Selective adsorption of gadolinium from real leachate using a natural bentonite clay
This article investigated the recovery of Gd3+ from real leachate of phosphogypsum (PG) using natural bentonite clay. Firstly, a detailed adsorption study was performed using synthetic Gd3+ solutions. Then, it was investigated the clay performance in the real PG leachate. The characterization result...
- Autores:
-
Dotto, Guilherme Luiz
Vieillard, Julien
Pinto, Diana
Lütke, Sabrina F.
Silva Oliveira, Luis Felipe
dos Reis, Glaydson S.
Lima, Éder C.
Dison S.P., Franco
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10472
- Acceso en línea:
- https://hdl.handle.net/11323/10472
https://repositorio.cuc.edu.co/
- Palabra clave:
- Gadolinium
Natural clay
Selectivity
Kinetics
Thermodynamics
Adsorption
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_28072f5001d120a4b86cd101466a8f68 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10472 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Selective adsorption of gadolinium from real leachate using a natural bentonite clay |
title |
Selective adsorption of gadolinium from real leachate using a natural bentonite clay |
spellingShingle |
Selective adsorption of gadolinium from real leachate using a natural bentonite clay Gadolinium Natural clay Selectivity Kinetics Thermodynamics Adsorption |
title_short |
Selective adsorption of gadolinium from real leachate using a natural bentonite clay |
title_full |
Selective adsorption of gadolinium from real leachate using a natural bentonite clay |
title_fullStr |
Selective adsorption of gadolinium from real leachate using a natural bentonite clay |
title_full_unstemmed |
Selective adsorption of gadolinium from real leachate using a natural bentonite clay |
title_sort |
Selective adsorption of gadolinium from real leachate using a natural bentonite clay |
dc.creator.fl_str_mv |
Dotto, Guilherme Luiz Vieillard, Julien Pinto, Diana Lütke, Sabrina F. Silva Oliveira, Luis Felipe dos Reis, Glaydson S. Lima, Éder C. Dison S.P., Franco |
dc.contributor.author.none.fl_str_mv |
Dotto, Guilherme Luiz Vieillard, Julien Pinto, Diana Lütke, Sabrina F. Silva Oliveira, Luis Felipe dos Reis, Glaydson S. Lima, Éder C. Dison S.P., Franco |
dc.subject.proposal.eng.fl_str_mv |
Gadolinium Natural clay Selectivity Kinetics Thermodynamics |
topic |
Gadolinium Natural clay Selectivity Kinetics Thermodynamics Adsorption |
dc.subject.proposal.fra.fl_str_mv |
Adsorption |
description |
This article investigated the recovery of Gd3+ from real leachate of phosphogypsum (PG) using natural bentonite clay. Firstly, a detailed adsorption study was performed using synthetic Gd3+ solutions. Then, it was investigated the clay performance in the real PG leachate. The characterization results indicate classical bentonite characteristics, such as rugosity and an SBET 91.3 m² g−1, with meso (Dp =3.82 nm) and macroporous (Dp =52.6 nm). In addition, it was identified that the major functional groups are hydroxyl and silicate, with the presence of organic matter. The initial pH solution effect indicates that the optimum removal of Gd3+ is at pH (6), attributing to the pHpzc being at 5.75 and the negatively charged surface above the pHpzc. The Avrami fractional order model was the most suitable for describing the experimental kinetic data. The Langmuir was the proper model for describing the adsorption isotherms, indicating that the Gd3+ forms a monolayer at the surface of the bentonite. The maximum adsorption capacity at pH 6.0 was 121.5 mg g−1. The thermodynamic parameters indicate that the adsorption is spontaneous, with a standard enthalpy change of − 92.30 kJ mol−1, indicating an ionic exchange, where the Gd3+ tends to be organized at the surface, according to the standard entropy change of − 206.0 J K−1 mol−1. The fixed bed adsorption test showed that Gd3+ could be adsorbed for up to 200 min without regeneration. Regeneration results show that the citric acid is more efficient in desorbing the Gd3+ from the bentonite, reaching up to 8 cycles without efficiency loss. Finally, the bentonite clay could selectively recover Gd3+ from the real PG leachate. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-11T18:59:00Z |
dc.date.available.none.fl_str_mv |
2023-09-11T18:59:00Z 2025 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Guilherme L. Dotto, Julien Vieillard, Diana Pinto, Sabrina F. Lütke, Luis F.O. Silva, Glaydson S. dos Reis, Éder C. Lima, Dison S.P. Franco, Selective adsorption of gadolinium from real leachate using a natural bentonite clay, Journal of Environmental Chemical Engineering, Volume 11, Issue 3, 2023, 109748, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2023.109748 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10472 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.jece.2023.109748 |
dc.identifier.eissn.spa.fl_str_mv |
2213-3437 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Guilherme L. Dotto, Julien Vieillard, Diana Pinto, Sabrina F. Lütke, Luis F.O. Silva, Glaydson S. dos Reis, Éder C. Lima, Dison S.P. Franco, Selective adsorption of gadolinium from real leachate using a natural bentonite clay, Journal of Environmental Chemical Engineering, Volume 11, Issue 3, 2023, 109748, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2023.109748 10.1016/j.jece.2023.109748 2213-3437 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/10472 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Environmental Chemical Engineering |
dc.relation.references.spa.fl_str_mv |
[1] W. Ariyani, W. Miyazaki, Y. Tsushima, N. Koibuchi, Gadolinium‑based contrast agent accelerates the migration of astrocyte via the integrin αvβ3 signaling pathway, Sci. Rep. 12 (2022) 5850, https://doi.org/10.1038/s41598-022-09882-7. [2] K. Gaalen, C. Quinn, F. Benn, P.E. McHugh, A. Kopp, T.J. Vaughan, Linking the effect of localised pitting corrosion with mechanical integrity of a rare earth magnesium alloy for implant use, Bioact. Mater. 21 (2023) 32–43, https://doi.org/ 10.1016/j.bioactmat.2022.08.004. [3] B. Shi, X. Zhang, W. Li, N. Liang, X. Hu, J. Xiao, D. Wang, X. Zou, J. Shi, An intrinsic dual-emitting fluorescence sensing toward tetracycline with a selfcalibration model based on luminescent lanthanide-functionalized metal-organic frameworks, Food Chem. 400 (2023), 133995, https://doi.org/10.1016/j. foodchem.2022.133995. [4] V. Balaram, Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact, Geosci. Front. 10 (2019) 1285–1303, https://doi.org/10.1016/j.gsf.2018.12.005. [5] M. Yousaf, M.A. MAKY, A. Shah, Y. Noor, M.N. Lu, N. Akhtar, E. Mushtaq, S. Hu, B. Yan, Zhu, Enhanced ORR catalytic activity of rare earth-doped Gd oxide ions in a CoFe2O4 cathode for low-temperature solid oxide fuel cells (LT-SOFCs, Ceram. Int. 48 (2022) 28142–28153, https://doi.org/10.1016/j.ceramint.2022.06.119. [6] S.F. Lütke, M.L.S. Oliveira, S.R. Waechter, L.F.O. Silva, T.R.S. Cadaval Jr., F. A. Duarte, G.L. Dotto, Leaching of rare earth elements from phosphogypsum, Chemosphere 301 (2022), 134661, https://doi.org/10.1016/j. chemosphere.2022.134661. [7] S. Li, M. Malik, G. Azimi, Extraction of rare earth elements from phosphogypsum using mineral acids: process development and mechanistic investigation, Ind. Eng. Chem. Res. 61 (2022) 102–114, https://doi.org/10.1021/acs.iecr.1c03576. [8] M.S. Gasser, Z.H. Ismail, E.M. Abu Elgoud, F. Abdel Hai, I.O. Ali, H. F. Aly, Alkali Treat. leaching rare earth Elem. phosphogypsum Fertil.: Insight Addit. Resour. Valuab. Compon. BMC Chem. 16 (2022) 51, https://doi.org/10.1186/s13065-022- 00845-7. [9] Y. El Ouardi, M. Lamsayah, S. Butylina, S. Geng, M. Esmaeili, A. Give, E.S. M. Mouele, S. Virolainen, S. El Barkany, A. Ouammou, E. Repo, K. Laatikainen Sustainable composite material based on glutenin biopolymeric clay for efficient separation of rare earth elements, hem. Eng. J. 440 (2022), 135959, https://doi. org/10.1016/j.cej.2022.135959. [10] W.C. Wilfong, T. Ji, Y. Duan, F. Shi, Q. Wang, M.L. Mc, Gray, Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage, J. Hazard. Mater. 424 (2022), 127625, https:// doi.org/10.1016/j.jhazmat.2021.127625. [11] G. Estrade, E. Marquis, M. Smith, K. Goodenough, P. Nason, REE concentration processes in ion adsorption deposits: evidence from the Ambohimirahavavy alkaline complex in Madagascar, Ore Geol. Rev. 112 (2019), 103027, https://doi. org/10.1016/j.oregeorev.2019.103027. [12] Y. Huang, H. He, X. Liang, Z. Bao, W. Tan, L. Ma, J. Zhu, J. Huang, H. Wang, Characteristics and genesis of ion adsorption type REE deposits in the weathering crusts of metamorphic rocks in Ningdu, Ganzhou, China, Ore Geol. Rev. 135 (2021), 104173, https://doi.org/10.1016/j.oregeorev.2021.104173. [13] C.L. Liang, J.L. Shen, Removal of yttrium from rare-earth wastewater by Serratia marcescens: biosorption optimization and mechanisms studies, Sci. Rep. 12 (2022) 4861, https://doi.org/10.1038/s41598-022-08542-0. [14] I.V. Pylypchuk, D. Kołodynska, ´ M. Kozioł, P.P. Gorbyk, Gd-DTPA adsorption on chitosan/magnetite nanocomposites, Nanoscale Res. Lett. 11 (2016) 168, https:// doi.org/10.1186/s11671-016-1363-3. [15] G.S. dos Reis, D. Pinto, E.C. Lima, S. Knani, A. Grimm, L.F.O. Silva, T.R. S. Cadaval Jr, G.L. Dotto, Lanthanum uptake from water using chitosan with different configurations, React. Funct. Polym. 180 (2022), 105395, https://doi. org/10.1016/j.reactfunctpolym.2022.105395. [16] J. Cui, Q. Wang, J. Gao, Y. Guo, F. Cheng, The selective adsorption of rare earth elements by modified coal fly ash-based SBA-15, Chin. J. Chem. Eng. 47 (2021) 155–164, https://doi.org/10.1016/j.cjche.2021.07.033. [17] Z. Fang, H. Suhua, l Xu, F. Jian, L. Qi, W. Zhiwei, L. Chuanchang, X. Yuanlai, Adsorption kinetics and thermodynamics of rare earth on montmorillonite modified by sulfuric acid, Colloids Surf. A Physicochem. Eng. Asp. 627 (2021), 127063, https://doi.org/10.1016/j.colsurfa.2021.127063. [18] B. Ji, W. Zhang, Adsorption of cerium (III) by zeolites synthesized from kaolinite after rare earth elements (REEs) recovery, Chemosphere 303 (2022), 134941, https://doi.org/10.1016/j.chemosphere.2022.134941. [19] T. Kegl, A. Kosak, A. Lobnik, Z. Novak, A.K.C. Kralj, I. Ban, Adsorption of rare earth metals from wastewater by nanomaterials: a review, J. Hazard. Mater. 386 (2020), 121632, https://doi.org/10.1016/j.jhazmat.2019.121632. [20] J. Xiao, B. Li, R. Qiang, H. Qiu, J. Chen, Highly selective adsorption of rare earth elements by honeycomb-shaped covalent organic frameworks synthesized in deep eutectic solvents, Environ. Res. 214 (2022), 113977, https://doi.org/10.1016/j. envres.2022.113977. [21] J. Starý, J. Jirasek, F. Pticen, J. Zahradník, M. Sivek, Review of production, reserves, and processing of clays (including bentonite) in the Czech Republic, Appl. Clay Sci. 205 (2021), 106049, https://doi.org/10.1016/j.clay.2021.106049. [22] Y. Li, J. Liu, Y. Wang, X. Tang, J. Xu, X. Liu, Contribution of components in natural soil to Cd and Pb competitive adsorption: Semi-quantitative to quantitative analysis, J. Hazard. Mater. 441 (2023), 129883, https://doi.org/10.1016/j. jhazmat.2022.129883. [23] P.H. Chang, J. Guo, J. Li, Z. Li, X. Li, Seizing forbidden drug ranitidine by illite and the adsorption mechanism study, Colloids Surf. A: Physicochem. Eng. Asp. 639 (2022), 128395, https://doi.org/10.1016/j.colsurfa.2022.128395. [24] D.B. França, L.S. Oliveira, F.G. Nunes Filho, E.C. Silva Filho, J.A. Osajima, M. Jaber, M.G. Fonseca, The versatility of montmorillonite in water remediation using adsorption: Current studies and challenges in drug removal, J. Environ. Chem. Eng. 10 (2022), 107341, https://doi.org/10.1016/j.jece.2022.107341. [25] C. Cristiani, E.M. Iannicelli-Zubiani, M. Bellotto, Gi. Dotelli, P.G. Stampino, S. Latorrata, G. Ramis, E. Finocchio Capture Mechanism of La and Cu Ions in Mixed Solutions by Clay and Organoclay. Industrial Engineering and Chemical Research, 60 (2021) 6803− 6813. Doi:10.1021/acs.iecr.0c05333. [26] A. Alshameri, H. He, C. Xin, J. Zhu, W. Xinghu, R. Zhu, H. Wang, Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: Adsorption operative parameters, Hydrometallurgy 185 (2019) 149–161, https://doi.org/10.1016/j.hydromet.2019.02.016. [27] P.R. Souza, G.L. Dotto, N.P.G. Salau, Detailed numerical solution of pore volume and surface diffusion model in adsorption systems, Chem. Eng. Res. Des. 122 (2017) 298–307, https://doi.org/10.1016/j.cherd.2017.04.021. [28] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F.J. Rodriguez-Reinoso, K. S. Rouquerol, W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069. [29] E.C. NFGM Cimirro, M.R. Lima, P.S. Cunha, A. Thue, G.S. Grimm, N. dos Reis, M. R. Rabiee, F. Saeb, S. Keivanimehr, Habibzadeh. Removal of diphenols using pine biochar, Kinet., Equilib., Thermodyn., Mech. uptake. J. Mol. Liq. 364 (2022), 119979, https://doi.org/10.1016/j.molliq.2022.119979. [30] P.S. Thue, E.C. Lima, J.M. Sieliechi, C. Saucier, S.L.P. Dias, J.C.P. Vaghetti, F. S. Rodembusch, F.A. Pavan, Effects of first–row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass, J. Colloid Interface Sci. 486 (2017) 163–175, https://doi.org/ 10.1016/j.jcis.2016.09.0707. [31] A.J.B. Leite, C. Saucier, E.C. Lima, G.S. dos Reis, C.S. Umpierres, B.L. Mello, M. Shirmardi, S.L.P. Dias, C.H. Sampaio, Activated carbons from avocado seed: Optimization and application for removal of several emerging organic compounds, Environ. Sci. Pollut. Res. 25 (2018) 7647–7661, https://doi.org/10.1007/s11356- 017-1105-9. [32] E.C. Lima, M.H. Dehghani, A. Guleria, F. Sher, R.R. Karri, G.L. Dotto, H.N. Tran, CHAPTER 3 - Adsorption: Fundamental aspects and applications of adsorption for effluent treatment, in: Hadi Dehghani, M., Karri, R., Lima, E. (Eds.), Green Technologies for the Defluoridation of Water. Elsevier, 2021, 41–88. Doi:10.1016/ B978–0-323–85768-0.00004-X. [33] E.C. Lima, F. Sher, A. Guleria, M.R. Saeb, I. Anastopoulos, H.N. Tran, A. HosseiniBandegharaei, Is one performing the treatment data of adsorption kinetics correctly, J. Environ. Chem. Eng. 9 (2021), 104813, https://doi.org/10.1016/j. jece.2020.104813. [34] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraj´ an, I. Anastopoulos. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048. [35] M. Guy, M. Mathieu, I.P. Anastopoulos, M.G. Martínez, F. Rousseau, G.L. Dotto, H. P. de Oliveira, E.C. Lima, M. Thyrel, S.H. Larsson, G.S. dos Reis, Process parameters optimization, characterization, and application of KOH-activated Norway spruce bark graphitic biochars for efficient azo dye adsorption, Molecules 27 (2022) 456, https://doi.org/10.3390/molecules27020456. [36] M. Gonzalez-Hourcade, G.S. dos Reis, A. Grimm, V.M. Dinh, E.C. Lima, S. H. Larsson, F.G. Gentili, Microalgae biomass as a sustainable precursor to produce nitrogen-doped biochar for efficient removal of emerging pollutants from aqueous media, J. Clean. Prod. 348 (2022), 131280, https://doi.org/10.1016/j. jclepro.2022.131280. [37] G.S. dos Reis, M. Guy, M. Mathieu, M. Jebrane, E.C. Lima, M. Thyrel, G.L. Dotto, S. H. Larsson, A comparative study of chemical treatment by MgCl2, ZnSO4, ZnCl2, and KOH on physicochemical properties and acetaminophen adsorption performance of biobased porous materials from tree bark residues, Colloids Surf. A Physicochem. Eng. Asp. (2022) 642, https://doi.org/10.1016/j. colsurfa.2022.128626. [38] E.H.M. Cavalcante, I.C.M. Candido, H.P. de Oliveira, K.B. Silveira, T. Victor de Souza Alvares, E.C. Lima, M. Thyrel, S.H. Larsson, G. Simoes Dos Reis, 3- Aminopropyl-triethoxysilane-functionalized tannin-rich grape biomass for the adsorption of methyl orange dye: synthesis, characterization, and the adsorption mechanism, ACS Omega 7 (2022) 18997–19009, https://doi.org/10.1021/ acsomega.2c02101. [39] Z. Xu, J. Cai, B.-C. Pan, Mathematically modeling fixed-bed adsorption in aqueous systems, J. Zhejiang Univ. Sci. A 14 (2013) 155–176, https://doi.org/10.1631/ jzus.A1300029. [40] P.S. Thue, A.C. Sophia, E.C. Lima, A.G.N. Wamba, W.S. de Alencar, G.S. dos Reis, F. S. Rodembusch, S.L.P. Dias, Synthesis and characterization of a novel organicinorganic hybrid clay adsorbent for the removal of acid red 1 and acid green 25 from aqueous solutions, J. Clean. Prod. 171 (2018) 30–44, https://doi.org/ 10.1016/j.jclepro.2017.09.278. [41] M.E. Mahmoud, G.M. Nabil, S.M.T. Elweshahy, Novel NTiO2-chitosan@NZrO2- chitosan nanocomposite for effective adsorptive uptake of trivalent gadolinium and samarium ions from water, Powder Technol. 378 (2021) 246–254. [42] M. Naghizadeh, M.A. Tahera, A.-M. Tamaddon, S. Borandeh, S.S. Abolmaali, Microextraction of Gadolinium MRI contrast agent using core-shell Fe3O4@SiO2 nanoparticles: optimization of adsorption conditions and in-vitro study, Environ. Nanotechnol. Monit. Manag. 12 (2019), 100250. [43] B. Xiao, Z. Qingli, Z. Chenyang, L. Jianchu, L. Ke, F. Halliang, L. Yuqin, N. Zihan, L. Yanwen, J. Yuxin, Glycine functionalized activated carbon derived from navel orange peel for enhancement recovery of Gd(III, ), J. Rare Earths (2021) 1794–1802. [44] J. Cui, Q. Wang, J. Gao, Y. Guo, F. Cheng, The selective adsorption of rare earth elements by modified coal fly ash based SBA-15, Chin. J. Chem. Eng. 47 (2022) 155–164. [45] E. Liu, X. Lin, D. Zhang, W. Xu, J. Shi, Y. Hong, Ionic imprinted CNTs-chitosan hybrid sponge with 3D network structure for selective and effective adsorption of Gd(III), Separ. Purif. Technol. 269 (2021), 118792. [46] W. Chen, L. Wang, M. Zhuo, Y. Liu, Y. Wang, Y. Li, Facile and highly efficient removal of trace Gd(III) by adsorption of colloidal graphene oxide suspensions sealed in dialysis bag, J. Hazard. Mater. 279 (2014) 546–553. [47] W. Yin, L. Liu, S. Tang, H. Zhang, X. Pan, Facile synthesis of triazole and carboxylfunctionalized cellulose-based adsorbent via click chemistry strategy for efficient Gd(III) removal, Cellulose 26 (2019) 7107–7123. [48] E.L. Liu, X. Lin, D. Zhang, W.B. Xu, J.Y. Shi, Y.Z. Hong, Preparation of an ion imprinted chitosan-based porous film with an interpenetrating network structure for efficient selective adsorption of Gd(III), N. J. Chem. 45 (2021) 725–734. [49] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, Potential of Araucaria angustifolia bark as adsorbent to remove gentian violet dye from aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703, https://doi.org/ 10.2166/wst.2018.448. [50] J. Ifthikar, I.I. Shahib, L. Sellaoui, A. Jawad, M. Zhao, Z. Chen, Z. Chen, pH tunable anionic and cationic heavy metal reduction coupled adsorption by thiol crosslinked composite: Physicochemical interpretations and fixed-bed column mathematical model study, 126041, Chem. Eng. J. 401 (2020), https://doi.org/ 10.1016/j.cej.2020.126041. [51] Y.L. de, O. Salomon, ´ J. Georgin, M.S. D.S.P.Franco, P. Netto, Grassi, D.G.A. Piccilli, M.L.S. Oliveira, G.L. Dotto, Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations, Adv. Powder Technol. 31 (2020) 2843–2852, https://doi.org/10.1016/j.apt.2020.05.004. [52] P.T. Hernandes, D.S.P. Franco, J. Georgin, N.P.G. Salau, G.L. Dotto, Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium, J. Environ. Chem. Eng. 10 (2022), 107408, https://doi.org/ 10.1016/j.jece.2022.107408. |
dc.relation.citationendpage.spa.fl_str_mv |
9 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
3 |
dc.relation.citationvolume.spa.fl_str_mv |
11 |
dc.rights.eng.fl_str_mv |
© 2023 Elsevier Ltd. All rights reserved. |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2023 Elsevier Ltd. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier BV |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2213343723004876 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/b49f2d26-e44b-4e5f-bd85-5b62dd6bd22f/download https://repositorio.cuc.edu.co/bitstreams/9bd3391f-58f3-4ca6-9f0c-158fade1273c/download https://repositorio.cuc.edu.co/bitstreams/3ce3c212-cf70-4d9b-af68-e7c05a67206b/download https://repositorio.cuc.edu.co/bitstreams/de8a2654-36ed-44c9-b526-7196dee6f20f/download |
bitstream.checksum.fl_str_mv |
1e51156634f7d7cf11183eb529c7237f 2f9959eaf5b71fae44bbf9ec84150c7a 0616fd0b3448951914b42ef47e8ef873 c2b4ecd1fe1b2658eb3213eff87d5f39 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166850397077504 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2023 Elsevier Ltd. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfDotto, Guilherme LuizVieillard, JulienPinto, DianaLütke, Sabrina F.Silva Oliveira, Luis Felipedos Reis, Glaydson S.Lima, Éder C.Dison S.P., Franco2023-09-11T18:59:00Z20252023-09-11T18:59:00Z2023Guilherme L. Dotto, Julien Vieillard, Diana Pinto, Sabrina F. Lütke, Luis F.O. Silva, Glaydson S. dos Reis, Éder C. Lima, Dison S.P. Franco, Selective adsorption of gadolinium from real leachate using a natural bentonite clay, Journal of Environmental Chemical Engineering, Volume 11, Issue 3, 2023, 109748, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2023.109748https://hdl.handle.net/11323/1047210.1016/j.jece.2023.1097482213-3437Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This article investigated the recovery of Gd3+ from real leachate of phosphogypsum (PG) using natural bentonite clay. Firstly, a detailed adsorption study was performed using synthetic Gd3+ solutions. Then, it was investigated the clay performance in the real PG leachate. The characterization results indicate classical bentonite characteristics, such as rugosity and an SBET 91.3 m² g−1, with meso (Dp =3.82 nm) and macroporous (Dp =52.6 nm). In addition, it was identified that the major functional groups are hydroxyl and silicate, with the presence of organic matter. The initial pH solution effect indicates that the optimum removal of Gd3+ is at pH (6), attributing to the pHpzc being at 5.75 and the negatively charged surface above the pHpzc. The Avrami fractional order model was the most suitable for describing the experimental kinetic data. The Langmuir was the proper model for describing the adsorption isotherms, indicating that the Gd3+ forms a monolayer at the surface of the bentonite. The maximum adsorption capacity at pH 6.0 was 121.5 mg g−1. The thermodynamic parameters indicate that the adsorption is spontaneous, with a standard enthalpy change of − 92.30 kJ mol−1, indicating an ionic exchange, where the Gd3+ tends to be organized at the surface, according to the standard entropy change of − 206.0 J K−1 mol−1. The fixed bed adsorption test showed that Gd3+ could be adsorbed for up to 200 min without regeneration. Regeneration results show that the citric acid is more efficient in desorbing the Gd3+ from the bentonite, reaching up to 8 cycles without efficiency loss. Finally, the bentonite clay could selectively recover Gd3+ from the real PG leachate.9 páginasapplication/pdfengElsevier BVUnited Kingdomhttps://www.sciencedirect.com/science/article/pii/S2213343723004876Selective adsorption of gadolinium from real leachate using a natural bentonite clayArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Environmental Chemical Engineering[1] W. Ariyani, W. Miyazaki, Y. Tsushima, N. Koibuchi, Gadolinium‑based contrast agent accelerates the migration of astrocyte via the integrin αvβ3 signaling pathway, Sci. Rep. 12 (2022) 5850, https://doi.org/10.1038/s41598-022-09882-7.[2] K. Gaalen, C. Quinn, F. Benn, P.E. McHugh, A. Kopp, T.J. Vaughan, Linking the effect of localised pitting corrosion with mechanical integrity of a rare earth magnesium alloy for implant use, Bioact. Mater. 21 (2023) 32–43, https://doi.org/ 10.1016/j.bioactmat.2022.08.004.[3] B. Shi, X. Zhang, W. Li, N. Liang, X. Hu, J. Xiao, D. Wang, X. Zou, J. Shi, An intrinsic dual-emitting fluorescence sensing toward tetracycline with a selfcalibration model based on luminescent lanthanide-functionalized metal-organic frameworks, Food Chem. 400 (2023), 133995, https://doi.org/10.1016/j. foodchem.2022.133995.[4] V. Balaram, Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact, Geosci. Front. 10 (2019) 1285–1303, https://doi.org/10.1016/j.gsf.2018.12.005.[5] M. Yousaf, M.A. MAKY, A. Shah, Y. Noor, M.N. Lu, N. Akhtar, E. Mushtaq, S. Hu, B. Yan, Zhu, Enhanced ORR catalytic activity of rare earth-doped Gd oxide ions in a CoFe2O4 cathode for low-temperature solid oxide fuel cells (LT-SOFCs, Ceram. Int. 48 (2022) 28142–28153, https://doi.org/10.1016/j.ceramint.2022.06.119.[6] S.F. Lütke, M.L.S. Oliveira, S.R. Waechter, L.F.O. Silva, T.R.S. Cadaval Jr., F. A. Duarte, G.L. Dotto, Leaching of rare earth elements from phosphogypsum, Chemosphere 301 (2022), 134661, https://doi.org/10.1016/j. chemosphere.2022.134661.[7] S. Li, M. Malik, G. Azimi, Extraction of rare earth elements from phosphogypsum using mineral acids: process development and mechanistic investigation, Ind. Eng. Chem. Res. 61 (2022) 102–114, https://doi.org/10.1021/acs.iecr.1c03576.[8] M.S. Gasser, Z.H. Ismail, E.M. Abu Elgoud, F. Abdel Hai, I.O. Ali, H. F. Aly, Alkali Treat. leaching rare earth Elem. phosphogypsum Fertil.: Insight Addit. Resour. Valuab. Compon. BMC Chem. 16 (2022) 51, https://doi.org/10.1186/s13065-022- 00845-7.[9] Y. El Ouardi, M. Lamsayah, S. Butylina, S. Geng, M. Esmaeili, A. Give, E.S. M. Mouele, S. Virolainen, S. El Barkany, A. Ouammou, E. Repo, K. Laatikainen Sustainable composite material based on glutenin biopolymeric clay for efficient separation of rare earth elements, hem. Eng. J. 440 (2022), 135959, https://doi. org/10.1016/j.cej.2022.135959.[10] W.C. Wilfong, T. Ji, Y. Duan, F. Shi, Q. Wang, M.L. Mc, Gray, Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage, J. Hazard. Mater. 424 (2022), 127625, https:// doi.org/10.1016/j.jhazmat.2021.127625.[11] G. Estrade, E. Marquis, M. Smith, K. Goodenough, P. Nason, REE concentration processes in ion adsorption deposits: evidence from the Ambohimirahavavy alkaline complex in Madagascar, Ore Geol. Rev. 112 (2019), 103027, https://doi. org/10.1016/j.oregeorev.2019.103027.[12] Y. Huang, H. He, X. Liang, Z. Bao, W. Tan, L. Ma, J. Zhu, J. Huang, H. Wang, Characteristics and genesis of ion adsorption type REE deposits in the weathering crusts of metamorphic rocks in Ningdu, Ganzhou, China, Ore Geol. Rev. 135 (2021), 104173, https://doi.org/10.1016/j.oregeorev.2021.104173.[13] C.L. Liang, J.L. Shen, Removal of yttrium from rare-earth wastewater by Serratia marcescens: biosorption optimization and mechanisms studies, Sci. Rep. 12 (2022) 4861, https://doi.org/10.1038/s41598-022-08542-0.[14] I.V. Pylypchuk, D. Kołodynska, ´ M. Kozioł, P.P. Gorbyk, Gd-DTPA adsorption on chitosan/magnetite nanocomposites, Nanoscale Res. Lett. 11 (2016) 168, https:// doi.org/10.1186/s11671-016-1363-3.[15] G.S. dos Reis, D. Pinto, E.C. Lima, S. Knani, A. Grimm, L.F.O. Silva, T.R. S. Cadaval Jr, G.L. Dotto, Lanthanum uptake from water using chitosan with different configurations, React. Funct. Polym. 180 (2022), 105395, https://doi. org/10.1016/j.reactfunctpolym.2022.105395.[16] J. Cui, Q. Wang, J. Gao, Y. Guo, F. Cheng, The selective adsorption of rare earth elements by modified coal fly ash-based SBA-15, Chin. J. Chem. Eng. 47 (2021) 155–164, https://doi.org/10.1016/j.cjche.2021.07.033.[17] Z. Fang, H. Suhua, l Xu, F. Jian, L. Qi, W. Zhiwei, L. Chuanchang, X. Yuanlai, Adsorption kinetics and thermodynamics of rare earth on montmorillonite modified by sulfuric acid, Colloids Surf. A Physicochem. Eng. Asp. 627 (2021), 127063, https://doi.org/10.1016/j.colsurfa.2021.127063.[18] B. Ji, W. Zhang, Adsorption of cerium (III) by zeolites synthesized from kaolinite after rare earth elements (REEs) recovery, Chemosphere 303 (2022), 134941, https://doi.org/10.1016/j.chemosphere.2022.134941.[19] T. Kegl, A. Kosak, A. Lobnik, Z. Novak, A.K.C. Kralj, I. Ban, Adsorption of rare earth metals from wastewater by nanomaterials: a review, J. Hazard. Mater. 386 (2020), 121632, https://doi.org/10.1016/j.jhazmat.2019.121632.[20] J. Xiao, B. Li, R. Qiang, H. Qiu, J. Chen, Highly selective adsorption of rare earth elements by honeycomb-shaped covalent organic frameworks synthesized in deep eutectic solvents, Environ. Res. 214 (2022), 113977, https://doi.org/10.1016/j. envres.2022.113977.[21] J. Starý, J. Jirasek, F. Pticen, J. Zahradník, M. Sivek, Review of production, reserves, and processing of clays (including bentonite) in the Czech Republic, Appl. Clay Sci. 205 (2021), 106049, https://doi.org/10.1016/j.clay.2021.106049.[22] Y. Li, J. Liu, Y. Wang, X. Tang, J. Xu, X. Liu, Contribution of components in natural soil to Cd and Pb competitive adsorption: Semi-quantitative to quantitative analysis, J. Hazard. Mater. 441 (2023), 129883, https://doi.org/10.1016/j. jhazmat.2022.129883.[23] P.H. Chang, J. Guo, J. Li, Z. Li, X. Li, Seizing forbidden drug ranitidine by illite and the adsorption mechanism study, Colloids Surf. A: Physicochem. Eng. Asp. 639 (2022), 128395, https://doi.org/10.1016/j.colsurfa.2022.128395.[24] D.B. França, L.S. Oliveira, F.G. Nunes Filho, E.C. Silva Filho, J.A. Osajima, M. Jaber, M.G. Fonseca, The versatility of montmorillonite in water remediation using adsorption: Current studies and challenges in drug removal, J. Environ. Chem. Eng. 10 (2022), 107341, https://doi.org/10.1016/j.jece.2022.107341.[25] C. Cristiani, E.M. Iannicelli-Zubiani, M. Bellotto, Gi. Dotelli, P.G. Stampino, S. Latorrata, G. Ramis, E. Finocchio Capture Mechanism of La and Cu Ions in Mixed Solutions by Clay and Organoclay. Industrial Engineering and Chemical Research, 60 (2021) 6803− 6813. Doi:10.1021/acs.iecr.0c05333.[26] A. Alshameri, H. He, C. Xin, J. Zhu, W. Xinghu, R. Zhu, H. Wang, Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: Adsorption operative parameters, Hydrometallurgy 185 (2019) 149–161, https://doi.org/10.1016/j.hydromet.2019.02.016.[27] P.R. Souza, G.L. Dotto, N.P.G. Salau, Detailed numerical solution of pore volume and surface diffusion model in adsorption systems, Chem. Eng. Res. Des. 122 (2017) 298–307, https://doi.org/10.1016/j.cherd.2017.04.021.[28] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F.J. Rodriguez-Reinoso, K. S. Rouquerol, W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069.[29] E.C. NFGM Cimirro, M.R. Lima, P.S. Cunha, A. Thue, G.S. Grimm, N. dos Reis, M. R. Rabiee, F. Saeb, S. Keivanimehr, Habibzadeh. Removal of diphenols using pine biochar, Kinet., Equilib., Thermodyn., Mech. uptake. J. Mol. Liq. 364 (2022), 119979, https://doi.org/10.1016/j.molliq.2022.119979.[30] P.S. Thue, E.C. Lima, J.M. Sieliechi, C. Saucier, S.L.P. Dias, J.C.P. Vaghetti, F. S. Rodembusch, F.A. Pavan, Effects of first–row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass, J. Colloid Interface Sci. 486 (2017) 163–175, https://doi.org/ 10.1016/j.jcis.2016.09.0707.[31] A.J.B. Leite, C. Saucier, E.C. Lima, G.S. dos Reis, C.S. Umpierres, B.L. Mello, M. Shirmardi, S.L.P. Dias, C.H. Sampaio, Activated carbons from avocado seed: Optimization and application for removal of several emerging organic compounds, Environ. Sci. Pollut. Res. 25 (2018) 7647–7661, https://doi.org/10.1007/s11356- 017-1105-9.[32] E.C. Lima, M.H. Dehghani, A. Guleria, F. Sher, R.R. Karri, G.L. Dotto, H.N. Tran, CHAPTER 3 - Adsorption: Fundamental aspects and applications of adsorption for effluent treatment, in: Hadi Dehghani, M., Karri, R., Lima, E. (Eds.), Green Technologies for the Defluoridation of Water. Elsevier, 2021, 41–88. Doi:10.1016/ B978–0-323–85768-0.00004-X.[33] E.C. Lima, F. Sher, A. Guleria, M.R. Saeb, I. Anastopoulos, H.N. Tran, A. HosseiniBandegharaei, Is one performing the treatment data of adsorption kinetics correctly, J. Environ. Chem. Eng. 9 (2021), 104813, https://doi.org/10.1016/j. jece.2020.104813.[34] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraj´ an, I. Anastopoulos. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.[35] M. Guy, M. Mathieu, I.P. Anastopoulos, M.G. Martínez, F. Rousseau, G.L. Dotto, H. P. de Oliveira, E.C. Lima, M. Thyrel, S.H. Larsson, G.S. dos Reis, Process parameters optimization, characterization, and application of KOH-activated Norway spruce bark graphitic biochars for efficient azo dye adsorption, Molecules 27 (2022) 456, https://doi.org/10.3390/molecules27020456.[36] M. Gonzalez-Hourcade, G.S. dos Reis, A. Grimm, V.M. Dinh, E.C. Lima, S. H. Larsson, F.G. Gentili, Microalgae biomass as a sustainable precursor to produce nitrogen-doped biochar for efficient removal of emerging pollutants from aqueous media, J. Clean. Prod. 348 (2022), 131280, https://doi.org/10.1016/j. jclepro.2022.131280.[37] G.S. dos Reis, M. Guy, M. Mathieu, M. Jebrane, E.C. Lima, M. Thyrel, G.L. Dotto, S. H. Larsson, A comparative study of chemical treatment by MgCl2, ZnSO4, ZnCl2, and KOH on physicochemical properties and acetaminophen adsorption performance of biobased porous materials from tree bark residues, Colloids Surf. A Physicochem. Eng. Asp. (2022) 642, https://doi.org/10.1016/j. colsurfa.2022.128626.[38] E.H.M. Cavalcante, I.C.M. Candido, H.P. de Oliveira, K.B. Silveira, T. Victor de Souza Alvares, E.C. Lima, M. Thyrel, S.H. Larsson, G. Simoes Dos Reis, 3- Aminopropyl-triethoxysilane-functionalized tannin-rich grape biomass for the adsorption of methyl orange dye: synthesis, characterization, and the adsorption mechanism, ACS Omega 7 (2022) 18997–19009, https://doi.org/10.1021/ acsomega.2c02101.[39] Z. Xu, J. Cai, B.-C. Pan, Mathematically modeling fixed-bed adsorption in aqueous systems, J. Zhejiang Univ. Sci. A 14 (2013) 155–176, https://doi.org/10.1631/ jzus.A1300029.[40] P.S. Thue, A.C. Sophia, E.C. Lima, A.G.N. Wamba, W.S. de Alencar, G.S. dos Reis, F. S. Rodembusch, S.L.P. Dias, Synthesis and characterization of a novel organicinorganic hybrid clay adsorbent for the removal of acid red 1 and acid green 25 from aqueous solutions, J. Clean. Prod. 171 (2018) 30–44, https://doi.org/ 10.1016/j.jclepro.2017.09.278.[41] M.E. Mahmoud, G.M. Nabil, S.M.T. Elweshahy, Novel NTiO2-chitosan@NZrO2- chitosan nanocomposite for effective adsorptive uptake of trivalent gadolinium and samarium ions from water, Powder Technol. 378 (2021) 246–254.[42] M. Naghizadeh, M.A. Tahera, A.-M. Tamaddon, S. Borandeh, S.S. Abolmaali, Microextraction of Gadolinium MRI contrast agent using core-shell Fe3O4@SiO2 nanoparticles: optimization of adsorption conditions and in-vitro study, Environ. Nanotechnol. Monit. Manag. 12 (2019), 100250.[43] B. Xiao, Z. Qingli, Z. Chenyang, L. Jianchu, L. Ke, F. Halliang, L. Yuqin, N. Zihan, L. Yanwen, J. Yuxin, Glycine functionalized activated carbon derived from navel orange peel for enhancement recovery of Gd(III, ), J. Rare Earths (2021) 1794–1802.[44] J. Cui, Q. Wang, J. Gao, Y. Guo, F. Cheng, The selective adsorption of rare earth elements by modified coal fly ash based SBA-15, Chin. J. Chem. Eng. 47 (2022) 155–164.[45] E. Liu, X. Lin, D. Zhang, W. Xu, J. Shi, Y. Hong, Ionic imprinted CNTs-chitosan hybrid sponge with 3D network structure for selective and effective adsorption of Gd(III), Separ. Purif. Technol. 269 (2021), 118792.[46] W. Chen, L. Wang, M. Zhuo, Y. Liu, Y. Wang, Y. Li, Facile and highly efficient removal of trace Gd(III) by adsorption of colloidal graphene oxide suspensions sealed in dialysis bag, J. Hazard. Mater. 279 (2014) 546–553.[47] W. Yin, L. Liu, S. Tang, H. Zhang, X. Pan, Facile synthesis of triazole and carboxylfunctionalized cellulose-based adsorbent via click chemistry strategy for efficient Gd(III) removal, Cellulose 26 (2019) 7107–7123.[48] E.L. Liu, X. Lin, D. Zhang, W.B. Xu, J.Y. Shi, Y.Z. Hong, Preparation of an ion imprinted chitosan-based porous film with an interpenetrating network structure for efficient selective adsorption of Gd(III), N. J. Chem. 45 (2021) 725–734.[49] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, Potential of Araucaria angustifolia bark as adsorbent to remove gentian violet dye from aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703, https://doi.org/ 10.2166/wst.2018.448.[50] J. Ifthikar, I.I. Shahib, L. Sellaoui, A. Jawad, M. Zhao, Z. Chen, Z. Chen, pH tunable anionic and cationic heavy metal reduction coupled adsorption by thiol crosslinked composite: Physicochemical interpretations and fixed-bed column mathematical model study, 126041, Chem. Eng. J. 401 (2020), https://doi.org/ 10.1016/j.cej.2020.126041.[51] Y.L. de, O. Salomon, ´ J. Georgin, M.S. D.S.P.Franco, P. Netto, Grassi, D.G.A. Piccilli, M.L.S. Oliveira, G.L. Dotto, Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations, Adv. Powder Technol. 31 (2020) 2843–2852, https://doi.org/10.1016/j.apt.2020.05.004.[52] P.T. Hernandes, D.S.P. Franco, J. Georgin, N.P.G. Salau, G.L. Dotto, Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium, J. Environ. Chem. Eng. 10 (2022), 107408, https://doi.org/ 10.1016/j.jece.2022.107408.91311GadoliniumNatural claySelectivityKineticsThermodynamicsAdsorptionPublicationORIGINALSelective adsorption of gadolinium from real leachate using a natural bentonite clay.pdfSelective adsorption of gadolinium from real leachate using a natural bentonite clay.pdfArtículoapplication/pdf3039923https://repositorio.cuc.edu.co/bitstreams/b49f2d26-e44b-4e5f-bd85-5b62dd6bd22f/download1e51156634f7d7cf11183eb529c7237fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/9bd3391f-58f3-4ca6-9f0c-158fade1273c/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTSelective adsorption of gadolinium from real leachate using a natural bentonite clay.pdf.txtSelective adsorption of gadolinium from real leachate using a natural bentonite clay.pdf.txtExtracted texttext/plain49408https://repositorio.cuc.edu.co/bitstreams/3ce3c212-cf70-4d9b-af68-e7c05a67206b/download0616fd0b3448951914b42ef47e8ef873MD53THUMBNAILSelective adsorption of gadolinium from real leachate using a natural bentonite clay.pdf.jpgSelective adsorption of gadolinium from real leachate using a natural bentonite clay.pdf.jpgGenerated Thumbnailimage/jpeg14729https://repositorio.cuc.edu.co/bitstreams/de8a2654-36ed-44c9-b526-7196dee6f20f/downloadc2b4ecd1fe1b2658eb3213eff87d5f39MD5411323/10472oai:repositorio.cuc.edu.co:11323/104722024-09-17 14:17:57.582https://creativecommons.org/licenses/by-nc-nd/4.0/© 2023 Elsevier Ltd. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |