Predictive model for the identification of activities of daily living (ADL) in indoor environments using classification techniques based on Machine Learning
AI-based techniques have included countless applications within the engineering field. These range from the automation of important procedures in Industry and companies, to the field of Process Control. Smart Home (SH) technology is designed to help house residents improve their daily activities and...
- Autores:
-
García-Restrepo, Johanna
Ariza Colpas, Paola Patricia
Oñate-Bowen, Alvaro Agustín
Suarez Brieva, Eydy
Urina-Triana, Miguel
De-La-Hoz-Franco, Emiro
Díaz-Martínez, Jorge Luis
Butt Shariq, Aziz
Molina Estren, Diego
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8691
- Acceso en línea:
- https://hdl.handle.net/11323/8691
https://doi.org/10.1016/j.procs.2021.07.069
https://repositorio.cuc.edu.co/
- Palabra clave:
- HAR
Human activity recognition
Machine learning
ADL
Activity daily living
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_283713785965d699d5028aeea019c0d9 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8691 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Predictive model for the identification of activities of daily living (ADL) in indoor environments using classification techniques based on Machine Learning |
title |
Predictive model for the identification of activities of daily living (ADL) in indoor environments using classification techniques based on Machine Learning |
spellingShingle |
Predictive model for the identification of activities of daily living (ADL) in indoor environments using classification techniques based on Machine Learning HAR Human activity recognition Machine learning ADL Activity daily living |
title_short |
Predictive model for the identification of activities of daily living (ADL) in indoor environments using classification techniques based on Machine Learning |
title_full |
Predictive model for the identification of activities of daily living (ADL) in indoor environments using classification techniques based on Machine Learning |
title_fullStr |
Predictive model for the identification of activities of daily living (ADL) in indoor environments using classification techniques based on Machine Learning |
title_full_unstemmed |
Predictive model for the identification of activities of daily living (ADL) in indoor environments using classification techniques based on Machine Learning |
title_sort |
Predictive model for the identification of activities of daily living (ADL) in indoor environments using classification techniques based on Machine Learning |
dc.creator.fl_str_mv |
García-Restrepo, Johanna Ariza Colpas, Paola Patricia Oñate-Bowen, Alvaro Agustín Suarez Brieva, Eydy Urina-Triana, Miguel De-La-Hoz-Franco, Emiro Díaz-Martínez, Jorge Luis Butt Shariq, Aziz Molina Estren, Diego |
dc.contributor.author.spa.fl_str_mv |
García-Restrepo, Johanna Ariza Colpas, Paola Patricia Oñate-Bowen, Alvaro Agustín Suarez Brieva, Eydy Urina-Triana, Miguel De-La-Hoz-Franco, Emiro Díaz-Martínez, Jorge Luis Butt Shariq, Aziz Molina Estren, Diego |
dc.subject.spa.fl_str_mv |
HAR Human activity recognition Machine learning ADL Activity daily living |
topic |
HAR Human activity recognition Machine learning ADL Activity daily living |
description |
AI-based techniques have included countless applications within the engineering field. These range from the automation of important procedures in Industry and companies, to the field of Process Control. Smart Home (SH) technology is designed to help house residents improve their daily activities and therefore enrich the quality of life while preserving their privacy. An SH system is usually equipped with a collection of software interrelated with hardware components to monitor the living space by capturing the behavior of the resident and their occupations. By doing so, the system can report risks, situations, and act on behalf of the resident to their satisfaction. This research article shows the experimentation carried out with the human activity recognition dataset, CASAS Kyoto, through preprocessing and cleaning processes of the data, showing the Vía Regression classifier as an excellent option to process this type of data with an accuracy 99.7% effective |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-14T16:21:56Z |
dc.date.available.none.fl_str_mv |
2021-09-14T16:21:56Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1877-0509 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8691 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.procs.2021.07.069 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1877-0509 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8691 https://doi.org/10.1016/j.procs.2021.07.069 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1][Nagi, S. Z., Burk, R. D., & Potter, H. R. (1965). Back disorders and rehabilitation achievement. Journal of Chronic Diseases, 18(2), 181–197. https://doi.org/10.1016/0021-9681(65)90101-3 [2] Lladó, M. R., Código, H., Lennin, A., Quiroz, P., & Lima -Perú, V. (2020). ENTORNO DOMÓTICO ADAPTADO A PERSONAS CON DISCAPACIDAD FÍSICA UTILIZANDO MODELOS OCULTOS DE MARKOV Tesis para optar el Título Profesional de Ingeniero de Sistemas. In Repositorio Institucional - Ulima. Universidad de Lima. http://repositorio.ulima.edu.pe/handle/20.500.12724/11664 [3] Carlos, A., D’negri, E., De Vito, E. L., & Zadeh, L. A. (2006). Introducción al razonamiento aproximado: lógica difusa. In Revista Argentina de Medicina Respiratoria Año (Vol. 6). [4] Marcondes, C. H., & Almeida Campos, M. L. de. (2008). ONTOLOGIA E WEB SEMÂNTICA: O ESPAÇO DA PESQUISA EM CIÊNCIA DA INFORMAÇÃO. PontodeAcesso, 2(1), 107. https://doi.org/10.9771/1981-6766rpa.v2i1.2669 [5] DANE. Archivo Nacional de Datos ANDA. 2014. [Citado Marzo 20,2016]. Available in: http://formularios.dane.gov.co/Anda_4_1/index.php/home [6] Ronao, C. A., & Cho, S. B. (2016). Human activity recognition with smartphone sensors using deep learning neural networks. Expert Systems with Applications, 59, 235–244. https://doi.org/10.1016/j.eswa.2016.04.032 [7] Capela, N. A., Lemaire, E. D., & Baddour, N. (2015). Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients. PLoS ONE, 10(4), e0124414. https://doi.org/10.1371/journal.pone.0124414 [8] Gudivada, V. N., Ding, J., & Apon, A. (2017). Data Quality Considerations for Big Data and Machine Learning: Going Beyond Data Cleaning and Transformations Flow Cytometry of 3-D structure View project Data Quality Considerations for Big Data and Machine Learning: Going Beyond Data Cleaning and Transf. October, 1–20. https://www.researchgate.net/publication/318432363 [9] Ren, X., & Malik, J. (2003). Learning a classification model for segmentation. Proceedings of the IEEE International Conference on Computer Vision, 1, 10– 17. https://doi.org/10.1109/iccv.2003.1238308 [10] Galván-Tejada, C. E., Galván-Tejada, J. I., Celaya-Padilla, J. M., elgadoContreras, J. R., Magallanes-Quintanar, R., Martinez-Fierro, M. L., GarzaVeloz, I., López-Hernández, Y., & Gamboa-Rosales, H. (2016). An Analysis of Audio Features to Develop a Human Activity Recognition Model Using Genetic Algorithms, Random Forests, and Neural Networks. Mobile Information Systems, 2016, 1–10. https://doi.org/10.1155/2016/1784101 [11] Eddy, S. R. (1998). Profile hidden Markov models. Academic.Oup.Com, 144(9), 755–763. https://academic.oup.com/bioinformatics/articleabstract/14/9/755/259550 Envejecimiento y salud. (2018, February 5). [12] Shah,C. (2020). Supervised Learning. In A Hands-On Introduction to Data Science (pp.235–289). [13] Nettleton, D. F., Orriols-Puig, A., & Fornells, A. (2010). A study of the effect of different types of noise on the precision of supervised learning techniques. Artificial Intelligence Review, 33(4), 275–306.https://doi.org/10.1007/s10462-010-9156-z [14] Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. ACM International Conference Proceeding Series, 148, 161–168. https://doi.org/10.1145/1143844.1143865 [15] Mejia-Ricart, L. F., Helling, P., & Olmsted, A. (2018). Evaluate action primitives for human activity recognition using unsupervised learning approach. 2017 12th International Conference for Internet Technology and Secured Transactions, ICITST 2017, 186–188. https://doi.org/10.23919/ICITST.2017.8356374 [16] Crandall, A. S. (2011). BEHAVIOMETRICS FOR MULTIPLE RESIDENTS IN A SMART ENVIRONMENT. https://scihub.si/http://research.wsulibs.wsu.edu/xmlui/handle/2376/2855 [17] Hoey, J., Pltz, T., Jackson, D., Monk, A., Pham, C., & Olivier, P. (2011). Rapid specification and automated generation of prompting systems to assist people with dementia. Pervasive and Mobile Computing, 7(3), 299–318. https://doi.org/10.1016/j.pmcj.2010.11.007 [18] Fahad, L. G., Tahir, S. F., & Rajarajan, M. (2015). Feature selection and data balancing for activity recognition in smart homes. IEEE International Conference on Communications, 2015-Septe, 512–517. https://doi.org/10.1109/ICC.2015.724837310 [19] Chawla, N. V, Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. In Journal of Artificial Intelligence Research (Vol. 16). https://scihub.si/http://www.jair.org/index.php/jair/article/view/10302 [20] López Saca, F., Ferreyra Ramírez, A., Avilés Cruz, C., Villegas Cortez, J., Zúñiga López, A., & Rodrigez Martinez, E. (2018). Preprocesamiento de bases de datos de imágenes para mejorar el rendimiento de redes neuronales convolucionales. Research in Computing Science, 147(7), 35–45. https://doi.org/10.13053/rcs147-7-3 [21] Ruan, Y. X., Lin, H. T., & Tsai, M. F. (2014). Improving ranking performance with cost-sensitive ordinal classification via regression. Information Retrieval, 17(1), 1–20. https://doi.org/10.1007/s10791-013-9219-2 [22] Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832– 844. https://doi.org/10.1109/34.709601 [23] Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1007/bf00058655 [24] Nagalla, R., Pothuganti, P., & Pawar, D. S. (2017). Analyzing Gap Acceptance Behavior at Unsignalized Intersections Using Support Vector Machines, Decision Tree and Random Forests. Procedia Computer Science, 109, 474–481. https://doi.org/10.1016/j.procs.2017.05.312 [25] Salzberg, S. L. (1994). C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Machine Learning, 16(3), 235–240. https://doi.org/10.1007/bf00993309 [26] Kumar, K., Kumar, G., & Kumar, Y. (2013). Feature Selection Approach for Intrusion Detection System. International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), 2(5), 47–53. [27] Ariza Colpas, P., Vicario, E., De-La-Hoz-Franco, E., Pineres-Melo, M., Oviedo-Carrascal, A., & Patara, F. (2020). Unsupervised human activity recognition using the clustering approach: A review. Sensors, 20(9), 2702. [28] Chandra, S., & Maheshkar, S. (2017). Verification of static signature pattern based on random subspace, REP tree and bagging. Multimedia Tools and Applications, 76(18), 19139–19171. https://doi.org/10.1007/s11042-017-4531-2 [29] Asaju, L. B., Shola, P. B., Franklin, N., & Abiola, H. M. (2017). Intrusion Detection System on a Computer Network Using an Ensemble of Randomizable Filtered Classifier, K-Nearest …. Ftstjournal.Com, 2(1), 550– 553. www.ftstjournal.com [30] Kalmegh, S. (2015). Analysis of WEKA Data Mining Algorithm REPTree , Simple Cart and RandomTree for Classification of Indian News. International Journal of Innovative Science, Engineering & Technology, 2(2), 438–446. www.ijiset.com [31] Rajput, A., Aharwal, R. P., Dubey, M., Saxena, S. P., & Raghuvanshi, M. (2011). J48 and JRIP rules for e-governance data. International Journal of Computer Science and Security, 5(2), 201–207.11 [32] Cai, Y. D., Feng, K. Y., Lu, W. C., & Chou, K. C. (2006). Using LogitBoost classifier to predict protein structural classes. Journal of Theoretical Biology, 238(1), 172–176. https://doi.org/10.1016/j.jtbi.2005.05.034 [33] Qian, H., Mao, Y., Xiang, W., & Wang, Z. (2010). Recognition of human activities using SVM multi-class classifier. Pattern Recognition Letters, 31(2), 100–111. https://doi.org/10.1016/j.patrec.2009.09.019 [34] Suykens, J. A. K., & Vandewalle, J. (1999). Training multilayer perceptron classifiers based on a modified support vector method. IEEE Transactions on Neural Networks, 10(4), 907–911. https://doi.org/10.1109/72.774254 [35] Khalajzadeh, H., Mansouri, M., & Teshnehlab, M. (2014). Face recognition using convolutional neural network and simple logistic classifier. Advances in Intelligent Systems and Computing, 223, 197–207. https://doi.org/10.1007/978-3-319-00930-8_18 [36] Choudhury, S., & Bhowal, A. (2015). Comparative analysis of machine learning algorithms along with classifiers for network intrusion detection. 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials, ICSTM 2015 - Proceedings, 89–95. https://doi.org/10.1109/ICSTM.2015.7225395 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Procedia Computer Science |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1877050921014721 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/483fe9b6-d7cb-4a28-ac93-973a061423d6/download https://repositorio.cuc.edu.co/bitstreams/f28648e5-4f9d-48a1-8e1e-b218dba8089d/download https://repositorio.cuc.edu.co/bitstreams/07d19590-7d9e-42be-a4ed-0e877f222ea7/download https://repositorio.cuc.edu.co/bitstreams/ab83ea12-9bd5-43f0-b811-74a19b2effbc/download https://repositorio.cuc.edu.co/bitstreams/8ea480bb-c3ff-4f8b-8055-f7b9fe383b16/download |
bitstream.checksum.fl_str_mv |
20aa6eceff6a13142b147bab29234c5b 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 026dae8ada862e568cd358367d6c9670 f766e2606ceec26a193f9f6e97341fa1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166854582992896 |
spelling |
García-Restrepo, JohannaAriza Colpas, Paola PatriciaOñate-Bowen, Alvaro AgustínSuarez Brieva, EydyUrina-Triana, MiguelDe-La-Hoz-Franco, EmiroDíaz-Martínez, Jorge LuisButt Shariq, AzizMolina Estren, Diego2021-09-14T16:21:56Z2021-09-14T16:21:56Z20211877-0509https://hdl.handle.net/11323/8691https://doi.org/10.1016/j.procs.2021.07.069Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/AI-based techniques have included countless applications within the engineering field. These range from the automation of important procedures in Industry and companies, to the field of Process Control. Smart Home (SH) technology is designed to help house residents improve their daily activities and therefore enrich the quality of life while preserving their privacy. An SH system is usually equipped with a collection of software interrelated with hardware components to monitor the living space by capturing the behavior of the resident and their occupations. By doing so, the system can report risks, situations, and act on behalf of the resident to their satisfaction. This research article shows the experimentation carried out with the human activity recognition dataset, CASAS Kyoto, through preprocessing and cleaning processes of the data, showing the Vía Regression classifier as an excellent option to process this type of data with an accuracy 99.7% effectiveGarcía-Restrepo, JohannaAriza Colpas, Paola Patricia-will be generated-orcid-0000-0003-4503-5461-600Oñate-Bowen, Alvaro AgustínSuarez Brieva, Eydy-will be generated-orcid-0000-0002-6296-0117-600Urina-Triana, MiguelDe-La-Hoz-Franco, Emiro-will be generated-orcid-0000-0002-4926-7414-600Díaz-Martínez, Jorge LuisButt Shariq, AzizMolina Estren, Diegoapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050921014721HARHuman activity recognitionMachine learningADLActivity daily livingPredictive model for the identification of activities of daily living (ADL) in indoor environments using classification techniques based on Machine LearningArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1][Nagi, S. Z., Burk, R. D., & Potter, H. R. (1965). Back disorders and rehabilitation achievement. Journal of Chronic Diseases, 18(2), 181–197. https://doi.org/10.1016/0021-9681(65)90101-3[2] Lladó, M. R., Código, H., Lennin, A., Quiroz, P., & Lima -Perú, V. (2020). ENTORNO DOMÓTICO ADAPTADO A PERSONAS CON DISCAPACIDAD FÍSICA UTILIZANDO MODELOS OCULTOS DE MARKOV Tesis para optar el Título Profesional de Ingeniero de Sistemas. In Repositorio Institucional - Ulima. Universidad de Lima. http://repositorio.ulima.edu.pe/handle/20.500.12724/11664[3] Carlos, A., D’negri, E., De Vito, E. L., & Zadeh, L. A. (2006). Introducción al razonamiento aproximado: lógica difusa. In Revista Argentina de Medicina Respiratoria Año (Vol. 6).[4] Marcondes, C. H., & Almeida Campos, M. L. de. (2008). ONTOLOGIA E WEB SEMÂNTICA: O ESPAÇO DA PESQUISA EM CIÊNCIA DA INFORMAÇÃO. PontodeAcesso, 2(1), 107. https://doi.org/10.9771/1981-6766rpa.v2i1.2669[5] DANE. Archivo Nacional de Datos ANDA. 2014. [Citado Marzo 20,2016]. Available in: http://formularios.dane.gov.co/Anda_4_1/index.php/home[6] Ronao, C. A., & Cho, S. B. (2016). Human activity recognition with smartphone sensors using deep learning neural networks. Expert Systems with Applications, 59, 235–244. https://doi.org/10.1016/j.eswa.2016.04.032[7] Capela, N. A., Lemaire, E. D., & Baddour, N. (2015). Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients. PLoS ONE, 10(4), e0124414. https://doi.org/10.1371/journal.pone.0124414[8] Gudivada, V. N., Ding, J., & Apon, A. (2017). Data Quality Considerations for Big Data and Machine Learning: Going Beyond Data Cleaning and Transformations Flow Cytometry of 3-D structure View project Data Quality Considerations for Big Data and Machine Learning: Going Beyond Data Cleaning and Transf. October, 1–20. https://www.researchgate.net/publication/318432363[9] Ren, X., & Malik, J. (2003). Learning a classification model for segmentation. Proceedings of the IEEE International Conference on Computer Vision, 1, 10– 17. https://doi.org/10.1109/iccv.2003.1238308[10] Galván-Tejada, C. E., Galván-Tejada, J. I., Celaya-Padilla, J. M., elgadoContreras, J. R., Magallanes-Quintanar, R., Martinez-Fierro, M. L., GarzaVeloz, I., López-Hernández, Y., & Gamboa-Rosales, H. (2016). An Analysis of Audio Features to Develop a Human Activity Recognition Model Using Genetic Algorithms, Random Forests, and Neural Networks. Mobile Information Systems, 2016, 1–10. https://doi.org/10.1155/2016/1784101[11] Eddy, S. R. (1998). Profile hidden Markov models. Academic.Oup.Com, 144(9), 755–763. https://academic.oup.com/bioinformatics/articleabstract/14/9/755/259550 Envejecimiento y salud. (2018, February 5).[12] Shah,C. (2020). Supervised Learning. In A Hands-On Introduction to Data Science (pp.235–289).[13] Nettleton, D. F., Orriols-Puig, A., & Fornells, A. (2010). A study of the effect of different types of noise on the precision of supervised learning techniques. Artificial Intelligence Review, 33(4), 275–306.https://doi.org/10.1007/s10462-010-9156-z[14] Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. ACM International Conference Proceeding Series, 148, 161–168. https://doi.org/10.1145/1143844.1143865[15] Mejia-Ricart, L. F., Helling, P., & Olmsted, A. (2018). Evaluate action primitives for human activity recognition using unsupervised learning approach. 2017 12th International Conference for Internet Technology and Secured Transactions, ICITST 2017, 186–188. https://doi.org/10.23919/ICITST.2017.8356374[16] Crandall, A. S. (2011). BEHAVIOMETRICS FOR MULTIPLE RESIDENTS IN A SMART ENVIRONMENT. https://scihub.si/http://research.wsulibs.wsu.edu/xmlui/handle/2376/2855[17] Hoey, J., Pltz, T., Jackson, D., Monk, A., Pham, C., & Olivier, P. (2011). Rapid specification and automated generation of prompting systems to assist people with dementia. Pervasive and Mobile Computing, 7(3), 299–318. https://doi.org/10.1016/j.pmcj.2010.11.007[18] Fahad, L. G., Tahir, S. F., & Rajarajan, M. (2015). Feature selection and data balancing for activity recognition in smart homes. IEEE International Conference on Communications, 2015-Septe, 512–517. https://doi.org/10.1109/ICC.2015.724837310[19] Chawla, N. V, Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. In Journal of Artificial Intelligence Research (Vol. 16). https://scihub.si/http://www.jair.org/index.php/jair/article/view/10302[20] López Saca, F., Ferreyra Ramírez, A., Avilés Cruz, C., Villegas Cortez, J., Zúñiga López, A., & Rodrigez Martinez, E. (2018). Preprocesamiento de bases de datos de imágenes para mejorar el rendimiento de redes neuronales convolucionales. Research in Computing Science, 147(7), 35–45. https://doi.org/10.13053/rcs147-7-3[21] Ruan, Y. X., Lin, H. T., & Tsai, M. F. (2014). Improving ranking performance with cost-sensitive ordinal classification via regression. Information Retrieval, 17(1), 1–20. https://doi.org/10.1007/s10791-013-9219-2[22] Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832– 844. https://doi.org/10.1109/34.709601[23] Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1007/bf00058655[24] Nagalla, R., Pothuganti, P., & Pawar, D. S. (2017). Analyzing Gap Acceptance Behavior at Unsignalized Intersections Using Support Vector Machines, Decision Tree and Random Forests. Procedia Computer Science, 109, 474–481. https://doi.org/10.1016/j.procs.2017.05.312[25] Salzberg, S. L. (1994). C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Machine Learning, 16(3), 235–240. https://doi.org/10.1007/bf00993309[26] Kumar, K., Kumar, G., & Kumar, Y. (2013). Feature Selection Approach for Intrusion Detection System. International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), 2(5), 47–53.[27] Ariza Colpas, P., Vicario, E., De-La-Hoz-Franco, E., Pineres-Melo, M., Oviedo-Carrascal, A., & Patara, F. (2020). Unsupervised human activity recognition using the clustering approach: A review. Sensors, 20(9), 2702.[28] Chandra, S., & Maheshkar, S. (2017). Verification of static signature pattern based on random subspace, REP tree and bagging. Multimedia Tools and Applications, 76(18), 19139–19171. https://doi.org/10.1007/s11042-017-4531-2[29] Asaju, L. B., Shola, P. B., Franklin, N., & Abiola, H. M. (2017). Intrusion Detection System on a Computer Network Using an Ensemble of Randomizable Filtered Classifier, K-Nearest …. Ftstjournal.Com, 2(1), 550– 553. www.ftstjournal.com[30] Kalmegh, S. (2015). Analysis of WEKA Data Mining Algorithm REPTree , Simple Cart and RandomTree for Classification of Indian News. International Journal of Innovative Science, Engineering & Technology, 2(2), 438–446. www.ijiset.com[31] Rajput, A., Aharwal, R. P., Dubey, M., Saxena, S. P., & Raghuvanshi, M. (2011). J48 and JRIP rules for e-governance data. International Journal of Computer Science and Security, 5(2), 201–207.11[32] Cai, Y. D., Feng, K. Y., Lu, W. C., & Chou, K. C. (2006). Using LogitBoost classifier to predict protein structural classes. Journal of Theoretical Biology, 238(1), 172–176. https://doi.org/10.1016/j.jtbi.2005.05.034[33] Qian, H., Mao, Y., Xiang, W., & Wang, Z. (2010). Recognition of human activities using SVM multi-class classifier. Pattern Recognition Letters, 31(2), 100–111. https://doi.org/10.1016/j.patrec.2009.09.019[34] Suykens, J. A. K., & Vandewalle, J. (1999). Training multilayer perceptron classifiers based on a modified support vector method. IEEE Transactions on Neural Networks, 10(4), 907–911. https://doi.org/10.1109/72.774254[35] Khalajzadeh, H., Mansouri, M., & Teshnehlab, M. (2014). Face recognition using convolutional neural network and simple logistic classifier. Advances in Intelligent Systems and Computing, 223, 197–207. https://doi.org/10.1007/978-3-319-00930-8_18[36] Choudhury, S., & Bhowal, A. (2015). Comparative analysis of machine learning algorithms along with classifiers for network intrusion detection. 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials, ICSTM 2015 - Proceedings, 89–95. https://doi.org/10.1109/ICSTM.2015.7225395PublicationORIGINALPredictive model for the identification of activies of daily living (ADL) in indoor environments using classification techniques basedon machine learning.pdfPredictive model for the identification of activies of daily living (ADL) in indoor environments using classification techniques basedon machine learning.pdfapplication/pdf612557https://repositorio.cuc.edu.co/bitstreams/483fe9b6-d7cb-4a28-ac93-973a061423d6/download20aa6eceff6a13142b147bab29234c5bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/f28648e5-4f9d-48a1-8e1e-b218dba8089d/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/07d19590-7d9e-42be-a4ed-0e877f222ea7/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILPredictive model for the identification of activies of daily living (ADL) in indoor environments using classification techniques basedon machine learning.pdf.jpgPredictive model for the identification of activies of daily living (ADL) in indoor environments using classification techniques basedon machine learning.pdf.jpgimage/jpeg50456https://repositorio.cuc.edu.co/bitstreams/ab83ea12-9bd5-43f0-b811-74a19b2effbc/download026dae8ada862e568cd358367d6c9670MD54TEXTPredictive model for the identification of activies of daily living (ADL) in indoor environments using classification techniques basedon machine learning.pdf.txtPredictive model for the identification of activies of daily living (ADL) in indoor environments using classification techniques basedon machine learning.pdf.txttext/plain34903https://repositorio.cuc.edu.co/bitstreams/8ea480bb-c3ff-4f8b-8055-f7b9fe383b16/downloadf766e2606ceec26a193f9f6e97341fa1MD5511323/8691oai:repositorio.cuc.edu.co:11323/86912024-09-17 14:18:30.486http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |