Spiral-Based model for software architecture in bio-image analysis: A case study in RSV cell infection

The advancement in biological and medical image acquisitions has allowed the development of numerous investigations in different fields supported by image analysis, from cell to physiological level. The complexity in the treatment of data, generated by image analysis, requires a structured methodolo...

Full description

Autores:
Gamarra, Margarita
Zurek, Eduardo
Nieto Bernal, Wilson
Jimeno, Miguel
Sierra, Deibys
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7816
Acceso en línea:
https://hdl.handle.net/11323/7816
https://doi.org/10.1007/978-3-030-47679-3_3
https://repositorio.cuc.edu.co/
Palabra clave:
Spiral methodology
Bio-image informatics
Cell image processing
Respiratory Syncytial Virus
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_27ae0dafab868a2ddce3fbddcc380491
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7816
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Spiral-Based model for software architecture in bio-image analysis: A case study in RSV cell infection
title Spiral-Based model for software architecture in bio-image analysis: A case study in RSV cell infection
spellingShingle Spiral-Based model for software architecture in bio-image analysis: A case study in RSV cell infection
Spiral methodology
Bio-image informatics
Cell image processing
Respiratory Syncytial Virus
title_short Spiral-Based model for software architecture in bio-image analysis: A case study in RSV cell infection
title_full Spiral-Based model for software architecture in bio-image analysis: A case study in RSV cell infection
title_fullStr Spiral-Based model for software architecture in bio-image analysis: A case study in RSV cell infection
title_full_unstemmed Spiral-Based model for software architecture in bio-image analysis: A case study in RSV cell infection
title_sort Spiral-Based model for software architecture in bio-image analysis: A case study in RSV cell infection
dc.creator.fl_str_mv Gamarra, Margarita
Zurek, Eduardo
Nieto Bernal, Wilson
Jimeno, Miguel
Sierra, Deibys
dc.contributor.author.spa.fl_str_mv Gamarra, Margarita
Zurek, Eduardo
Nieto Bernal, Wilson
Jimeno, Miguel
Sierra, Deibys
dc.subject.spa.fl_str_mv Spiral methodology
Bio-image informatics
Cell image processing
Respiratory Syncytial Virus
topic Spiral methodology
Bio-image informatics
Cell image processing
Respiratory Syncytial Virus
description The advancement in biological and medical image acquisitions has allowed the development of numerous investigations in different fields supported by image analysis, from cell to physiological level. The complexity in the treatment of data, generated by image analysis, requires a structured methodology for software development. In this paper we proposed a framework to develop a software solution with a Service-Oriented Architecture (SOA) applied to the analysis of biological images. The framework is completed with a novel image analysis methodology that would help researchers to achieve better results in their image analysis projects. We evaluate our proposal in a scientific project related to cell image analysis.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-02-02T22:13:24Z
dc.date.available.none.fl_str_mv 2021-02-02T22:13:24Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7816
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-3-030-47679-3_3
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7816
https://doi.org/10.1007/978-3-030-47679-3_3
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Peng, H.: Bioimage informatics: a new area of engineering biology. Bioinformatics 24, 1827–1836 (2008).
3. Gamarra, M., Zurek, E., Nieto, W., Jimeno, M., Sierra, D.: A service-oriented architecture for bioinformatics: an application in cell image analysis. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 569, pp. 724–734. Springer, Cham (2017).
4. Zorrilla, M., García-Saiz, D.: A service oriented architecture to provide data mining services for non-expert data miners. Decis. Support Syst. 55, 399–411 (2013).
5. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
6. Abramoff, M.D., Magalhães, P.J., Ram, S.J.: Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
7. Yoo, T.S., Ackerman, M.J., Lorensen, W.E., Schroeder, W., Chalana, V., Aylward, S., et al.: Engineering and algorithm design for an image processing API: a technical report on ITK–the Insight Toolkit. Stud. Health Technol. Inform. 85, 586–592 (2002)
8. Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., et al.: CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).
9. Pelet, S., Dechant, R., Lee, S.S., van Drogen, F., Peter, M.: An integrated image analysis platform to quantify signal transduction in single cells. Integr. Biol. (Camb). 4, 1274–1282 (2012).
10. Kvilekval, K., Fedorov, D., Obara, B., Singh, A., Manjunath, B.S.: Bisque: a platform for bioimage analysis and management. Bioinformatics 26, 544–552 (2010).
11. Ahmed, Z., Zeeshan, S., Dandekar, T.: Developing sustainable software solutions for bioinformatics by the “Butterfly” paradigm. F1000Research 3, 71 (2014).
12. Sharma, A., Vidyapeeth, J.R.N.R.: Application of AOP methodology in eclipse-AJDT environment for developing bioinformatics software (n.d.).
13. Al-Otaibi, N.M., Noaman, A.Y.: Biological data integration using SOA. Int. J. Comput. Electr. Autom. Control Inf. Eng. 5, 74–79 (2011)
14. Castillo, J.C., Almeida, F., Blanco, V., Ramírez, M.C.: Web services based platform for the cell counting problem. In: Lopes, L., et al. (eds.) Euro-Par 2014. LNCS, vol. 8805, pp. 83–92. Springer, Cham (2014).
15. Tosi, S., Bardia, L., Filgueira, M., Calon, A., Colombelli, J.: LOBSTER: an environment to design bioimage analysis workflows for large and complex fluorescence microscopy data. Bioimage Inform. 36(8), 2634–2635 (2019).
16. Boehm, B.W.: A spiral model of software development and enhancement. Comput. (Long. Beach. Calif.). 21, 61–72 (1988).
17. Moeslund, T.B.: Image Acquisition, pp. 7–24 (2012).
18. Gonzalez, R.C.: Digital Image Processing. Pearson Education, Upper Saddle River (2009)
19. Oliveira, R.B., Papa, J.P., Pereira, A.S., Tavares, J.M.R.S.: Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput. Appl., 1–24 (2016).
20. CMMI® for Development, Version 1.3—CMMI Institute. CMMI Institute (2010)
21. González-Castaño, D.M., Pena, J., Gómez, F., Gago-Arias, A., González-Castaño, F.J., Rodríguez-Silva, D.A., et al.: eIMRT: a web platform for the verification and optimization of radiation treatment plans. J. Appl. Clin. Med. Phys. 10, 2998 (2009)
22. Xiang, X.: Service-oriented architecture for integration of bioinformatic data and applications. University of Notre Dame (2007)
23. Gamarra, M., Zurek, E., Escalante, H.J., Hurtado, L., San-Juan-Vergara, H.: Split and merge watershed: a two-step method for cell segmentation in fluorescence microscopy images. Biomed. Signal Process Control (53) (2019).
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Lecture Notes in Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-030-47679-3_3
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/7816/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/7816/1/Spiral-Based%20model%20for%20software%20architecture%20in%20bio-image%20analysis%20A%20case%20study%20in%20RSV%20cell%20infection.pdf
https://repositorio.cuc.edu.co/bitstream/11323/7816/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/7816/4/Spiral-Based%20model%20for%20software%20architecture%20in%20bio-image%20analysis%20A%20case%20study%20in%20RSV%20cell%20infection.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/7816/5/Spiral-Based%20model%20for%20software%20architecture%20in%20bio-image%20analysis%20A%20case%20study%20in%20RSV%20cell%20infection.pdf.txt
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
3030dea8f4912955c9c01106751d0870
e30e9215131d99561d40d6b0abbe9bad
a6e70e8f30c9356e8ebe9e723afcab27
b381162a83e8279cf280372184471a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400064318537728
spelling Gamarra, Margarita7754112a969e290336bee9412aa2822eZurek, Eduardoee2a3409eb16ffc034b7c98de6e895a7Nieto Bernal, Wilsond8663a500413b6fe34477d35949fd228Jimeno, Miguel450cf88630e82f8ce83cd95bad30c6c4Sierra, Deibys41b7be45eb8d10d439e8ec17fa7ceebc2021-02-02T22:13:24Z2021-02-02T22:13:24Z2020https://hdl.handle.net/11323/7816https://doi.org/10.1007/978-3-030-47679-3_3Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The advancement in biological and medical image acquisitions has allowed the development of numerous investigations in different fields supported by image analysis, from cell to physiological level. The complexity in the treatment of data, generated by image analysis, requires a structured methodology for software development. In this paper we proposed a framework to develop a software solution with a Service-Oriented Architecture (SOA) applied to the analysis of biological images. The framework is completed with a novel image analysis methodology that would help researchers to achieve better results in their image analysis projects. We evaluate our proposal in a scientific project related to cell image analysis.application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lecture Notes in Computer Sciencehttps://link.springer.com/chapter/10.1007/978-3-030-47679-3_3Spiral methodologyBio-image informaticsCell image processingRespiratory Syncytial VirusSpiral-Based model for software architecture in bio-image analysis: A case study in RSV cell infectionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Peng, H.: Bioimage informatics: a new area of engineering biology. Bioinformatics 24, 1827–1836 (2008).3. Gamarra, M., Zurek, E., Nieto, W., Jimeno, M., Sierra, D.: A service-oriented architecture for bioinformatics: an application in cell image analysis. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 569, pp. 724–734. Springer, Cham (2017).4. Zorrilla, M., García-Saiz, D.: A service oriented architecture to provide data mining services for non-expert data miners. Decis. Support Syst. 55, 399–411 (2013).5. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).6. Abramoff, M.D., Magalhães, P.J., Ram, S.J.: Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).7. Yoo, T.S., Ackerman, M.J., Lorensen, W.E., Schroeder, W., Chalana, V., Aylward, S., et al.: Engineering and algorithm design for an image processing API: a technical report on ITK–the Insight Toolkit. Stud. Health Technol. Inform. 85, 586–592 (2002)8. Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., et al.: CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).9. Pelet, S., Dechant, R., Lee, S.S., van Drogen, F., Peter, M.: An integrated image analysis platform to quantify signal transduction in single cells. Integr. Biol. (Camb). 4, 1274–1282 (2012).10. Kvilekval, K., Fedorov, D., Obara, B., Singh, A., Manjunath, B.S.: Bisque: a platform for bioimage analysis and management. Bioinformatics 26, 544–552 (2010).11. Ahmed, Z., Zeeshan, S., Dandekar, T.: Developing sustainable software solutions for bioinformatics by the “Butterfly” paradigm. F1000Research 3, 71 (2014).12. Sharma, A., Vidyapeeth, J.R.N.R.: Application of AOP methodology in eclipse-AJDT environment for developing bioinformatics software (n.d.).13. Al-Otaibi, N.M., Noaman, A.Y.: Biological data integration using SOA. Int. J. Comput. Electr. Autom. Control Inf. Eng. 5, 74–79 (2011)14. Castillo, J.C., Almeida, F., Blanco, V., Ramírez, M.C.: Web services based platform for the cell counting problem. In: Lopes, L., et al. (eds.) Euro-Par 2014. LNCS, vol. 8805, pp. 83–92. Springer, Cham (2014).15. Tosi, S., Bardia, L., Filgueira, M., Calon, A., Colombelli, J.: LOBSTER: an environment to design bioimage analysis workflows for large and complex fluorescence microscopy data. Bioimage Inform. 36(8), 2634–2635 (2019).16. Boehm, B.W.: A spiral model of software development and enhancement. Comput. (Long. Beach. Calif.). 21, 61–72 (1988).17. Moeslund, T.B.: Image Acquisition, pp. 7–24 (2012).18. Gonzalez, R.C.: Digital Image Processing. Pearson Education, Upper Saddle River (2009)19. Oliveira, R.B., Papa, J.P., Pereira, A.S., Tavares, J.M.R.S.: Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput. Appl., 1–24 (2016).20. CMMI® for Development, Version 1.3—CMMI Institute. CMMI Institute (2010)21. González-Castaño, D.M., Pena, J., Gómez, F., Gago-Arias, A., González-Castaño, F.J., Rodríguez-Silva, D.A., et al.: eIMRT: a web platform for the verification and optimization of radiation treatment plans. J. Appl. Clin. Med. Phys. 10, 2998 (2009)22. Xiang, X.: Service-oriented architecture for integration of bioinformatic data and applications. University of Notre Dame (2007)23. Gamarra, M., Zurek, E., Escalante, H.J., Hurtado, L., San-Juan-Vergara, H.: Split and merge watershed: a two-step method for cell segmentation in fluorescence microscopy images. Biomed. Signal Process Control (53) (2019).CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstream/11323/7816/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52open accessORIGINALSpiral-Based model for software architecture in bio-image analysis A case study in RSV cell infection.pdfSpiral-Based model for software architecture in bio-image analysis A case study in RSV cell infection.pdfapplication/pdf207253https://repositorio.cuc.edu.co/bitstream/11323/7816/1/Spiral-Based%20model%20for%20software%20architecture%20in%20bio-image%20analysis%20A%20case%20study%20in%20RSV%20cell%20infection.pdf3030dea8f4912955c9c01106751d0870MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/7816/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILSpiral-Based model for software architecture in bio-image analysis A case study in RSV cell infection.pdf.jpgSpiral-Based model for software architecture in bio-image analysis A case study in RSV cell infection.pdf.jpgimage/jpeg29994https://repositorio.cuc.edu.co/bitstream/11323/7816/4/Spiral-Based%20model%20for%20software%20architecture%20in%20bio-image%20analysis%20A%20case%20study%20in%20RSV%20cell%20infection.pdf.jpga6e70e8f30c9356e8ebe9e723afcab27MD54open accessTEXTSpiral-Based model for software architecture in bio-image analysis A case study in RSV cell infection.pdf.txtSpiral-Based model for software architecture in bio-image analysis A case study in RSV cell infection.pdf.txttext/plain1053https://repositorio.cuc.edu.co/bitstream/11323/7816/5/Spiral-Based%20model%20for%20software%20architecture%20in%20bio-image%20analysis%20A%20case%20study%20in%20RSV%20cell%20infection.pdf.txtb381162a83e8279cf280372184471a33MD55open access11323/7816oai:repositorio.cuc.edu.co:11323/78162023-12-14 12:53:57.286Attribution-NonCommercial-NoDerivatives 4.0 International|||http://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==