A multi-objective optimization model for relief facility location in crisis conditions
This research was conducted to study the issue of relief facility location hierarchically by consideration of possible road closure during the crisis conditions, road safety, and arrival time of relief facilities under disaster circumstances. High costs are allocated for facilities deployment in a s...
- Autores:
-
Ahmed, Dr. Alim Al Ayub
Jaenudin
Widjaja, Gunawan
Grimaldo Guerrero, John William
kadhim, Mustafa Mohammed
Kolyazov, Konstantin Alexandrovich
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9112
- Acceso en línea:
- https://hdl.handle.net/11323/9112
https://doi.org/10.7232/iems.2021.20.4.588
https://repositorio.cuc.edu.co/
- Palabra clave:
- Hierarchical facility location
Crisis management
Multi-objective optimization model
Meta-heuristic algorithm
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_284795a8f6b78b1a8bbfe6c470fe44e6 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9112 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A multi-objective optimization model for relief facility location in crisis conditions |
title |
A multi-objective optimization model for relief facility location in crisis conditions |
spellingShingle |
A multi-objective optimization model for relief facility location in crisis conditions Hierarchical facility location Crisis management Multi-objective optimization model Meta-heuristic algorithm |
title_short |
A multi-objective optimization model for relief facility location in crisis conditions |
title_full |
A multi-objective optimization model for relief facility location in crisis conditions |
title_fullStr |
A multi-objective optimization model for relief facility location in crisis conditions |
title_full_unstemmed |
A multi-objective optimization model for relief facility location in crisis conditions |
title_sort |
A multi-objective optimization model for relief facility location in crisis conditions |
dc.creator.fl_str_mv |
Ahmed, Dr. Alim Al Ayub Jaenudin Widjaja, Gunawan Grimaldo Guerrero, John William kadhim, Mustafa Mohammed Kolyazov, Konstantin Alexandrovich |
dc.contributor.author.spa.fl_str_mv |
Ahmed, Dr. Alim Al Ayub Jaenudin Widjaja, Gunawan Grimaldo Guerrero, John William kadhim, Mustafa Mohammed Kolyazov, Konstantin Alexandrovich |
dc.subject.proposal.eng.fl_str_mv |
Hierarchical facility location Crisis management Multi-objective optimization model Meta-heuristic algorithm |
topic |
Hierarchical facility location Crisis management Multi-objective optimization model Meta-heuristic algorithm |
description |
This research was conducted to study the issue of relief facility location hierarchically by consideration of possible road closure during the crisis conditions, road safety, and arrival time of relief facilities under disaster circumstances. High costs are allocated for facilities deployment in a suitable location to meet the demands of injured people. Therefore, location-allocation of emergency facility should be considered in a way to use them for long-term periods. To this end, the extant research designed a multi-objective optimization model to minimize the pre-disaster costs including costs of facilities deployment and road use, and to minimize the post-disaster costs such as cost transportation innetwork roads. Moreover, the innovative part of the studied model in this research examined the road safety and reduction in time taken to have critical facilities in affected areas. To investigate the functional accuracy of the mathematical model, a numerical example with small dimensions was solved using CPLEX Solver, and required sensitivity analysis was described. As the facility location-allocation is an NP-hard issue, two meta-heuristic algorithms were used to solve numerical representations in real dimensions to examine numerical analyses effectively. Results showed that the dragonfly algorithm had the highest efficiency compared to other developed algorithms. The obtained results can be considered as an efficient managerial tool in management organizations involved in the crisis. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-04-05T12:47:26Z |
dc.date.available.none.fl_str_mv |
2022-04-05T12:47:26Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1598-7248 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9112 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.7232/iems.2021.20.4.588 |
dc.identifier.doi.spa.fl_str_mv |
10.7232/iems.2021.20.4.588 |
dc.identifier.eissn.spa.fl_str_mv |
2234-6473 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1598-7248 10.7232/iems.2021.20.4.588 2234-6473 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9112 https://doi.org/10.7232/iems.2021.20.4.588 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Industrial Engineering and Management Systems |
dc.relation.references.spa.fl_str_mv |
Alaswad, S. and Salman, S. (2020), Humanitarian aid and relief distribution (HARD) game, Advances in Engineering Education, 8(2), 22-34. Barber, G., Cote, M., Wetmore, F., and Yerkovich, A. (2020), Decision support tool for enhancing supply chain management in disaster relief operations, 2020 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 1-6. Ghasemi, P., Khalili-Damghani, K., Hafezalkotob, A., and Raissi, S. (2019), Uncertain multi-objective multicommodity multi-period multi-vehicle locationallocation model for earthquake evacuation planning, Applied Mathematics and Computation, 350, 105-132. Ghezavati, V., Soltanzadeh, F., and Hafezalkotob, A. (2015), Optimization of reliability for a hierarchical facility location problem under disaster relief situations by a chance-constrained programming and robust optimization, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 229(6), 542-555. Kaveh, M. and Mesgari, M. S. (2019), Improved biogeography-based optimization using migration process adjustment: An approach for location-allocation of ambulances, Computers & Industrial Engineering, 135, 800-813. Kovács, G. and Spens, K. M. (2020), Relief supply chain management for disasters: Humanitarian, aid and emergency logistics, Simulation, 436, Available from: https://doi.org/10.4018/978-1-60960-824-8. Madani, H., Arshadi Khamseh, A., and TavakkoliMoghaddam, R. (2021), Solving a new bi-objective model for relief logistics in a humanitarian supply chain by bi-objective meta-heuristic algorithms, Scientia Iranica, 28(5), 2948-2971, Available from: https://doi.org/ 10.24200/sci.2020.53823.3438. Maharjan, R. and Hanaoka, S. (2020), A credibility-based multi-objective temporary logistics hub locationallocation model for relief supply and distribution under uncertainty, Socio-Economic Planning Sciences, 70, 100727. Mauliddina, Y. (2020), The role of supply chain finance in humanitarian aid relief, Master Thesis, Politecnico Di Milano School of Industrial and Information Engineering, p.38. |
dc.relation.citationendpage.spa.fl_str_mv |
595 |
dc.relation.citationstartpage.spa.fl_str_mv |
588 |
dc.relation.citationissue.spa.fl_str_mv |
4 |
dc.relation.citationvolume.spa.fl_str_mv |
20 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2021 KIIE |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2021 KIIE https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
8 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
South Korea |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/372d91e7-92ef-4203-a7f5-824cccdfad2b/download https://repositorio.cuc.edu.co/bitstreams/a560d459-728e-4731-a594-7f8b17421f04/download https://repositorio.cuc.edu.co/bitstreams/72ead8ec-de12-4f24-9fbe-f3a0bfcec961/download https://repositorio.cuc.edu.co/bitstreams/409d8814-af23-414a-bbeb-20dbfa6e43f1/download |
bitstream.checksum.fl_str_mv |
f00746985d8421f0c9cceae1438161ad e30e9215131d99561d40d6b0abbe9bad 6c99f8fedfffcf2ec679e6dfaf81b2fa 7b3b18816562ad9cfcb7ec6ee0231ba9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760685868122112 |
spelling |
Ahmed, Dr. Alim Al AyubJaenudinWidjaja, GunawanGrimaldo Guerrero, John Williamkadhim, Mustafa MohammedKolyazov, Konstantin Alexandrovich2022-04-05T12:47:26Z2022-04-05T12:47:26Z20211598-7248https://hdl.handle.net/11323/9112https://doi.org/10.7232/iems.2021.20.4.58810.7232/iems.2021.20.4.5882234-6473Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This research was conducted to study the issue of relief facility location hierarchically by consideration of possible road closure during the crisis conditions, road safety, and arrival time of relief facilities under disaster circumstances. High costs are allocated for facilities deployment in a suitable location to meet the demands of injured people. Therefore, location-allocation of emergency facility should be considered in a way to use them for long-term periods. To this end, the extant research designed a multi-objective optimization model to minimize the pre-disaster costs including costs of facilities deployment and road use, and to minimize the post-disaster costs such as cost transportation innetwork roads. Moreover, the innovative part of the studied model in this research examined the road safety and reduction in time taken to have critical facilities in affected areas. To investigate the functional accuracy of the mathematical model, a numerical example with small dimensions was solved using CPLEX Solver, and required sensitivity analysis was described. As the facility location-allocation is an NP-hard issue, two meta-heuristic algorithms were used to solve numerical representations in real dimensions to examine numerical analyses effectively. Results showed that the dragonfly algorithm had the highest efficiency compared to other developed algorithms. The obtained results can be considered as an efficient managerial tool in management organizations involved in the crisis.8 páginasapplication/pdfengAtribución 4.0 Internacional (CC BY 4.0)© 2021 KIIEhttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A multi-objective optimization model for relief facility location in crisis conditionsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionSouth KoreaIndustrial Engineering and Management SystemsAlaswad, S. and Salman, S. (2020), Humanitarian aid and relief distribution (HARD) game, Advances in Engineering Education, 8(2), 22-34.Barber, G., Cote, M., Wetmore, F., and Yerkovich, A. (2020), Decision support tool for enhancing supply chain management in disaster relief operations, 2020 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 1-6.Ghasemi, P., Khalili-Damghani, K., Hafezalkotob, A., and Raissi, S. (2019), Uncertain multi-objective multicommodity multi-period multi-vehicle locationallocation model for earthquake evacuation planning, Applied Mathematics and Computation, 350, 105-132.Ghezavati, V., Soltanzadeh, F., and Hafezalkotob, A. (2015), Optimization of reliability for a hierarchical facility location problem under disaster relief situations by a chance-constrained programming and robust optimization, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 229(6), 542-555.Kaveh, M. and Mesgari, M. S. (2019), Improved biogeography-based optimization using migration process adjustment: An approach for location-allocation of ambulances, Computers & Industrial Engineering, 135, 800-813.Kovács, G. and Spens, K. M. (2020), Relief supply chain management for disasters: Humanitarian, aid and emergency logistics, Simulation, 436, Available from: https://doi.org/10.4018/978-1-60960-824-8.Madani, H., Arshadi Khamseh, A., and TavakkoliMoghaddam, R. (2021), Solving a new bi-objective model for relief logistics in a humanitarian supply chain by bi-objective meta-heuristic algorithms, Scientia Iranica, 28(5), 2948-2971, Available from: https://doi.org/ 10.24200/sci.2020.53823.3438.Maharjan, R. and Hanaoka, S. (2020), A credibility-based multi-objective temporary logistics hub locationallocation model for relief supply and distribution under uncertainty, Socio-Economic Planning Sciences, 70, 100727.Mauliddina, Y. (2020), The role of supply chain finance in humanitarian aid relief, Master Thesis, Politecnico Di Milano School of Industrial and Information Engineering, p.38.595588420Hierarchical facility locationCrisis managementMulti-objective optimization modelMeta-heuristic algorithmPublicationORIGINALA multi-objective optimization model for relief facility location in crisis conditions.pdfA multi-objective optimization model for relief facility location in crisis conditions.pdfapplication/pdf376597https://repositorio.cuc.edu.co/bitstreams/372d91e7-92ef-4203-a7f5-824cccdfad2b/downloadf00746985d8421f0c9cceae1438161adMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/a560d459-728e-4731-a594-7f8b17421f04/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTA multi-objective optimization model for relief facility location in crisis conditions.pdf.txtA multi-objective optimization model for relief facility location in crisis conditions.pdf.txttext/plain29633https://repositorio.cuc.edu.co/bitstreams/72ead8ec-de12-4f24-9fbe-f3a0bfcec961/download6c99f8fedfffcf2ec679e6dfaf81b2faMD53THUMBNAILA multi-objective optimization model for relief facility location in crisis conditions.pdf.jpgA multi-objective optimization model for relief facility location in crisis conditions.pdf.jpgimage/jpeg13387https://repositorio.cuc.edu.co/bitstreams/409d8814-af23-414a-bbeb-20dbfa6e43f1/download7b3b18816562ad9cfcb7ec6ee0231ba9MD5411323/9112oai:repositorio.cuc.edu.co:11323/91122024-09-16 16:49:03.267https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |