Innovation strategies to develop specific professional skills on photovoltaic systems using laboratory experience guides: technologies and sustainability education

The use of new strategies for develop professional skills on photovoltaic systems was designed as result of integrated cooperation between universities and research groups that work in the development of tools to implement an academic program for using solar energy. This paper covers the proposed ou...

Full description

Autores:
Ospino Castro, Adalberto Jose
Silva Ortega, Jorge Ivan
Muñoz Maldonado, Yecid Alfonso
Candelo Becerra, John Edwin
Mejia Taboada, Mario Andres
Valencia Ochoa, Guillermo Eliecer
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/3272
Acceso en línea:
https://hdl.handle.net/11323/3272
https://repositorio.cuc.edu.co/
Palabra clave:
Independent work
Outcomes
Photovoltaic systems
Sustainability
Sustainable energy
Sistemas fotovoltáicos
sostenibilidad
Productos
Trabajo independiente
Energía sustentable
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_2700ae9f179d7298bd779e1a7cbd250a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/3272
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Innovation strategies to develop specific professional skills on photovoltaic systems using laboratory experience guides: technologies and sustainability education
dc.title.translated.spa.fl_str_mv Estrategias innovativas para el desarrollo de habilidades específicas en sistemas fotovoltaicos usando guías de experiencias de laboratorios: tecnologías y educación sustentable
title Innovation strategies to develop specific professional skills on photovoltaic systems using laboratory experience guides: technologies and sustainability education
spellingShingle Innovation strategies to develop specific professional skills on photovoltaic systems using laboratory experience guides: technologies and sustainability education
Independent work
Outcomes
Photovoltaic systems
Sustainability
Sustainable energy
Sistemas fotovoltáicos
sostenibilidad
Productos
Trabajo independiente
Energía sustentable
title_short Innovation strategies to develop specific professional skills on photovoltaic systems using laboratory experience guides: technologies and sustainability education
title_full Innovation strategies to develop specific professional skills on photovoltaic systems using laboratory experience guides: technologies and sustainability education
title_fullStr Innovation strategies to develop specific professional skills on photovoltaic systems using laboratory experience guides: technologies and sustainability education
title_full_unstemmed Innovation strategies to develop specific professional skills on photovoltaic systems using laboratory experience guides: technologies and sustainability education
title_sort Innovation strategies to develop specific professional skills on photovoltaic systems using laboratory experience guides: technologies and sustainability education
dc.creator.fl_str_mv Ospino Castro, Adalberto Jose
Silva Ortega, Jorge Ivan
Muñoz Maldonado, Yecid Alfonso
Candelo Becerra, John Edwin
Mejia Taboada, Mario Andres
Valencia Ochoa, Guillermo Eliecer
dc.contributor.author.spa.fl_str_mv Ospino Castro, Adalberto Jose
Silva Ortega, Jorge Ivan
Muñoz Maldonado, Yecid Alfonso
Candelo Becerra, John Edwin
Mejia Taboada, Mario Andres
Valencia Ochoa, Guillermo Eliecer
dc.subject.spa.fl_str_mv Independent work
Outcomes
Photovoltaic systems
Sustainability
Sustainable energy
Sistemas fotovoltáicos
sostenibilidad
Productos
Trabajo independiente
Energía sustentable
topic Independent work
Outcomes
Photovoltaic systems
Sustainability
Sustainable energy
Sistemas fotovoltáicos
sostenibilidad
Productos
Trabajo independiente
Energía sustentable
description The use of new strategies for develop professional skills on photovoltaic systems was designed as result of integrated cooperation between universities and research groups that work in the development of tools to implement an academic program for using solar energy. This paper covers the proposed outcomes that will be achieved during the application of activities, an introduction to the concepts that are considered, the methodological process that is applied, and activities that promote independent work by the students using experiences guide applying photovoltaic systems. There are used during the teaching process preliminary questions to assess the understanding of the concepts and objectives considered. As a result, students will design a final report to validate the outcomes completion. These strategies search the development of skill through courses, gaining as result a solid experience in research aimed to develop photovoltaic technologies as classroom activities in order to keep a sustainability of the program. This paper presents an example of a practice guide called “Characterization of Photovoltaic Cell with Artificial Lighting and Natural Lighting” in order to present the structure and explain the cognitive process, allowing the assimilation of knowledge. The strategies were designed to stimulate interaction with a real environment, with a focus on validating theories and models focusing on the application of photovoltaic systems including developmental educational model; for this reason, there are promoted new ideas for education in the area of photovoltaic systems considering the implementation of sustainable energy and increasing the scope of engineering education
publishDate 2016
dc.date.issued.none.fl_str_mv 2016-06-15
dc.date.accessioned.none.fl_str_mv 2019-05-09T12:39:16Z
dc.date.available.none.fl_str_mv 2019-05-09T12:39:16Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 07981015
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/3272
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 07981015
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/3272
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Amante, B., Martinez­Martinez, M., Cadenato, A., Gallego, I., & Salan, N. (2011). Applied Scientific Method’ in the Laboratory. International Journal of Engineering Education, 27(3), 559–570. Balbis Morejon, M. (2010). Caracterización Energética y Ahorro de Energía en Instituciones Educativas. Barranquilla: Educosta. Barberá, O., & Valdés, P. (1996). El Trabajo Práctico en la Enseñanza de las Ciencias: Una Revisión. Revista Enseñanza de las ciencias, 365­379. Blanco Solsona, A. (2012). CIPFP Remote Laboratories in Valencia Vicente Blasco Ibáñez. International Symposium on computers in Education (SIIE), 29 ­ 31. Castiblanco, O. L., & Vizcaino, D. F. (2008). La Experiencia de Laboratorio en la Enseñanza de la Física. Revista Educación en Ingeniería, 68 ­ 74. Congreso de Colombia. (2014). Ley 1715 de 2014. Bogotá. Crespo , E. J., & Vizoso, T. A. (2001). Clasificación de las Prácticas de Laboratorio de Física. Pedagogía Universitaria, 2­8. Diantong, L., Weiping, G., & Liping, X. (2010). Exploration and Practice of Specialized Laboratory Construction and Innovative Talents Cultivation. 2nd International Conforence on Education Technology and Computer (ICETC), 244 ­ 247. Edward, N. S. (2015). The role of laboratory work in engineering education: student and staff perceptions. International Journal of Electrical Engineering Education, 11­ 19. Feisel, L. D., & Rosa, A. J. (2005). The Role of the Laboratory in Undergraduate Engineering Education. Journal of Engineering Education, 121 ­ 130. GEE, B., & Clackson, S. G. (1992). The Origen of Practical Work in the English School Science Curriculum. School Science Review, 79­83. Healy, T., Smestad, G. P., & Gonzalez, J. (2013). A Project­Based Interdisciplinary Program in Sustainable Energy. Interdisciplinary Engineering Design Education Conference, 148­152. Hung, I., Choi, A. C., & Chan, J. (2003). An Integrated Problem­Based Learning Model for Engineering Education. An Integrated Problem­Based Learning Model for Engineering Education, 19(5), 734­737. Huntzinger, D. N., Hutchins, M. T., Gierke, J. S., & Sutherland, J. W. (2007). Enabling Sustainable Thinking in Undergraduate Engineering Education. International Journal of Engineering Education, 23(2), 218­230. Korzenowski, A. L., Dall'Angol, M., & Silva, G. (2016). Production engineering in northern Brazil: The teaching skills of course coordinators. Espacios, 37(12). Layton, D. (1990). Student laboratory practice and the history and philosophy of science. The student laboratory and the science curriculum, 37­59. Lock, R. (1988). A history of practical work in schools and universities: structures and strategies still largely unexplored. The Australian Science teachers Journal, 31­39. Mantilla Gonzalez, J. M., Duque Daza, C. A., & Galeano Ureña, C. H. (2008). Distributed generation scheme analysis as an option for colombian electrical system. Rev. Fac. Ing. Univ. Antioquia, 97 ­ 110. Martinez, M., Olmedo, N., Amante, B., Farrerons, O., & Cadenato, A. (2014). Analysis of Assessment Tools of Engineering Degrees. International Journal of Engineering Education, 30(6), 1689–1696. McCowan, J. D. (2002). An Integrated and Comprehensive Approach to Engineering Curricula, Part Two: Techniques. International Journal of Engineering Education, 18(6), 638­643. McCowan, J. D., & Knapper, C. K. (2002). An Integrated and Comprehensive Approach to Engineering Curricula, Part One: Objectives and General Approach. International Journal of Engineering Education, 18(6), 633 ­ 637. McGourty, J., Shuman, L., besterfield­Sacre, M., Atman, C., Miller, R., Olds, B., . . . Wolfe, H. (2002). Preparing for ABET EC 2000: Research­Based Assessment Methods and Processes. International Journal of Engineering Education, 18(2), 157±167. Molina Freitas, F. P. (2015). Educational Inclusive Policy and Formation Teachers. Espacios, 37(1). Moreno Gomez, J. I., Gomez Betancourt, G., & Betancourt Ramirez, J. B. (2016). Board of director in the family business and its impact on socioemotional wealth" . En: Colombia. Espacios, 37(8), 6­11. Osorio Garcia, C. (2014). Application of new monitoring tools that validates academic generic skills assesment in the faculty of engineering at Universidad de la Costa (CUC). Revista Educación en Ingeniería, 1­11. Ponsa, P., Román, J. A., Arnó, E., & Peréz, J. (2015). Professional Skills in International Multidisciplinary Teams. International journal of engineering education, 31(4), 998­1006. Ponza, P., Beatriz, A., Roman, J. A., Oliver, S., Diaz, M., & Vives Josep. (2009). Higher Education Challenges: Introduction of Active Methodologies in Engineering Curricula. International journal of engineering education, 25(4), 799­813. Ruiz , O., & Francisco, J. (2008). Modelos Didácticos para la Enseñanza de las Ciencias Naturales. Revista Latinoamericana de Estudios Educativos, 41­60. Silva de Oliveira, A., & Dirceu , D. (2016). Evaluation of the indicators of the teaching­learning process in postgraduate distance mode. Espacios, 37(12). Speich, J. E., McLeskey, J., Richardson, J., & Gad­El­Hak, M. (2004). The Experiential Engineering Library. International Journal of Engineering Education, 20(6), 1022­1033. Vivas, J. F., & Allada, V. (2006). Enhancing Engineering Education Using Thematic Case­Based Learning. International Journal of Engineering Education, 22(2), 236­246. Zamora Musa, R. (2011). Análisis de requerimiento para la implementación de laboratorios remotos. Barranquilla: Educosta.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Espacios
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/62570885-d160-44bc-a74b-a9f0cbac7864/download
https://repositorio.cuc.edu.co/bitstreams/09b31637-37e3-42a1-87df-ca57080d40e6/download
https://repositorio.cuc.edu.co/bitstreams/a5d9db86-5b98-4e53-b59f-8f90f29e6660/download
https://repositorio.cuc.edu.co/bitstreams/2efd0a51-34e7-4b78-87a5-77f565a8b6af/download
https://repositorio.cuc.edu.co/bitstreams/130213b7-81df-4703-82db-7e98ade12fc9/download
bitstream.checksum.fl_str_mv 45fe6463737b9013aeabe0818e8ed313
934f4ca17e109e0a05eaeaba504d7ce4
8a4605be74aa9ea9d79846c1fba20a33
4254760252994ce86f8eb570771d7bfd
84e148d521b63dd38312769383f22be1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760811558830080
spelling Ospino Castro, Adalberto JoseSilva Ortega, Jorge IvanMuñoz Maldonado, Yecid AlfonsoCandelo Becerra, John EdwinMejia Taboada, Mario AndresValencia Ochoa, Guillermo Eliecer2019-05-09T12:39:16Z2019-05-09T12:39:16Z2016-06-1507981015https://hdl.handle.net/11323/3272Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The use of new strategies for develop professional skills on photovoltaic systems was designed as result of integrated cooperation between universities and research groups that work in the development of tools to implement an academic program for using solar energy. This paper covers the proposed outcomes that will be achieved during the application of activities, an introduction to the concepts that are considered, the methodological process that is applied, and activities that promote independent work by the students using experiences guide applying photovoltaic systems. There are used during the teaching process preliminary questions to assess the understanding of the concepts and objectives considered. As a result, students will design a final report to validate the outcomes completion. These strategies search the development of skill through courses, gaining as result a solid experience in research aimed to develop photovoltaic technologies as classroom activities in order to keep a sustainability of the program. This paper presents an example of a practice guide called “Characterization of Photovoltaic Cell with Artificial Lighting and Natural Lighting” in order to present the structure and explain the cognitive process, allowing the assimilation of knowledge. The strategies were designed to stimulate interaction with a real environment, with a focus on validating theories and models focusing on the application of photovoltaic systems including developmental educational model; for this reason, there are promoted new ideas for education in the area of photovoltaic systems considering the implementation of sustainable energy and increasing the scope of engineering educationEl uso de nuevas estrategias para desarrollar competencias profesionales en el manejo de sistemas fotovoltaicos fue generado como resultado de una cooperación integrada de universidades y grupos de investigación que trabajan en el desarrollo de herramientas para implementar un curso que promueva el uso de energía solar fotovoltaica. Este artículo realiza la descripción desde las competencias a desarrollar durante el desarrollo de las actividades, la introducción a los conceptos considerados, el proceso metodológico aplicado y las actividades que promueven el trabajo independiente por parte de los estudiantes. Las preguntas iniciales buscan identificar conceptos y objetivos de las actividades a desarrollar, como resultado el estudiante desarrollará un reporte final que valide el cumplimiento de los logros obtenidos. Estas estrategias buscan el desarrollo de competencias, permitiendo la obtención de una experiencia inicial en investigación en el área de tecnologías para sistemas fotovoltaicos, generando así una actualización de los contenidos para los siguientes cursos, propiciando el concepto de educación sostenible. Este articulo presenta un ejemplo de una de las guías como estructura para explicar el proceso cognitivo descrito en donde se evidencia como se logra la asimilación del conocimiento por parte del estudiante. Las estrategias fueron diseñadas para estimular la interacción con el medio real y generar un enfoque en la validación de modelos y teorías aplicados a sistemas fotovoltaicos involucrando el modelo desarrollista bajo el cual concibe el desarrollo de la guía. Finalmente, el objeto de las guías busca generar nuevas desde la educación alrededor del tema de sistemas fotovoltaicos, considerando la implementación del concepto de energía sostenible, lo cual incrementa el campo de acción de la educación en las áreas de ingeniería.Ospino Castro, Adalberto Jose-0000-0003-1466-0424-600Silva Ortega, Jorge Ivan-3626f94f-12b2-439a-b1b4-0b981cc876e9-0Muñoz Maldonado, Yecid Alfonso-2dd391fb-1576-44b3-a959-c8ee2220d434-0Candelo Becerra, John Edwin-3016826a-740c-46a8-87b7-f9c358612fcb-0Mejia Taboada, Mario Andres-9d901b41-5768-40d5-a6b4-17b4d466cec7-0Valencia Ochoa, Guillermo Eliecer-badc27cf-8d52-48c7-8cc8-5ffbe0292696-0engEspaciosAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Independent workOutcomesPhotovoltaic systemsSustainabilitySustainable energySistemas fotovoltáicossostenibilidadProductosTrabajo independienteEnergía sustentableInnovation strategies to develop specific professional skills on photovoltaic systems using laboratory experience guides: technologies and sustainability educationEstrategias innovativas para el desarrollo de habilidades específicas en sistemas fotovoltaicos usando guías de experiencias de laboratorios: tecnologías y educación sustentableArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAmante, B., Martinez­Martinez, M., Cadenato, A., Gallego, I., & Salan, N. (2011). Applied Scientific Method’ in the Laboratory. International Journal of Engineering Education, 27(3), 559–570. Balbis Morejon, M. (2010). Caracterización Energética y Ahorro de Energía en Instituciones Educativas. Barranquilla: Educosta. Barberá, O., & Valdés, P. (1996). El Trabajo Práctico en la Enseñanza de las Ciencias: Una Revisión. Revista Enseñanza de las ciencias, 365­379. Blanco Solsona, A. (2012). CIPFP Remote Laboratories in Valencia Vicente Blasco Ibáñez. International Symposium on computers in Education (SIIE), 29 ­ 31. Castiblanco, O. L., & Vizcaino, D. F. (2008). La Experiencia de Laboratorio en la Enseñanza de la Física. Revista Educación en Ingeniería, 68 ­ 74. Congreso de Colombia. (2014). Ley 1715 de 2014. Bogotá. Crespo , E. J., & Vizoso, T. A. (2001). Clasificación de las Prácticas de Laboratorio de Física. Pedagogía Universitaria, 2­8. Diantong, L., Weiping, G., & Liping, X. (2010). Exploration and Practice of Specialized Laboratory Construction and Innovative Talents Cultivation. 2nd International Conforence on Education Technology and Computer (ICETC), 244 ­ 247. Edward, N. S. (2015). The role of laboratory work in engineering education: student and staff perceptions. International Journal of Electrical Engineering Education, 11­ 19. Feisel, L. D., & Rosa, A. J. (2005). The Role of the Laboratory in Undergraduate Engineering Education. Journal of Engineering Education, 121 ­ 130. GEE, B., & Clackson, S. G. (1992). The Origen of Practical Work in the English School Science Curriculum. School Science Review, 79­83. Healy, T., Smestad, G. P., & Gonzalez, J. (2013). A Project­Based Interdisciplinary Program in Sustainable Energy. Interdisciplinary Engineering Design Education Conference, 148­152. Hung, I., Choi, A. C., & Chan, J. (2003). An Integrated Problem­Based Learning Model for Engineering Education. An Integrated Problem­Based Learning Model for Engineering Education, 19(5), 734­737. Huntzinger, D. N., Hutchins, M. T., Gierke, J. S., & Sutherland, J. W. (2007). Enabling Sustainable Thinking in Undergraduate Engineering Education. International Journal of Engineering Education, 23(2), 218­230. Korzenowski, A. L., Dall'Angol, M., & Silva, G. (2016). Production engineering in northern Brazil: The teaching skills of course coordinators. Espacios, 37(12). Layton, D. (1990). Student laboratory practice and the history and philosophy of science. The student laboratory and the science curriculum, 37­59. Lock, R. (1988). A history of practical work in schools and universities: structures and strategies still largely unexplored. The Australian Science teachers Journal, 31­39. Mantilla Gonzalez, J. M., Duque Daza, C. A., & Galeano Ureña, C. H. (2008). Distributed generation scheme analysis as an option for colombian electrical system. Rev. Fac. Ing. Univ. Antioquia, 97 ­ 110. Martinez, M., Olmedo, N., Amante, B., Farrerons, O., & Cadenato, A. (2014). Analysis of Assessment Tools of Engineering Degrees. International Journal of Engineering Education, 30(6), 1689–1696. McCowan, J. D. (2002). An Integrated and Comprehensive Approach to Engineering Curricula, Part Two: Techniques. International Journal of Engineering Education, 18(6), 638­643. McCowan, J. D., & Knapper, C. K. (2002). An Integrated and Comprehensive Approach to Engineering Curricula, Part One: Objectives and General Approach. International Journal of Engineering Education, 18(6), 633 ­ 637. McGourty, J., Shuman, L., besterfield­Sacre, M., Atman, C., Miller, R., Olds, B., . . . Wolfe, H. (2002). Preparing for ABET EC 2000: Research­Based Assessment Methods and Processes. International Journal of Engineering Education, 18(2), 157±167. Molina Freitas, F. P. (2015). Educational Inclusive Policy and Formation Teachers. Espacios, 37(1). Moreno Gomez, J. I., Gomez Betancourt, G., & Betancourt Ramirez, J. B. (2016). Board of director in the family business and its impact on socioemotional wealth" . En: Colombia. Espacios, 37(8), 6­11. Osorio Garcia, C. (2014). Application of new monitoring tools that validates academic generic skills assesment in the faculty of engineering at Universidad de la Costa (CUC). Revista Educación en Ingeniería, 1­11. Ponsa, P., Román, J. A., Arnó, E., & Peréz, J. (2015). Professional Skills in International Multidisciplinary Teams. International journal of engineering education, 31(4), 998­1006. Ponza, P., Beatriz, A., Roman, J. A., Oliver, S., Diaz, M., & Vives Josep. (2009). Higher Education Challenges: Introduction of Active Methodologies in Engineering Curricula. International journal of engineering education, 25(4), 799­813. Ruiz , O., & Francisco, J. (2008). Modelos Didácticos para la Enseñanza de las Ciencias Naturales. Revista Latinoamericana de Estudios Educativos, 41­60. Silva de Oliveira, A., & Dirceu , D. (2016). Evaluation of the indicators of the teaching­learning process in postgraduate distance mode. Espacios, 37(12). Speich, J. E., McLeskey, J., Richardson, J., & Gad­El­Hak, M. (2004). The Experiential Engineering Library. International Journal of Engineering Education, 20(6), 1022­1033. Vivas, J. F., & Allada, V. (2006). Enhancing Engineering Education Using Thematic Case­Based Learning. International Journal of Engineering Education, 22(2), 236­246. Zamora Musa, R. (2011). Análisis de requerimiento para la implementación de laboratorios remotos. Barranquilla: Educosta.PublicationORIGINALInnovation Strategies to Develop Specific Professional Skills on Photovoltaic Systems.pdfInnovation Strategies to Develop Specific Professional Skills on Photovoltaic Systems.pdfapplication/pdf729518https://repositorio.cuc.edu.co/bitstreams/62570885-d160-44bc-a74b-a9f0cbac7864/download45fe6463737b9013aeabe0818e8ed313MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/09b31637-37e3-42a1-87df-ca57080d40e6/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/a5d9db86-5b98-4e53-b59f-8f90f29e6660/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILInnovation Strategies to Develop Specific Professional Skills on Photovoltaic Systems.pdf.jpgInnovation Strategies to Develop Specific Professional Skills on Photovoltaic Systems.pdf.jpgimage/jpeg82297https://repositorio.cuc.edu.co/bitstreams/2efd0a51-34e7-4b78-87a5-77f565a8b6af/download4254760252994ce86f8eb570771d7bfdMD55TEXTInnovation Strategies to Develop Specific Professional Skills on Photovoltaic Systems.pdf.txtInnovation Strategies to Develop Specific Professional Skills on Photovoltaic Systems.pdf.txttext/plain36801https://repositorio.cuc.edu.co/bitstreams/130213b7-81df-4703-82db-7e98ade12fc9/download84e148d521b63dd38312769383f22be1MD5611323/3272oai:repositorio.cuc.edu.co:11323/32722024-09-17 12:48:25.626http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=