An integrative dynamic model of Colombian population distribution, based on the maximum entropy principle and matter, energy, and information flow
Human society has increased its capacity to exploit natural resources thanks to new technologies, which are one of the results of information exchange in the knowledge society. Many approaches to understanding the interactions between human society and natural systems have been developed in the last...
- Autores:
-
Cardona-Almeida, Cesar Antonio
Obregón, Nelson
Canales, Fausto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5713
- Acceso en línea:
- https://hdl.handle.net/11323/5713
https://repositorio.cuc.edu.co/
- Palabra clave:
- Integrated modelling
Social-ecological systems
Maximum entropy principle
Energy and information
Human population distribution
- Rights
- openAccess
- License
- http://creativecommons.org/publicdomain/zero/1.0/
id |
RCUC2_265dcaad2a10211bea63a5ad0df0e6fd |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5713 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
An integrative dynamic model of Colombian population distribution, based on the maximum entropy principle and matter, energy, and information flow |
title |
An integrative dynamic model of Colombian population distribution, based on the maximum entropy principle and matter, energy, and information flow |
spellingShingle |
An integrative dynamic model of Colombian population distribution, based on the maximum entropy principle and matter, energy, and information flow Integrated modelling Social-ecological systems Maximum entropy principle Energy and information Human population distribution |
title_short |
An integrative dynamic model of Colombian population distribution, based on the maximum entropy principle and matter, energy, and information flow |
title_full |
An integrative dynamic model of Colombian population distribution, based on the maximum entropy principle and matter, energy, and information flow |
title_fullStr |
An integrative dynamic model of Colombian population distribution, based on the maximum entropy principle and matter, energy, and information flow |
title_full_unstemmed |
An integrative dynamic model of Colombian population distribution, based on the maximum entropy principle and matter, energy, and information flow |
title_sort |
An integrative dynamic model of Colombian population distribution, based on the maximum entropy principle and matter, energy, and information flow |
dc.creator.fl_str_mv |
Cardona-Almeida, Cesar Antonio Obregón, Nelson Canales, Fausto |
dc.contributor.author.spa.fl_str_mv |
Cardona-Almeida, Cesar Antonio Obregón, Nelson Canales, Fausto |
dc.subject.spa.fl_str_mv |
Integrated modelling Social-ecological systems Maximum entropy principle Energy and information Human population distribution |
topic |
Integrated modelling Social-ecological systems Maximum entropy principle Energy and information Human population distribution |
description |
Human society has increased its capacity to exploit natural resources thanks to new technologies, which are one of the results of information exchange in the knowledge society. Many approaches to understanding the interactions between human society and natural systems have been developed in the last decades, and some have included considerations about information. However, none of them has considered information as an active variable or flowing entity in the human–natural/social-ecological system, or, moreover, even as a driving force of their interactions. This paper explores these interactions in socio-ecological systems by briefly introducing a conceptual frame focused on the exchange of information, matter, and energy. The human population is presented as a convergence variable of these three physical entities, and a population distribution model for Colombia is developed based on the maximum entropy principle to integrate the balances of related variables as macro-state restrictions. The selected variables were electrical consumption, water demand, and higher education rates (energy, matter, and information). The final model includes statistical moments for previous population distributions. It is shown how population distribution can be predicted yearly by combining these variables, allowing future dynamics exploration. The implications of this model can contribute to bridging information sciences and sustainability studies. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-29T20:29:07Z |
dc.date.available.none.fl_str_mv |
2019-11-29T20:29:07Z |
dc.date.issued.none.fl_str_mv |
2019-11-29 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1099-4300 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5713 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1099-4300 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5713 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.3390/e21121172 |
dc.relation.references.spa.fl_str_mv |
2. Freeman, C.; Louca, I.F.; Louca, F.; Louçã, F.; Iseg, F.L. As Time Goes by: From the Industrial Revolutions to the Information Revolution; Oxford University Press, Oxford, UK, 2001; ISBN 978-0-19-924107-1. 3. Pahl-Wostl, C.; Craps, M.; Dewulf, A.; Mostert, E.; Tabara, D.; Taillieu, T. Social Learning and Water Resources Management. Ecol. Soc. 2007, 12. doi:10.5751/ES-02037-120205. 4. Liu, B.; Yang, Q.; Xue, C.; Zhong, C.; Smit, B. Molecular simulation of hydrogen diffusion in interpenetrated metal–organic frameworks. Phys. Chem. Chem. Phys. 2008, 10, 3244. 5. Pastor, J. Mathematical Ecology of Populations and Ecosystems; John wiley and Sons: Oxford, UK, 2008. 6. Lischka, S.A.; Teel, T.L.; Johnson, H.E.; Reed, S.E.; Breck, S.; Carlos, A.D.; Crooks, K.R. A conceptual model for the integration of social and ecological information to understand human-wildlife interactions. Biol. Conserv. 2018, 225, 80–87. 7. Dressel, S.; Ericsson, G.; Sandström, C. Mapping social-ecological systems to understand the challenges underlying wildlife management. Environ. Sci. Policy 2018, 84, 105–112. 8. Binder, C.; Hinkel, J.; Bots, P.; Pahl-Wostl, C. Comparison of Frameworks for Analyzing Social-ecological Systems. Ecol. Soc. 2013, 18, 26. 9. Resiliance Alliance Social-Ecological Systems. Available online: http://www.resalliance.org/index.php/index.php?id=1268&sr=1&type=pop (accessed on 20 October 2013). 10. Stockholm Resilience Centre Resilience Dictionary. Available online: http://www.stockholmresilience.org/21/research/what-is-resilience/resilience-dictionary.html (accessed on 20 October 2013). 11. Virapongse, A.; Brooks, S.; Metcalf, E.C.; Zedalis, M.; Gosz, J.; Kliskey, A.; Alessa, L. A social-ecological systems approach for environmental management. J. Environ. Manag. 2016, 178, 83–91. 12. Hoole, A.; Berkes, F. Breaking down fences: Recoupling social–ecological systems for biodiversity conservation in Namibia. Geoforum 2010, 41, 304–317. 13. Mitchell, M.; Lockwood, M.; Moore, S.A.; Clement, S. Scenario analysis for biodiversity conservation: A social–ecological system approach in the Australian Alps. J. Environ. Manag. 2015, 150, 69–80. 14. Bair, L.S.; Yackulic, C.B.; Schmidt, J.C.; Perry, D.M.; Kirchhoff, C.J.; Chief, K.; Colombi, B.J. Incorporating social-ecological considerations into basin-wide responses to climate change in the Colorado River Basin. Curr. Opin. Environ. Sustain. 2019, 37, 14–19. 15. Nguyen, V.M.; Lynch, A.J.; Young, N.; Cowx, I.G.; Beard, T.D.; Taylor, W.W.; Cooke, S.J. To manage inland fisheries is to manage at the social-ecological watershed scale. J. Environ. Manag. 2016, 181, 312–325. 16. Vihervaara, P.; Franzese, P.P.; Buonocore, E. Information, energy, and eco-exergy as indicators of ecosystem complexity. Ecol. Model. 2019, 395, 23–27. 17. Fischer, A.P. Forest landscapes as social-ecological systems and implications for management. Landsc. Urban Plan. 2018, 177, 138–147. 18. Izquierdo, L.R.; Galán, J.M.; Santos, J.I. Modelado de Sistemas Complejos Mediante Simulación Basada en Agentes y Mediante Dinámicas de Sistemas. EMPIRIA Rev. Metodol. Cienc. Soc. 2008, 16, 85–112. 19. Harou, J.; Pulido-Velazquez, M.; Rosenberg, D.; Medellín-Azuara, J.; Lund, J.R.; Howitt, R. Hydroeconomic models: Concepts, design, applications, and future prospects. J. Hydrol. 2009, 375, 627–643. 20. Engelen, G.; White, R.; Uljee, I.; Drazan, P. Using cellular automata for integrated modelling of socioenvironmental systems. Environ. Monit. Assess. 1995, 34, 203–214. 21. White, R.; Engelen, G. Integrating constrained cellular automata models, GIS and decision support tools for urban planning and policy-making. In Decision Support Systems in Urban Planning; Routledge: Abingdon, UK, 1997. 22. Baggio, J.A.; Hillis, V. Managing ecological disturbances: Learning and the structure of social-ecological networks. Environ. Model. Softw. 2018, 109, 32–40. 23. van Delden, H.; Seppelt, R.; White, R.; Jakeman, A.J. A methodology for the design and development of integrated models for policy support. Environ. Model. Softw. 2011, 26, 266–279. 24. Cardona-Almeida, C. Aproximación A Un Marco De Referencia Para el Análisis Integrado De Sistemas Socioecológicos En El Contexto Colombiano, Propuesta De Un Modelo Conceptual Y Desarrollo De Un Modelo Demográfico; Pontificia Universidad Javeriana de Bogotá: Barranquilla, Colombia, 2018. 25. Bellmann, K. Towards to a system analytical and modelling approach for integration of ecological, hydrological, economical and social components of disturbed regions. Landsc. Urban Plan. 2000, 51, 75–87. 26. Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. 27. Robinson, L.; Bawden, D. Mind the Gap: Transitions Between Concepts of Information in Varied Domains. In Theories of Information, Communication and Knowledge; Springer: Dordrecht, The Netherlands, 2014; pp. 121–141. 28. Kraker, J. de Social learning for resilience in social–ecological systems. Curr. Opin. Environ. Sustain. 2017, 28, 100–107. 29. Gil, M.A.; Hein, A.M.; Spiegel, O.; Baskett, M.L.; Sih, A. Social Information Links Individual Behavior to Population and Community Dynamics. Trends Ecol. Evol. 2018, 33, 535–548. 30. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. 31. Wilson, A. Entropy in Urban and Regional Modelling (Routledge Revivals); Routledge: Abingdon, UK, 2013; ISBN 978-1-136-49852-7. 32. Wilson, A. Entropy in Urban and Regional Modelling: Retrospect and Prospect. Geogr. Anal. 2010, 42, 364– 394. 33. Cabral, P.; Augusto, G.; Tewolde, M.; Araya, Y. Entropy in Urban Systems. Entropy 2013, 15, 5223–5236. 34. Bajat, B.; Hengl, T.; Kilibarda, M.; Krunić, N. Mapping population change index in Southern Serbia (1961– 2027) as a function of environmental factors. Comput. Environ. Urban Syst. 2011, 35, 35–44. 35. Zhao, J.; Cao, C.; Li, Q. Human settlement suitability assessment considering climate and DEM. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 3857–3860. 36. Hernando, A.; Hernando, R.; Plastino, A.; Plastino, A.R. The workings of the maximum entropy principle in collective human behaviour. J. R. Soc. Interface 2013, 10, 20120758. 37. Georgescu-Roegen, N. La Ley de la Entropía Y El Proceso Económico; economía y naturaleza; Fundación Argentaria: Madrid, Spain, 1996; ISBN 84-7774-973-6. 38. Carpintero, O. La Bioeconomía De Georgescu-Roegen; Editorial Montesinos: Montesinos, Spain, 2006; ISBN 978-84-96356-63-4. 39. Lotka, A.J. Elements of Physical Biology; Williams & Wilkins Company: Philadelphia, PA, USA, 1925. 40. Lindeman, R.L. The Trophic-Dynamic Aspect of Ecology. Ecology 1942, 23, 399–417. 41. Haberl, H. Energy Flow Analysis. In International Encyclopedia of the Social & Behavioral Sciences (Second Edition); Wright, J.D., Ed.; Elsevier: Oxford, UK, 2015; pp. 626–632, ISBN 978-0-08-097087-5. 42. Haberl, H.; Fischer-Kowalski, M.; Krausmann, F.; Weisz, H.; Winiwarter, V. Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy 2004, 21, 199–213. 43. Suh, S. Theory of materials and energy flow analysis in ecology and economics. Ecol. Model. 2005, 189, 251– 269. 44. Liao, W.; Heijungs, R.; Huppes, G. Thermodynamic analysis of human–environment systems: A review focused on industrial ecology. Ecol. Model. 2012, 228, 76–88. 45. Giampietro, M.; Mayumi, K. A dynamic model of socioeconomic systems based on hierarchy theory and its application to sustainability. Struct. Change Econ. Dyn. 1997, 8, 453–469. 46. Giampietro, M.; Mayumi, K.; Ramos-Martin, J. Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MUSIASEM): An Outline of Rationale and Theory. Working Paper. Autonomous University of Barcelona, Bellaterra, Barcelona, Spain. 2008. 47. Gerber, J.-F.; Scheidel, A. In Search of Substantive Economics: Comparing Today’s Two Major Sociometabolic Approaches to the Economy—MEFA and MuSIASEM. Ecol. Econ. 2018, 144, 186–194. 48. Jorgensen, S.E.; Svirezhev, Y.M. Towards a Thermodynamic Theory for Ecological Systems; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 978-0-08-047174-7. 49. Jorgensen, S.E. Introduction to Systems Ecology; CRC Press: Copenhagen, Denmark, 2012; ISBN 978-1-43985520-1. 50. Jorgensen, S.E.; Tundisi, J.G.; Tundisi, T.M. Handbook of Inland Aquatic Ecosystem Management; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-1-4398-4526-4. 51. Bawden, D.; Robinson, L. “Deep down things”: In what ways is information physical, and why does it matter for information science? Inf. Res. 2013, 18, C03. 52. Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; Wiley: Hoboken, NJ, USA, 1996; ISBN 978-0-471-11442-0. 53. Miller, W.B. Biological information systems: Evolution as cognition-based information management. Prog. Biophys. Mol. Biol. 2018, 134, 1–26. 54. Andrade, E. Los Demonios De Darwin: Semiótica Y Termodinámica De La Evolución Biológica; Editiorial Universidad Nacional de Colombia: Bogotá, Colombia, 2003. 55. Andrade, E. How Deep is the Conflict Between Self-Organization and Natural Selection? Ludus Vitalis 2011, 19, 289–311. 56. Kulahci, I.G.; Quinn, J.L. Dynamic Relationships between Information Transmission and Social Connections. Trends Ecol. Evol. 2019, 34, 545–554. 57. Dolgonosov, B.M.; Naidenov, V.I. An informational framework for human population dynamics. Ecol. Model. 2006, 198, 375–386. 58. Dolgonosov, B. Knowledge production and world population dynamics. Technol. Forecast. Soc. Chang. 2016, 103, 127–141. 59. de Lange, E.; Milner-Gulland, E.J.; Keane, A. Milner-Gulland, E.J.; Keane, A. Improving Environmental Interventions by Understanding Information Flows. Trends Ecol. Evol. 2019, 34, 1034–1047. 60. Siebenhüner, B.; Rodela, R.; Ecker, F. Social learning research in ecological economics: A survey. Environ. Sci. Policy 2016, 55, 116–126. 61. Odum, H.T. Self Organization, Transformity, and Information. Available online: http://scihub.cc/10.1126/science.242.4882.1132 (accessed on 12 Sepember 2016). 62. Jørgensen, S.E.; Ludovisi, A.; Nielsen, S.N. The free energy and information embodied in the amino acid chains of organisms. Ecol. Model. 2010, 221, 2388–2392. 63. Carroll, S. The Big Picture; DUTTON: New York, NY, USA, 2017; ISBN 1-101-98425-2. 64. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656. 65. Zurek, W.H. Complexity, Entropy, and the Physics of Information: The Proceedings of the 1988 Workshop on Complexity, Entropy, and the Physics of Information Held May-June, 1989, in Santa Fe, New Mexico; AddisonWesley: Boston, MA, USA, 1990; ISBN 978-0-201-51506-0. 66. McKenzie, D.H.; Hyatt, D.E.; McDonald, V.J. Ecological Indicators; Springer: Berlin, Germany, 2012; ISBN 978-1-4615-4659-7. 67. Sisaye, S. The Ecology of Management Accounting and Control Systems: Implications for Managing Teams and Work Groups in Complex Organizations; Greenwood Publishing Group: Westport, CT, USA, 2006; ISBN 9781-56720-521-3. 68. Anisimov, V. On the Law of Increasing Complexity of Evolutionary Systems. Available online: http://aicommunity.narod.ru/TheBase/KombEvol.html (accessed on 23 December 2016). 69. Voort, G.F.V. ASM Handbook; ASM International: Cleveland, OH, USA, 2004; ISBN 978-0-87170-706-2. 70. Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. 71. Agmon, N.; Alhassid, Y.; Levine, R.D. An algorithm for finding the distribution of maximal entropy. J. Comput. Phys. 1979, 30, 250–258. 72. Singh, V.P. Entropy Theory and Its Application in Environmental and Water Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-1-118-42860-3. 73. Kapur, J.N.; Kesavan, H.K. Entropy Optimization Principles and Their Applications; Springer: Dordrecht, the Netherlands, 1992. 74. Mohammad-Djafari, A. A Matlab program to calculate the maximum entropy distributions. In Maximum Entropy and Bayesian Methods; Springer: Dordrecht, The Netherlands, 1992; pp. 221–233. 75. SCImago SJR—SCImago Journal & Country Rank. Retrieved July 21, 2015. Available online: http://www.scimagojr.com/aboutus.php (accessed on 28 November 2017). 76. Kapur, J.N. Maximum-Entropy Models in Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1989; ISBN 978-81-224-0216-2. |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Entropy |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/9c79c1e2-3407-4168-bd1f-421869f4b7d7/download https://repositorio.cuc.edu.co/bitstreams/b9b7329b-b0a2-434c-b07e-b455d803406e/download https://repositorio.cuc.edu.co/bitstreams/da656317-7cb0-4e6f-ba49-39bf81308082/download https://repositorio.cuc.edu.co/bitstreams/1abbb473-af0f-4623-8b7d-53e89d64482d/download https://repositorio.cuc.edu.co/bitstreams/5c16c6c5-a827-4bf9-bd62-28f1d51a6fbc/download |
bitstream.checksum.fl_str_mv |
413b2ed628909a7644d2d5e261b7d0f8 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 482d9c7b33e498164602b4e7b1932cbe f5e3cc9daf54680a8d44080bab02dd4a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760842739286016 |
spelling |
Cardona-Almeida, Cesar AntonioObregón, NelsonCanales, Fausto2019-11-29T20:29:07Z2019-11-29T20:29:07Z2019-11-291099-4300https://hdl.handle.net/11323/5713Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Human society has increased its capacity to exploit natural resources thanks to new technologies, which are one of the results of information exchange in the knowledge society. Many approaches to understanding the interactions between human society and natural systems have been developed in the last decades, and some have included considerations about information. However, none of them has considered information as an active variable or flowing entity in the human–natural/social-ecological system, or, moreover, even as a driving force of their interactions. This paper explores these interactions in socio-ecological systems by briefly introducing a conceptual frame focused on the exchange of information, matter, and energy. The human population is presented as a convergence variable of these three physical entities, and a population distribution model for Colombia is developed based on the maximum entropy principle to integrate the balances of related variables as macro-state restrictions. The selected variables were electrical consumption, water demand, and higher education rates (energy, matter, and information). The final model includes statistical moments for previous population distributions. It is shown how population distribution can be predicted yearly by combining these variables, allowing future dynamics exploration. The implications of this model can contribute to bridging information sciences and sustainability studies.Cardona-Almeida, Cesar Antonio-will be generated-orcid-0000-0002-7030-3782-600Obregón, NelsonCanales, Fausto-will be generated-orcid-0000-0002-6858-1855-600engEntropyhttps://doi.org/10.3390/e211211722. Freeman, C.; Louca, I.F.; Louca, F.; Louçã, F.; Iseg, F.L. As Time Goes by: From the Industrial Revolutions to the Information Revolution; Oxford University Press, Oxford, UK, 2001; ISBN 978-0-19-924107-1.3. Pahl-Wostl, C.; Craps, M.; Dewulf, A.; Mostert, E.; Tabara, D.; Taillieu, T. Social Learning and Water Resources Management. Ecol. Soc. 2007, 12. doi:10.5751/ES-02037-120205.4. Liu, B.; Yang, Q.; Xue, C.; Zhong, C.; Smit, B. Molecular simulation of hydrogen diffusion in interpenetrated metal–organic frameworks. Phys. Chem. Chem. Phys. 2008, 10, 3244.5. Pastor, J. Mathematical Ecology of Populations and Ecosystems; John wiley and Sons: Oxford, UK, 2008.6. Lischka, S.A.; Teel, T.L.; Johnson, H.E.; Reed, S.E.; Breck, S.; Carlos, A.D.; Crooks, K.R. A conceptual model for the integration of social and ecological information to understand human-wildlife interactions. Biol. Conserv. 2018, 225, 80–87.7. Dressel, S.; Ericsson, G.; Sandström, C. Mapping social-ecological systems to understand the challenges underlying wildlife management. Environ. Sci. Policy 2018, 84, 105–112.8. Binder, C.; Hinkel, J.; Bots, P.; Pahl-Wostl, C. Comparison of Frameworks for Analyzing Social-ecological Systems. Ecol. Soc. 2013, 18, 26.9. Resiliance Alliance Social-Ecological Systems. Available online: http://www.resalliance.org/index.php/index.php?id=1268&sr=1&type=pop (accessed on 20 October 2013).10. Stockholm Resilience Centre Resilience Dictionary. Available online: http://www.stockholmresilience.org/21/research/what-is-resilience/resilience-dictionary.html (accessed on 20 October 2013).11. Virapongse, A.; Brooks, S.; Metcalf, E.C.; Zedalis, M.; Gosz, J.; Kliskey, A.; Alessa, L. A social-ecological systems approach for environmental management. J. Environ. Manag. 2016, 178, 83–91.12. Hoole, A.; Berkes, F. Breaking down fences: Recoupling social–ecological systems for biodiversity conservation in Namibia. Geoforum 2010, 41, 304–317.13. Mitchell, M.; Lockwood, M.; Moore, S.A.; Clement, S. Scenario analysis for biodiversity conservation: A social–ecological system approach in the Australian Alps. J. Environ. Manag. 2015, 150, 69–80.14. Bair, L.S.; Yackulic, C.B.; Schmidt, J.C.; Perry, D.M.; Kirchhoff, C.J.; Chief, K.; Colombi, B.J. Incorporating social-ecological considerations into basin-wide responses to climate change in the Colorado River Basin. Curr. Opin. Environ. Sustain. 2019, 37, 14–19.15. Nguyen, V.M.; Lynch, A.J.; Young, N.; Cowx, I.G.; Beard, T.D.; Taylor, W.W.; Cooke, S.J. To manage inland fisheries is to manage at the social-ecological watershed scale. J. Environ. Manag. 2016, 181, 312–325.16. Vihervaara, P.; Franzese, P.P.; Buonocore, E. Information, energy, and eco-exergy as indicators of ecosystem complexity. Ecol. Model. 2019, 395, 23–27.17. Fischer, A.P. Forest landscapes as social-ecological systems and implications for management. Landsc. Urban Plan. 2018, 177, 138–147.18. Izquierdo, L.R.; Galán, J.M.; Santos, J.I. Modelado de Sistemas Complejos Mediante Simulación Basada en Agentes y Mediante Dinámicas de Sistemas. EMPIRIA Rev. Metodol. Cienc. Soc. 2008, 16, 85–112.19. Harou, J.; Pulido-Velazquez, M.; Rosenberg, D.; Medellín-Azuara, J.; Lund, J.R.; Howitt, R. Hydroeconomic models: Concepts, design, applications, and future prospects. J. Hydrol. 2009, 375, 627–643.20. Engelen, G.; White, R.; Uljee, I.; Drazan, P. Using cellular automata for integrated modelling of socioenvironmental systems. Environ. Monit. Assess. 1995, 34, 203–214.21. White, R.; Engelen, G. Integrating constrained cellular automata models, GIS and decision support tools for urban planning and policy-making. In Decision Support Systems in Urban Planning; Routledge: Abingdon, UK, 1997.22. Baggio, J.A.; Hillis, V. Managing ecological disturbances: Learning and the structure of social-ecological networks. Environ. Model. Softw. 2018, 109, 32–40.23. van Delden, H.; Seppelt, R.; White, R.; Jakeman, A.J. A methodology for the design and development of integrated models for policy support. Environ. Model. Softw. 2011, 26, 266–279.24. Cardona-Almeida, C. Aproximación A Un Marco De Referencia Para el Análisis Integrado De Sistemas Socioecológicos En El Contexto Colombiano, Propuesta De Un Modelo Conceptual Y Desarrollo De Un Modelo Demográfico; Pontificia Universidad Javeriana de Bogotá: Barranquilla, Colombia, 2018.25. Bellmann, K. Towards to a system analytical and modelling approach for integration of ecological, hydrological, economical and social components of disturbed regions. Landsc. Urban Plan. 2000, 51, 75–87.26. Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422.27. Robinson, L.; Bawden, D. Mind the Gap: Transitions Between Concepts of Information in Varied Domains. In Theories of Information, Communication and Knowledge; Springer: Dordrecht, The Netherlands, 2014; pp. 121–141.28. Kraker, J. de Social learning for resilience in social–ecological systems. Curr. Opin. Environ. Sustain. 2017, 28, 100–107.29. Gil, M.A.; Hein, A.M.; Spiegel, O.; Baskett, M.L.; Sih, A. Social Information Links Individual Behavior to Population and Community Dynamics. Trends Ecol. Evol. 2018, 33, 535–548.30. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259.31. Wilson, A. Entropy in Urban and Regional Modelling (Routledge Revivals); Routledge: Abingdon, UK, 2013; ISBN 978-1-136-49852-7.32. Wilson, A. Entropy in Urban and Regional Modelling: Retrospect and Prospect. Geogr. Anal. 2010, 42, 364– 394.33. Cabral, P.; Augusto, G.; Tewolde, M.; Araya, Y. Entropy in Urban Systems. Entropy 2013, 15, 5223–5236.34. Bajat, B.; Hengl, T.; Kilibarda, M.; Krunić, N. Mapping population change index in Southern Serbia (1961– 2027) as a function of environmental factors. Comput. Environ. Urban Syst. 2011, 35, 35–44.35. Zhao, J.; Cao, C.; Li, Q. Human settlement suitability assessment considering climate and DEM. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 3857–3860.36. Hernando, A.; Hernando, R.; Plastino, A.; Plastino, A.R. The workings of the maximum entropy principle in collective human behaviour. J. R. Soc. Interface 2013, 10, 20120758.37. Georgescu-Roegen, N. La Ley de la Entropía Y El Proceso Económico; economía y naturaleza; Fundación Argentaria: Madrid, Spain, 1996; ISBN 84-7774-973-6.38. Carpintero, O. La Bioeconomía De Georgescu-Roegen; Editorial Montesinos: Montesinos, Spain, 2006; ISBN 978-84-96356-63-4.39. Lotka, A.J. Elements of Physical Biology; Williams & Wilkins Company: Philadelphia, PA, USA, 1925.40. Lindeman, R.L. The Trophic-Dynamic Aspect of Ecology. Ecology 1942, 23, 399–417.41. Haberl, H. Energy Flow Analysis. In International Encyclopedia of the Social & Behavioral Sciences (Second Edition); Wright, J.D., Ed.; Elsevier: Oxford, UK, 2015; pp. 626–632, ISBN 978-0-08-097087-5.42. Haberl, H.; Fischer-Kowalski, M.; Krausmann, F.; Weisz, H.; Winiwarter, V. Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy 2004, 21, 199–213.43. Suh, S. Theory of materials and energy flow analysis in ecology and economics. Ecol. Model. 2005, 189, 251– 269.44. Liao, W.; Heijungs, R.; Huppes, G. Thermodynamic analysis of human–environment systems: A review focused on industrial ecology. Ecol. Model. 2012, 228, 76–88.45. Giampietro, M.; Mayumi, K. A dynamic model of socioeconomic systems based on hierarchy theory and its application to sustainability. Struct. Change Econ. Dyn. 1997, 8, 453–469.46. Giampietro, M.; Mayumi, K.; Ramos-Martin, J. Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MUSIASEM): An Outline of Rationale and Theory. Working Paper. Autonomous University of Barcelona, Bellaterra, Barcelona, Spain. 2008.47. Gerber, J.-F.; Scheidel, A. In Search of Substantive Economics: Comparing Today’s Two Major Sociometabolic Approaches to the Economy—MEFA and MuSIASEM. Ecol. Econ. 2018, 144, 186–194.48. Jorgensen, S.E.; Svirezhev, Y.M. Towards a Thermodynamic Theory for Ecological Systems; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 978-0-08-047174-7.49. Jorgensen, S.E. Introduction to Systems Ecology; CRC Press: Copenhagen, Denmark, 2012; ISBN 978-1-43985520-1.50. Jorgensen, S.E.; Tundisi, J.G.; Tundisi, T.M. Handbook of Inland Aquatic Ecosystem Management; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-1-4398-4526-4.51. Bawden, D.; Robinson, L. “Deep down things”: In what ways is information physical, and why does it matter for information science? Inf. Res. 2013, 18, C03.52. Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; Wiley: Hoboken, NJ, USA, 1996; ISBN 978-0-471-11442-0.53. Miller, W.B. Biological information systems: Evolution as cognition-based information management. Prog. Biophys. Mol. Biol. 2018, 134, 1–26.54. Andrade, E. Los Demonios De Darwin: Semiótica Y Termodinámica De La Evolución Biológica; Editiorial Universidad Nacional de Colombia: Bogotá, Colombia, 2003.55. Andrade, E. How Deep is the Conflict Between Self-Organization and Natural Selection? Ludus Vitalis 2011, 19, 289–311.56. Kulahci, I.G.; Quinn, J.L. Dynamic Relationships between Information Transmission and Social Connections. Trends Ecol. Evol. 2019, 34, 545–554.57. Dolgonosov, B.M.; Naidenov, V.I. An informational framework for human population dynamics. Ecol. Model. 2006, 198, 375–386.58. Dolgonosov, B. Knowledge production and world population dynamics. Technol. Forecast. Soc. Chang. 2016, 103, 127–141.59. de Lange, E.; Milner-Gulland, E.J.; Keane, A. Milner-Gulland, E.J.; Keane, A. Improving Environmental Interventions by Understanding Information Flows. Trends Ecol. Evol. 2019, 34, 1034–1047.60. Siebenhüner, B.; Rodela, R.; Ecker, F. Social learning research in ecological economics: A survey. Environ. Sci. Policy 2016, 55, 116–126.61. Odum, H.T. Self Organization, Transformity, and Information. Available online: http://scihub.cc/10.1126/science.242.4882.1132 (accessed on 12 Sepember 2016).62. Jørgensen, S.E.; Ludovisi, A.; Nielsen, S.N. The free energy and information embodied in the amino acid chains of organisms. Ecol. Model. 2010, 221, 2388–2392.63. Carroll, S. The Big Picture; DUTTON: New York, NY, USA, 2017; ISBN 1-101-98425-2.64. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656.65. Zurek, W.H. Complexity, Entropy, and the Physics of Information: The Proceedings of the 1988 Workshop on Complexity, Entropy, and the Physics of Information Held May-June, 1989, in Santa Fe, New Mexico; AddisonWesley: Boston, MA, USA, 1990; ISBN 978-0-201-51506-0.66. McKenzie, D.H.; Hyatt, D.E.; McDonald, V.J. Ecological Indicators; Springer: Berlin, Germany, 2012; ISBN 978-1-4615-4659-7.67. Sisaye, S. The Ecology of Management Accounting and Control Systems: Implications for Managing Teams and Work Groups in Complex Organizations; Greenwood Publishing Group: Westport, CT, USA, 2006; ISBN 9781-56720-521-3.68. Anisimov, V. On the Law of Increasing Complexity of Evolutionary Systems. Available online: http://aicommunity.narod.ru/TheBase/KombEvol.html (accessed on 23 December 2016).69. Voort, G.F.V. ASM Handbook; ASM International: Cleveland, OH, USA, 2004; ISBN 978-0-87170-706-2.70. Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630.71. Agmon, N.; Alhassid, Y.; Levine, R.D. An algorithm for finding the distribution of maximal entropy. J. Comput. Phys. 1979, 30, 250–258.72. Singh, V.P. Entropy Theory and Its Application in Environmental and Water Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-1-118-42860-3.73. Kapur, J.N.; Kesavan, H.K. Entropy Optimization Principles and Their Applications; Springer: Dordrecht, the Netherlands, 1992.74. Mohammad-Djafari, A. A Matlab program to calculate the maximum entropy distributions. In Maximum Entropy and Bayesian Methods; Springer: Dordrecht, The Netherlands, 1992; pp. 221–233.75. SCImago SJR—SCImago Journal & Country Rank. Retrieved July 21, 2015. Available online: http://www.scimagojr.com/aboutus.php (accessed on 28 November 2017).76. Kapur, J.N. Maximum-Entropy Models in Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1989; ISBN 978-81-224-0216-2.http://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Integrated modellingSocial-ecological systemsMaximum entropy principleEnergy and informationHuman population distributionAn integrative dynamic model of Colombian population distribution, based on the maximum entropy principle and matter, energy, and information flowArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALAn Integrative Dynamic Model of Colombian Population Distribution, Based on the Maximum Entropy Principle and Matter, Energy, and Information Flow .pdfAn Integrative Dynamic Model of Colombian Population Distribution, Based on the Maximum Entropy Principle and Matter, Energy, and Information Flow .pdfapplication/pdf1556351https://repositorio.cuc.edu.co/bitstreams/9c79c1e2-3407-4168-bd1f-421869f4b7d7/download413b2ed628909a7644d2d5e261b7d0f8MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/b9b7329b-b0a2-434c-b07e-b455d803406e/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/da656317-7cb0-4e6f-ba49-39bf81308082/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILAn Integrative Dynamic Model of Colombian Population Distribution, Based on the Maximum Entropy Principle and Matter, Energy, and Information Flow .pdf.jpgAn Integrative Dynamic Model of Colombian Population Distribution, Based on the Maximum Entropy Principle and Matter, Energy, and Information Flow .pdf.jpgimage/jpeg70291https://repositorio.cuc.edu.co/bitstreams/1abbb473-af0f-4623-8b7d-53e89d64482d/download482d9c7b33e498164602b4e7b1932cbeMD55TEXTAn Integrative Dynamic Model of Colombian Population Distribution, Based on the Maximum Entropy Principle and Matter, Energy, and Information Flow .pdf.txtAn Integrative Dynamic Model of Colombian Population Distribution, Based on the Maximum Entropy Principle and Matter, Energy, and Information Flow .pdf.txttext/plain67894https://repositorio.cuc.edu.co/bitstreams/5c16c6c5-a827-4bf9-bd62-28f1d51a6fbc/downloadf5e3cc9daf54680a8d44080bab02dd4aMD5611323/5713oai:repositorio.cuc.edu.co:11323/57132024-09-17 14:09:16.66http://creativecommons.org/publicdomain/zero/1.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |