel M, Carmen Vásquez, Amelec Viloria, Tito Crissien Borrero, Noel Varela, Danelys Cabrera, Mercedes Gaitán-Angulo, JennyPaola Lis-Gutiérrez. (2018)b Efficiency Analysis of the Visibility of Latin American Universities and Their Impact on the Ranking Web. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [19] Torres-Samuel M., Vásquez C., Viloria A., Lis-Gutiérrez JP., Borrero T.C., Varela N. (2018)c Web Visibility Profiles of Top100 Latin American Universities. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [20] Vásquez C, Maritza Torres-Samuel, Amelec Viloria, Tito Crissien Borrero, Noel Varela, Jenny-Paola Lis-Gutiérrez, Mercedes GaitánAngulo. (2018) Visibility of Research in Universities: The Triad Product-Researcher-Institution. Case: Latin American Countries. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Procedia Computer Science |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c99a2094-8989-428e-9fa4-171729a9faab/download https://repositorio.cuc.edu.co/bitstreams/64ca70d7-ff4a-4fb5-b1d4-ef8b66a9bb63/download https://repositorio.cuc.edu.co/bitstreams/4757ddf8-f390-4900-854b-5b3f7596c9bf/download https://repositorio.cuc.edu.co/bitstreams/3590317d-074f-4f25-991d-3989eeee4415/download https://repositorio.cuc.edu.co/bitstreams/7a673749-fdc7-4f7e-aef5-df911debd514/download |
bitstream.checksum.fl_str_mv |
503c04ae41d09e198c7850e3d5eec360 4460e5956bc1d1639be9ae6146a50347 8a4605be74aa9ea9d79846c1fba20a33 2ec58bcb0254c903c889834644df7e5c e6502c36f98d25aa5fee18a796cccea4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760830503452672 |
spelling |
Viloria, AmelecNeira Rodado, DionicioPineda Lezama, Omar Bonerge2019-06-10T14:17:27Z2019-06-10T14:17:27Z20190000-2010https://hdl.handle.net/11323/4842Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A Retrieval System requires several components that define its functionality and behavior. In the case of a meta-search engine for the retrieval of scientific data, a schema that defines the way to store such data is considered a necessary element for its evolution. Unified profiles have been developed for the data storage of the entities involved in the scientific data management, generated from the fact of publishing a scientific paper. Such profiles are considered the beginning of the generation of new components for the meta-search engine that, using the proprietary information, can deliver information relevant for the user of the tool. To this end, the use of an intelligent distributed data warehouse is proposed.Viloria, Amelec-52922525-9094-40f2-acd3-5424e90bb258-0Neira Rodado, Dionicio-0000-0003-0837-7083-0Pineda Lezama, Omar Bonerge-365a03a0-145e-4df5-9abe-f5ccf9d96612-0engProcedia Computer ScienceAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2scientific datameta-datameta-search enginerecovery of informationintelligent distributed data warehouseRecovery of scientific data using Intelligent Distributed Data WarehouseArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Garciarena Ucelay, M.J., Villegas, M.P., Cagnina, L., Errecalde, M.L.: Cross domain author profiling task in spanish language: an experimental study. J. Comput. Sci. Technol. 15, no. 2, (2015). [2] Bose, R., Frew, J.: Lineage retrieval for scientific data processing: a survey. ACM Computing. Surveys. CSUR. 37, 1–28 (2005). [3] Bhaduri K., Wolf R., Giannella C., and Kargupta H., “Distributed decision-tree induction in peer-to-peer systems.”, Statistical Analysis and Data Mining, Vol. 1, Issue 2, pp. 85–103, 2008. [4] Duan L., Xu L., Liu Y. and Lee J., “Cluster-based outlier detection.”, Annals of Operations Research 168, pp. 151–168, 2009. [5] Abhay Kumar Agarwal and Neelendra Badal “Data Storing in Intelligent and Distributed Data Warehouse using Unique Identification Number” published in International Journal of Grid and Distributed Computing, Publisher: SERSC Australia, (ISSN: 2005-4262 (Print) ISSN: 2207-6379 (Online)), Volume 10, No. 9, pp. 13-32, September 2017. [6] Agrawal R. and Srikant R., “Fast algorithms for mining association rules in large databases.”, In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, VLDB, Chile, pp. 487–499, 1994. [7] Chiang D., Lin C. and Chen M., “The adaptive approach for storage assignment by mining data of warehouse management system for distribution centre’s.”, Enterp. Inf. Syst, Vol. 5, Issue 2, pp. 219–234, 2001. [8] Abhay Kumar Agarwal and N. Badal “A Novel Approach for Intelligent Distribution of Data Warehouses” published in Egyptian Informatics Journal-Elsevier, Egypt, (ISSN: 1110-8665), http://dx.doi.org/10.1016/j.eij.2015.10.002, Volume 17, pp. 147-159, October, 2015. [9] Savasere A., Omiecinski E. and Navathe S., “An efficient algorithm for data mining association rules in large databases”, In Proceedings of 21st Very Large Data Base Conference, pp. 432- 444, 1995. [10] Stolfo S., Prodromidis A. L., Tselepis S., Lee W. and Fan D. W., “Jam: Java agents for meta- learning over distributed databases.”, In Proceedings of 3rd International Conference on Knowledge Discovery and Data Mining., pp. 74-81, 1997. [11] Prodromidis A., Chan P. K., Stolfo S. J., “Meta learning in distributed data mining systems: Issues and approaches.”, In Kargupta H., Chan P. (eds) Book on Advances in Distributed and Parallel Knowledge Discovery, AAAI/MIT Press, 2000. [12] Grossman R. l., Bailey S. M., Sivakumar H. and Turinsky A. L., “papyrus: A system for data mining over local and wide area clusters and super-clusters.”, In Proceedings of ACM/IEEE Conference on Supercomputing, Article No. 63, 1999. [13] Chattratichat J., Darlington J., Guo Y., Hedvall S., Kohler M. and Syed J.“An architecture for distributed enterprise data mining.”, In Proceedings of 7th International Conference on High- Performance Computing and Networking, Netherlands, pp. 573-582, 1999. [14] Wang L., et. al., "G-Hadoop: MapReduce across Distributed Data Centers for Data-Intensive Computing.", Future Generation Computer Systems, Vol. 29, Issue 3, pp. 739-750, 2013. [15] Butenhof D. R., “Programming with POSIX threads.”, Addison-Wesley Longman Publishing Company, USA, 1997. [16] Gaitán-Angulo M., Cubillos Díaz J., Viloria A., Lis-Gutiérrez JP., Rodríguez-Garnica P.A. (2018) Bibliometric Analysis of Social Innovation and Complexity (Databases Scopus and Dialnet 2007–2017). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [17] Torres-Samuel M., Vásquez C.L., Viloria A., Varela N., Hernández-Fernandez L., Portillo-Medina R. (2018)a Analysis of Patterns in the University World Rankings Webometrics, Shanghai, QS and SIR-SCimago: Case Latin America. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [18] Torres-Samuel M, Carmen Vásquez, Amelec Viloria, Tito Crissien Borrero, Noel Varela, Danelys Cabrera, Mercedes Gaitán-Angulo, JennyPaola Lis-Gutiérrez. (2018)b Efficiency Analysis of the Visibility of Latin American Universities and Their Impact on the Ranking Web. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [19] Torres-Samuel M., Vásquez C., Viloria A., Lis-Gutiérrez JP., Borrero T.C., Varela N. (2018)c Web Visibility Profiles of Top100 Latin American Universities. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [20] Vásquez C, Maritza Torres-Samuel, Amelec Viloria, Tito Crissien Borrero, Noel Varela, Jenny-Paola Lis-Gutiérrez, Mercedes GaitánAngulo. (2018) Visibility of Research in Universities: The Triad Product-Researcher-Institution. Case: Latin American Countries. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, ChamPublicationORIGINALRecovery of scientific data using Intelligent Distributed Data Warehouse.pdfRecovery of scientific data using Intelligent Distributed Data Warehouse.pdfapplication/pdf382055https://repositorio.cuc.edu.co/bitstreams/c99a2094-8989-428e-9fa4-171729a9faab/download503c04ae41d09e198c7850e3d5eec360MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/64ca70d7-ff4a-4fb5-b1d4-ef8b66a9bb63/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/4757ddf8-f390-4900-854b-5b3f7596c9bf/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILRecovery of scientific data using Intelligent Distributed Data Warehouse.pdf.jpgRecovery of scientific data using Intelligent Distributed Data Warehouse.pdf.jpgimage/jpeg42423https://repositorio.cuc.edu.co/bitstreams/3590317d-074f-4f25-991d-3989eeee4415/download2ec58bcb0254c903c889834644df7e5cMD55TEXTRecovery of scientific data using Intelligent Distributed Data Warehouse.pdf.txtRecovery of scientific data using Intelligent Distributed Data Warehouse.pdf.txttext/plain20992https://repositorio.cuc.edu.co/bitstreams/7a673749-fdc7-4f7e-aef5-df911debd514/downloade6502c36f98d25aa5fee18a796cccea4MD5611323/4842oai:repositorio.cuc.edu.co:11323/48422024-09-17 14:06:54.326http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |