A multi-objective optimization model for relief facility location in crisis conditions

This research was conducted to study the issue of relief facility location hierarchically by consideration of possible road closure during the crisis conditions, road safety, and arrival time of relief facilities under disaster circumstances. High costs are allocated for facilities deployment in a s...

Full description

Autores:
Ahmed, Dr. Alim Al Ayub
Jaenudin
Widjaja, Gunawan
Grimaldo Guerrero, John William
kadhim, Mustafa Mohammed
Kolyazov, Konstantin Alexandrovich
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9112
Acceso en línea:
https://hdl.handle.net/11323/9112
https://doi.org/10.7232/iems.2021.20.4.588
https://repositorio.cuc.edu.co/
Palabra clave:
Hierarchical facility location
Crisis management
Multi-objective optimization model
Meta-heuristic algorithm
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_284795a8f6b78b1a8bbfe6c470fe44e6
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9112
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv A multi-objective optimization model for relief facility location in crisis conditions
title A multi-objective optimization model for relief facility location in crisis conditions
spellingShingle A multi-objective optimization model for relief facility location in crisis conditions
Hierarchical facility location
Crisis management
Multi-objective optimization model
Meta-heuristic algorithm
title_short A multi-objective optimization model for relief facility location in crisis conditions
title_full A multi-objective optimization model for relief facility location in crisis conditions
title_fullStr A multi-objective optimization model for relief facility location in crisis conditions
title_full_unstemmed A multi-objective optimization model for relief facility location in crisis conditions
title_sort A multi-objective optimization model for relief facility location in crisis conditions
dc.creator.fl_str_mv Ahmed, Dr. Alim Al Ayub
Jaenudin
Widjaja, Gunawan
Grimaldo Guerrero, John William
kadhim, Mustafa Mohammed
Kolyazov, Konstantin Alexandrovich
dc.contributor.author.spa.fl_str_mv Ahmed, Dr. Alim Al Ayub
Jaenudin
Widjaja, Gunawan
Grimaldo Guerrero, John William
kadhim, Mustafa Mohammed
Kolyazov, Konstantin Alexandrovich
dc.subject.proposal.eng.fl_str_mv Hierarchical facility location
Crisis management
Multi-objective optimization model
Meta-heuristic algorithm
topic Hierarchical facility location
Crisis management
Multi-objective optimization model
Meta-heuristic algorithm
description This research was conducted to study the issue of relief facility location hierarchically by consideration of possible road closure during the crisis conditions, road safety, and arrival time of relief facilities under disaster circumstances. High costs are allocated for facilities deployment in a suitable location to meet the demands of injured people. Therefore, location-allocation of emergency facility should be considered in a way to use them for long-term periods. To this end, the extant research designed a multi-objective optimization model to minimize the pre-disaster costs including costs of facilities deployment and road use, and to minimize the post-disaster costs such as cost transportation innetwork roads. Moreover, the innovative part of the studied model in this research examined the road safety and reduction in time taken to have critical facilities in affected areas. To investigate the functional accuracy of the mathematical model, a numerical example with small dimensions was solved using CPLEX Solver, and required sensitivity analysis was described. As the facility location-allocation is an NP-hard issue, two meta-heuristic algorithms were used to solve numerical representations in real dimensions to examine numerical analyses effectively. Results showed that the dragonfly algorithm had the highest efficiency compared to other developed algorithms. The obtained results can be considered as an efficient managerial tool in management organizations involved in the crisis.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-04-05T12:47:26Z
dc.date.available.none.fl_str_mv 2022-04-05T12:47:26Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1598-7248
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9112
dc.identifier.url.spa.fl_str_mv https://doi.org/10.7232/iems.2021.20.4.588
dc.identifier.doi.spa.fl_str_mv 10.7232/iems.2021.20.4.588
dc.identifier.eissn.spa.fl_str_mv 2234-6473
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1598-7248
10.7232/iems.2021.20.4.588
2234-6473
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9112
https://doi.org/10.7232/iems.2021.20.4.588
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Industrial Engineering and Management Systems
dc.relation.references.spa.fl_str_mv Alaswad, S. and Salman, S. (2020), Humanitarian aid and relief distribution (HARD) game, Advances in Engineering Education, 8(2), 22-34.
Barber, G., Cote, M., Wetmore, F., and Yerkovich, A. (2020), Decision support tool for enhancing supply chain management in disaster relief operations, 2020 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 1-6.
Ghasemi, P., Khalili-Damghani, K., Hafezalkotob, A., and Raissi, S. (2019), Uncertain multi-objective multicommodity multi-period multi-vehicle locationallocation model for earthquake evacuation planning, Applied Mathematics and Computation, 350, 105-132.
Ghezavati, V., Soltanzadeh, F., and Hafezalkotob, A. (2015), Optimization of reliability for a hierarchical facility location problem under disaster relief situations by a chance-constrained programming and robust optimization, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 229(6), 542-555.
Kaveh, M. and Mesgari, M. S. (2019), Improved biogeography-based optimization using migration process adjustment: An approach for location-allocation of ambulances, Computers & Industrial Engineering, 135, 800-813.
Kovács, G. and Spens, K. M. (2020), Relief supply chain management for disasters: Humanitarian, aid and emergency logistics, Simulation, 436, Available from: https://doi.org/10.4018/978-1-60960-824-8.
Madani, H., Arshadi Khamseh, A., and TavakkoliMoghaddam, R. (2021), Solving a new bi-objective model for relief logistics in a humanitarian supply chain by bi-objective meta-heuristic algorithms, Scientia Iranica, 28(5), 2948-2971, Available from: https://doi.org/ 10.24200/sci.2020.53823.3438.
Maharjan, R. and Hanaoka, S. (2020), A credibility-based multi-objective temporary logistics hub locationallocation model for relief supply and distribution under uncertainty, Socio-Economic Planning Sciences, 70, 100727.
Mauliddina, Y. (2020), The role of supply chain finance in humanitarian aid relief, Master Thesis, Politecnico Di Milano School of Industrial and Information Engineering, p.38.
dc.relation.citationendpage.spa.fl_str_mv 595
dc.relation.citationstartpage.spa.fl_str_mv 588
dc.relation.citationissue.spa.fl_str_mv 4
dc.relation.citationvolume.spa.fl_str_mv 20
dc.rights.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2021 KIIE
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2021 KIIE
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 8 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv South Korea
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/372d91e7-92ef-4203-a7f5-824cccdfad2b/download
https://repositorio.cuc.edu.co/bitstreams/a560d459-728e-4731-a594-7f8b17421f04/download
https://repositorio.cuc.edu.co/bitstreams/72ead8ec-de12-4f24-9fbe-f3a0bfcec961/download
https://repositorio.cuc.edu.co/bitstreams/409d8814-af23-414a-bbeb-20dbfa6e43f1/download
bitstream.checksum.fl_str_mv f00746985d8421f0c9cceae1438161ad
e30e9215131d99561d40d6b0abbe9bad
6c99f8fedfffcf2ec679e6dfaf81b2fa
7b3b18816562ad9cfcb7ec6ee0231ba9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760685868122112
spelling Ahmed, Dr. Alim Al AyubJaenudinWidjaja, GunawanGrimaldo Guerrero, John Williamkadhim, Mustafa MohammedKolyazov, Konstantin Alexandrovich2022-04-05T12:47:26Z2022-04-05T12:47:26Z20211598-7248https://hdl.handle.net/11323/9112https://doi.org/10.7232/iems.2021.20.4.58810.7232/iems.2021.20.4.5882234-6473Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This research was conducted to study the issue of relief facility location hierarchically by consideration of possible road closure during the crisis conditions, road safety, and arrival time of relief facilities under disaster circumstances. High costs are allocated for facilities deployment in a suitable location to meet the demands of injured people. Therefore, location-allocation of emergency facility should be considered in a way to use them for long-term periods. To this end, the extant research designed a multi-objective optimization model to minimize the pre-disaster costs including costs of facilities deployment and road use, and to minimize the post-disaster costs such as cost transportation innetwork roads. Moreover, the innovative part of the studied model in this research examined the road safety and reduction in time taken to have critical facilities in affected areas. To investigate the functional accuracy of the mathematical model, a numerical example with small dimensions was solved using CPLEX Solver, and required sensitivity analysis was described. As the facility location-allocation is an NP-hard issue, two meta-heuristic algorithms were used to solve numerical representations in real dimensions to examine numerical analyses effectively. Results showed that the dragonfly algorithm had the highest efficiency compared to other developed algorithms. The obtained results can be considered as an efficient managerial tool in management organizations involved in the crisis.8 páginasapplication/pdfengAtribución 4.0 Internacional (CC BY 4.0)© 2021 KIIEhttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A multi-objective optimization model for relief facility location in crisis conditionsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionSouth KoreaIndustrial Engineering and Management SystemsAlaswad, S. and Salman, S. (2020), Humanitarian aid and relief distribution (HARD) game, Advances in Engineering Education, 8(2), 22-34.Barber, G., Cote, M., Wetmore, F., and Yerkovich, A. (2020), Decision support tool for enhancing supply chain management in disaster relief operations, 2020 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 1-6.Ghasemi, P., Khalili-Damghani, K., Hafezalkotob, A., and Raissi, S. (2019), Uncertain multi-objective multicommodity multi-period multi-vehicle locationallocation model for earthquake evacuation planning, Applied Mathematics and Computation, 350, 105-132.Ghezavati, V., Soltanzadeh, F., and Hafezalkotob, A. (2015), Optimization of reliability for a hierarchical facility location problem under disaster relief situations by a chance-constrained programming and robust optimization, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 229(6), 542-555.Kaveh, M. and Mesgari, M. S. (2019), Improved biogeography-based optimization using migration process adjustment: An approach for location-allocation of ambulances, Computers & Industrial Engineering, 135, 800-813.Kovács, G. and Spens, K. M. (2020), Relief supply chain management for disasters: Humanitarian, aid and emergency logistics, Simulation, 436, Available from: https://doi.org/10.4018/978-1-60960-824-8.Madani, H., Arshadi Khamseh, A., and TavakkoliMoghaddam, R. (2021), Solving a new bi-objective model for relief logistics in a humanitarian supply chain by bi-objective meta-heuristic algorithms, Scientia Iranica, 28(5), 2948-2971, Available from: https://doi.org/ 10.24200/sci.2020.53823.3438.Maharjan, R. and Hanaoka, S. (2020), A credibility-based multi-objective temporary logistics hub locationallocation model for relief supply and distribution under uncertainty, Socio-Economic Planning Sciences, 70, 100727.Mauliddina, Y. (2020), The role of supply chain finance in humanitarian aid relief, Master Thesis, Politecnico Di Milano School of Industrial and Information Engineering, p.38.595588420Hierarchical facility locationCrisis managementMulti-objective optimization modelMeta-heuristic algorithmPublicationORIGINALA multi-objective optimization model for relief facility location in crisis conditions.pdfA multi-objective optimization model for relief facility location in crisis conditions.pdfapplication/pdf376597https://repositorio.cuc.edu.co/bitstreams/372d91e7-92ef-4203-a7f5-824cccdfad2b/downloadf00746985d8421f0c9cceae1438161adMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/a560d459-728e-4731-a594-7f8b17421f04/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTA multi-objective optimization model for relief facility location in crisis conditions.pdf.txtA multi-objective optimization model for relief facility location in crisis conditions.pdf.txttext/plain29633https://repositorio.cuc.edu.co/bitstreams/72ead8ec-de12-4f24-9fbe-f3a0bfcec961/download6c99f8fedfffcf2ec679e6dfaf81b2faMD53THUMBNAILA multi-objective optimization model for relief facility location in crisis conditions.pdf.jpgA multi-objective optimization model for relief facility location in crisis conditions.pdf.jpgimage/jpeg13387https://repositorio.cuc.edu.co/bitstreams/409d8814-af23-414a-bbeb-20dbfa6e43f1/download7b3b18816562ad9cfcb7ec6ee0231ba9MD5411323/9112oai:repositorio.cuc.edu.co:11323/91122024-09-16 16:49:03.267https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==