Photo-assisted degradation of organic pollutant by CuFeS2 powder in RGB-LED reactors: A comprehensive study of band gap values and the relation between wavelength and electron-hole recombination
This work investigated the relation between direct band-gap conversion and excitation wavelength towards catalysis efficiency in red, green, and blue (RGB) light-emitting diode (LED) reactors. An integrating sphere and spectroradiometer system obtained the emission wavelengths of the operating modes...
- Autores:
-
Vieira, Yasmin
DA BOIT MARTINELLO, KATIA
Ribeiro, Tatiane
Silveira, Juliano P.
Salla, Julia S.
O. Silva, Luis F.
Foletto, Edson L.
Dotto, Guilherme L.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9277
- Acceso en línea:
- https://hdl.handle.net/11323/9277
https://doi.org/10.1016/j.apt.2021.11.020
https://repositorio.cuc.edu.co/
- Palabra clave:
- Electron-hole recombination
LED photoreactor
Photocatalytic degradation
Chalcopyrite
Band-gap
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_26475180cc3abb33faf7226fe8d42f27 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9277 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Photo-assisted degradation of organic pollutant by CuFeS2 powder in RGB-LED reactors: A comprehensive study of band gap values and the relation between wavelength and electron-hole recombination |
title |
Photo-assisted degradation of organic pollutant by CuFeS2 powder in RGB-LED reactors: A comprehensive study of band gap values and the relation between wavelength and electron-hole recombination |
spellingShingle |
Photo-assisted degradation of organic pollutant by CuFeS2 powder in RGB-LED reactors: A comprehensive study of band gap values and the relation between wavelength and electron-hole recombination Electron-hole recombination LED photoreactor Photocatalytic degradation Chalcopyrite Band-gap |
title_short |
Photo-assisted degradation of organic pollutant by CuFeS2 powder in RGB-LED reactors: A comprehensive study of band gap values and the relation between wavelength and electron-hole recombination |
title_full |
Photo-assisted degradation of organic pollutant by CuFeS2 powder in RGB-LED reactors: A comprehensive study of band gap values and the relation between wavelength and electron-hole recombination |
title_fullStr |
Photo-assisted degradation of organic pollutant by CuFeS2 powder in RGB-LED reactors: A comprehensive study of band gap values and the relation between wavelength and electron-hole recombination |
title_full_unstemmed |
Photo-assisted degradation of organic pollutant by CuFeS2 powder in RGB-LED reactors: A comprehensive study of band gap values and the relation between wavelength and electron-hole recombination |
title_sort |
Photo-assisted degradation of organic pollutant by CuFeS2 powder in RGB-LED reactors: A comprehensive study of band gap values and the relation between wavelength and electron-hole recombination |
dc.creator.fl_str_mv |
Vieira, Yasmin DA BOIT MARTINELLO, KATIA Ribeiro, Tatiane Silveira, Juliano P. Salla, Julia S. O. Silva, Luis F. Foletto, Edson L. Dotto, Guilherme L. |
dc.contributor.author.spa.fl_str_mv |
Vieira, Yasmin DA BOIT MARTINELLO, KATIA Ribeiro, Tatiane Silveira, Juliano P. Salla, Julia S. O. Silva, Luis F. Foletto, Edson L. Dotto, Guilherme L. |
dc.subject.proposal.eng.fl_str_mv |
Electron-hole recombination LED photoreactor Photocatalytic degradation Chalcopyrite Band-gap |
topic |
Electron-hole recombination LED photoreactor Photocatalytic degradation Chalcopyrite Band-gap |
description |
This work investigated the relation between direct band-gap conversion and excitation wavelength towards catalysis efficiency in red, green, and blue (RGB) light-emitting diode (LED) reactors. An integrating sphere and spectroradiometer system obtained the emission wavelengths of the operating modes spectra of the RGB-LED reactors. The effects of pH, catalyst, and H2O2 dosage were investigated, and the optimal photocatalysis conditions were found to be at pH 3, catalyst loading of 0.25 g L 1, 0.25 mmol L 1 of H2O2(aq) (30% v/v) for an initial model pollutant concentration of 75 mg L 1 and reaction time of 60 min. Under the higher intensity red mode (R1), the highest color removal rate was reached (88.1%), while in the conventional white light mode (WL), the decolorization efficiency remained 64.3%. Furthermore, the R1 mode showed a superior TOC removal than the WL mode, reaching the final removal efficiencies of 91.86% and 61.06%, respectively. Contrary to what has been reported, as the dominant wavelength of the irradiation source decreased, the efficiency also tended to decrease. The electronhole recombination increased as the irradiation mode decreased, and a work function (u) representing this phenomenon was obtained by the deduction of the relation between energy (E) and frequency (f) of the photons involved. Therefore, the insights presented in this work are valuable tools in increasing LED photocatalysis efficiency |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11-27 |
dc.date.accessioned.none.fl_str_mv |
2022-06-21T15:44:07Z |
dc.date.available.none.fl_str_mv |
2022-06-21T15:44:07Z 2023-11-27 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.spa.fl_str_mv |
0921-8831 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9277 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.apt.2021.11.020 |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.apt.2021.11.020 |
dc.identifier.eissn.spa.fl_str_mv |
1568-5527 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0921-8831 10.1016/j.apt.2021.11.020 1568-5527 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9277 https://doi.org/10.1016/j.apt.2021.11.020 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Advanced Powder Technology |
dc.relation.references.spa.fl_str_mv |
[1] K. Kabra, R. Chaudhary, R.L. Sawhney, Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review, Ind. Eng. Chem. Res. 43 (2004) 7683–7696, https://doi.org/10.1021/ie0498551. [2] J.P. Ghosh, C.H. Langford, G. Achari, Characterization of an LED based photoreactor to degrade 4-chlorophenol in an aqueous medium using coumarin (C-343) sensitized TiO2, J. Phys. Chem. A. 112 (41) (2008) 10310– 10314, https://doi.org/10.1021/jp804356w. [3] X. Wang, T.-T. Lim, Solvothermal synthesis of C-N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor, Appl. Catal. B Environ. 100 (1-2) (2010) 355–364, https://doi.org/10.1016/j.apcatb.2010.08.012. [4] R. Dalven, Introduction to Applied Solid State Physics, Springer, US (1990), https://doi.org/10.1007/978-1-4684-1330-4. [5] C. Kittel, Introduction to Solid State Physics, 8th ed.,., 2004. [6] L. Wang, X. Huang, M. Han, L. Lyu, T. Li, Y. Gao, Q. Zeng, C. Hu, Efficient inhibition of photogenerated electron-hole recombination through persulfate activation and dual-pathway degradation of micropollutants over iron molybdate, Appl. Catal. B Environ. 257 (2019) 117904, https://doi.org/ 10.1016/j.apcatb.2019.117904. [7] Y. Wang, X. Sun, T. Xian, G. Liu, H. Yang, Photocatalytic purification of simulated dye wastewater in different pH environments by using BaTiO3/ Bi2WO6 heterojunction photocatalysts, Opt. Mater. (Amst). 113 (2021) 110853, https://doi.org/10.1016/j.optmat.2021.110853. [8] X.Z. Li, F.B. Li, Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol. 35 (11) (2001) 2381–2387, https://doi.org/10.1021/es001752w. [9] F.B. Li, X.Z. Li, Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment, Appl. Catal. A Gen. 228 (1-2) (2002) 15–27, https://doi.org/10.1016/S0926-860X(01)00953-X. [10] M. Zhou, K.e. Xiao, X. Jiang, H. Huang, Z. Lin, J. Yao, Y. Wu, Visible-lightresponsive chalcogenide photocatalyst Ba2ZnSe3: crystal and electronic structure, thermal, optical, and photocatalytic activity, Inorg. Chem. 55 (24) (2016) 12783–12790, https://doi.org/10.1021/acs.inorgchem.6b02072. [11] S. Wu, Z. Wu, X.-L. Wang, X. Wang, R. Zhou, D.-S. Li, T. Wu, Two new layered metal chalcogenide frameworks as photocatalysts for highly efficient and selective dye degradation, Dalt. Trans. 49 (38) (2020) 13276–13281, https:// doi.org/10.1039/D0DT02454F. [12] L. Nie, Q. Zhang, Recent progress in crystalline metal chalcogenides as efficient photocatalysts for organic pollutant degradation, Inorg. Chem. Front. 4 (12) (2017) 1953–1962, https://doi.org/10.1039/C7QI00651A. [13] H. Pei, L.i. Wang, An open framework chalcogenide supertetrahedral cluster as visible-light driven photocatalysts for selective degradation, Cryst. Growth Des. 19 (10) (2019) 5716–5719, https://doi.org/10.1021/acs. cgd.9b0068510.1021/acs.cgd.9b00685.s001. [14] S. Conejeros, P. Alemany, M. Llunell, I.d.P.R. Moreira, Vı´ ctor Sánchez, J. Llanos, Electronic structure and magnetic properties of CuFeS2, Inorg. Chem. 54 (10) (2015) 4840–4849, https://doi.org/10.1021/acs.inorgchem.5b00399. [15] Y.-H. Wang, N. Bao, A. Gupta, Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals, Solid State Sci. 12 (3) (2010) 387–390, https://doi.org/ 10.1016/j.solidstatesciences.2009.11.019. [16] J. da Silveira Salla, S. Silvestri, E.M. de Moraes Flores, E. Luiz Foletto, A Novel application of Cu2FeSnS4 particles prepared by solvothermal route as solar photo-Fenton catalyst, Mater. Lett. 228 (2018) 160–163, https://doi.org/ 10.1016/j.matlet.2018.06.004. [17] S. Tian, J. Zhang, J. Chen, L. Kong, J. Lu, F. Ding, Y.a. Xiong, Fe2(MoO4)3 as an effective photo-fenton-like catalyst for the degradation of anionic and cationic dyes in a wide pH range, Ind. Eng. Chem. Res. 52 (37) (2013) 13333–13341, https://doi.org/10.1021/ie401522a. [18] H. Lee, H.-J. Lee, J. Seo, H.-E. Kim, Y.K. Shin, J.-H. Kim, C. Lee, Activation of oxygen and hydrogen peroxide by copper(II) coupled with hydroxylamine for oxidation of organic contaminants, Environ. Sci. Technol. 50 (15) (2016) 8231– 8238, https://doi.org/10.1021/acs.est.6b02067. [19] P. Ranjan, P. Kumar, T. Chakraborty, M. Sharma, S. Sharma, A study of structure and electronic properties of chalcopyrites semiconductor invoking Density Functional Theory, Mater. Chem. Phys. 241 (2020) 122346, https://doi.org/ 10.1016/j.matchemphys.2019.122346. [20] L. Khayyat, A. Essawy, J. Sorour, A. Soffar, Tartrazine induces structural and functional aberrations and genotoxic effects in vivo, PeerJ. 2017 (2017) 1–14. https://doi.org/10.7717/peerj.3041. [21] M.M. Hashem, Y.M. Abd-Elhakim, K. Abo-EL-Sooud, M.M.E. Eleiwa, Embryotoxic and teratogenic effects of tartrazine in rats, Toxicol. Res. 35 (1) (2019) 75–81, https://doi.org/10.5487/TR.2019.35.1.075. [22] J.F. Borzelleca, J.B. Hallagan, Chronic toxicity/carcinogenicity studies of FD & C Yellow No. 5 (tartrazine) in rats, Food Chem. Toxicol. 26 (1988) 179–187, https://doi.org/10.1016/0278-6915(88)90117-2. [23] J. da Silveira Salla, G.L. Dotto, D. Hotza, R. Landers, K. da Boit Martinello, E.L. Foletto, Enhanced catalytic performance of CuFeS2chalcogenide prepared by microwave-assisted route for photo-Fenton oxidation of emerging pollutant in water, J. Environ Chem. Eng. 8 (5) (2020) 104077, https://doi.org/10.1016/ j.jece:2020.104077. [24] A. Layek, S. Middya, A. Dey, M. Das, J. Datta, C. Banerjee, P.P. Ray, Study of resonance energy transfer between MEH-PPV and CuFeS2 nanoparticle and their application in energy harvesting device, J. Alloys Compd. 613 (2014) 364–369, https://doi.org/10.1016/j.jallcom.2014.06.007. [25] A.V. Chichagov, Information-calculating system on crystal structure data of minerals (MINCRYST), Mater. Sci. Forum. 166–169 (1994) 193–198, https:// doi.org/10.4028/www.scientific.net/msf.166-169.193. [26] Y. Zhang, Z. Cao, Y. Cao, C. Sun, FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces, J. Mol. Struct. 1048 (2013) 434– 440, https://doi.org/10.1016/j.molstruc.2013.06.015. [27] L. Reyes-Bozo, M. Escudey, E. Vyhmeister, P. Higueras, A. Godoy-Faúndez, J.L. Salazar, H. Valdés-González, G. Wolf-Sepúlveda, R. Herrera-Urbina, Adsorption of biosolids and their main components on chalcopyrite, molybdenite and pyrite: Zeta potential and FTIR spectroscopy studies, Miner. Eng. 78 (2015) 128–135, https://doi.org/10.1016/j.mineng.2015.04.021. [28] H. Yu, J. Xu, Y. Hu, H. Zhang, C. Zhang, C. Qiu, X. Wang, B. Liu, L. Wei, J. Li, Synthesis and characterization of CuFeS2 and Se doped CuFeS2 xSex nanoparticles, J. Mater. Sci. Mater. Electron. 30 (13) (2019) 12269–12274, https://doi.org/10.1007/s10854-019-01586-5. [29] P. Rupa Ranjani, P.M. Anjana, R.B. Rakhi, Solvothermal synthesis of CuFeS2 nanoflakes as a promising electrode material for supercapacitors, J. Energy Storage. 33 (2021) 102063, https://doi.org/10.1016/j.est.2020.102063. [30] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/PAC-2014- 1117. [31] J. da Silveira Salla, K. da Boit Martinello, G.L. Dotto, E. García-Díaz, H. Javed, P.J.J. Alvarez, E.L. Foletto, Synthesis of citrate–modified CuFeS2 catalyst with significant effect on the photo–Fenton degradation efficiency of bisphenol a under visible light and near–neutral pH, Colloids Surfaces A Physicochem. Eng. Asp. 595 (2020) 124679, https://doi.org/10.1016/ j.colsurfa.2020.124679. [32] W. Cen, T. Xiong, C. Tang, S. Yuan, F. Dong, Effects of morphology and crystallinity on the photocatalytic activity of (BiO)2CO3 nano/microstructures, Ind. Eng. Chem. Res. 53 (39) (2014) 15002–15011, https://doi.org/10.1021/ ie502670n. [33] W. Li, X. Wang, Z. Wang, Y. Meng, X. Sun, T. Yan, J. You, D. Kong, Relationship between crystalline phases and photocatalytic activities of BiVO4, Mater. Res. Bull. 83 (2016) 259–267, https://doi.org/10.1016/ j.materresbull.2016.06.021. [34] J. Yang, Q. Li, W. Zhu, W. Qu, M. Li, Z. Xu, Z. Yang, H. Liu, H. Li, Recyclable chalcopyrite sorbent for mercury removal from coal combustion flue gas, Fuel. 290 (2021) 120049, https://doi.org/10.1016/j.fuel.2020.120049. [35] A. Ghahremaninezhad, D.G. Dixon, E. Asselin, Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution, Electrochim. Acta. 87 (2013) 97–112, https://doi.org/10.1016/j.electacta.2012.07.119. [36] K.M. Deen, E. Asselin, Differentiation of the non-faradaic and pseudocapacitive electrochemical response of graphite felt/CuFeS2 composite electrodes, Electrochim. Acta. 212 (2016) 979–991, https://doi.org/10.1016/ j.electacta.2016.07.083. [37] I. Nakai, Y. Sugitani, K. Nagashima, Y. Niwa, X-ray photoelectron spectroscopic study of copper minerals, J. Inorg. Nucl. Chem. 40 (5) (1978) 789–791, https:// doi.org/10.1016/0022-1902(78)80152-3. [38] R.P. Hackl, D.B. Dreisinger, E. Peters, J.A. King, Passivation of chalcopyrite during oxidative leaching in sulfate media, Hydrometallurgy. 39 (1-3) (1995) 25–48, https://doi.org/10.1016/0304-386X(95)00023-A. [39] V. Nair, M.J. Muñoz-Batista, M. Fernández-García, R. Luque, J.C. Colmenares, Thermo-photocatalysis: environmental and energy applications, ChemSusChem. 12 (10) (2019) 2098–2116, https://doi.org/10.1002/cssc. v12.1010.1002/cssc.201900175. [40] J.C. Colmenares, R. Luque, Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds, Chem. Soc. Rev. 43 (3) (2014) 765–778, https://doi.org/10.1039/ C3CS60262A. [41] D.A. Giannakoudakis, K. Vikrant, A.P. LaGrow, D. Lisovytskiy, K.-H. Kim, T.J. Bandosz, J. Carlos Colmenares, Scrolled titanate nanosheet composites with reduced graphite oxide for photocatalytic and adsorptive removal of toxic vapors, Chem. Eng. J. 415 (2021) 128907, https://doi.org/10.1016/j. cej.2021.128907. [42] D.A. Giannakoudakis, A. Qayyum, D. Łomot, M.O. Besenhard, D. Lisovytskiy, T.J. Bandosz, J.C. Colmenares, Boosting the photoactivity of grafted titania: ultrasound-driven synthesis of a multi-phase heterogeneous nanoarchitected photocatalyst, Adv. Funct. Mater. 31 (1) (2021) 2007115, https:// doi.org/10.1002/adfm.v31.110.1002/adfm.202007115. [43] E.O. Oseghe, A.E. Ofomaja, Study on light emission diode/carbon modified TiO2 system for tetracycline hydrochloride degradation, J. Photochem. Photobiol. A Chem. 360 (2018) 242–248, https://doi.org/10.1016/j. jphotochem.2018.04.048. [44] J. Peña-Bahamonde, C. Wu, S.K. Fanourakis, S.M. Louie, J. Bao, D.F. Rodrigues, Oxidation state of Mo affects dissolution and visible-light photocatalytic activity of MoO3 nanostructures, J. Catal. 381 (2020) 508–519, https://doi.org/ 10.1016/j.jcat.2019.11.035. [45] E. Yablonovitch, Photonic band-gap structures, J. Opt. Soc. Am. B. 10 (2) (1993) 283, https://doi.org/10.1364/JOSAB.10.000283. [46] S. John, J. Wang, Quantum optics of localized light in a photonic band gap, Phys. Rev. B. 43 (16) (1991) 12772–12789, https://doi.org/10.1103/ PhysRevB.43.12772. [47] R.A. Powell, Photoelectric effect: back to basics, Am. J. Phys. 46 (10) (1978) 1046–1051, https://doi.org/10.1119/1.11493. [48] M. Alonso, E.J. Finn, F.L. Wilson, Fundamental University Physics, Vol. 3: Quantum and Statistical Physics, Phys. Today. 22 (1969) 86–86. https://doi. org/10.1063/1.3035704. [49] C.V. Raman, S. Bhagavantam, Experimental proof of the spin of the photon [3], Nature 129 (3244) (1932) 22–23, https://doi.org/10.1038/129022a0. [50] S. Weinberg, Photons and gravitons in perturbation theory: Derivation of maxwell’s and einstein’s equations, Phys. Rev. 138 (4B) (1965) B988–B1002, https://doi.org/10.1103/PhysRev.138.B988. [51] M. Planck, Ueber das Gesetz der Energieverteilung im Normalspectrum, Ann. Phys. 309 (3) (1901) 553–563, https://doi.org/10.1002/andp.19013090310. [52] P. Kovtun, A. Shukla, Einstein’s equations in matter, Phys. Rev. D. 101 (2020), https://doi.org/10.1103/PhysRevD.101.104051 104051. [53] D. Wong, P. Lee, G. Shenghan, W. Xuezhou, H.Y. Qi, F.S. Kit, The photoelectric effect: Experimental confirmation concerning a widespread misconception in the theory, Eur. J. Phys. 32 (4) (2011) 1059–1064, https://doi.org/10.1088/ 0143-0807/32/4/018. [54] C. Kittel, Introduction to solid state physics, 1 1976. [55] H. Ünlü, A thermodynamic model for determining pressure and temperature effects on the bandgap energies and other properties of some semiconductors, Solid. State. Electron. 35 (9) (1992) 1343–1352, https://doi.org/10.1016/0038- 1101(92)90170-H. [56] H.G. Hecht, The Interpretation of Diffuse Reflectance Spectra, J. Res. Natl. Bur. Stand. Sect. A, Phys. Chem. 80A (1976) 567. https://doi.org/10.6028/ JRES.080A.056. [57] L. Barkat, N. Hamdadou, M. Morsli, A. Khelil, J.C. Bernède, Growth and characterization of CuFeS2 thin films, J. Cryst. Growth. 297 (2) (2006) 426– 431, https://doi.org/10.1016/j.jcrysgro.2006.10.105. [58] M.X. Wang, L.S. Wang, G.H. Yue, X. Wang, P.X. Yan, D.L. Peng, Single crystal of CuFeS2 nanowires synthesized through solventothermal process, Mater. Chem. Phys. 115 (1) (2009) 147–150, https://doi.org/10.1016/ j.matchemphys.2008.11.032. [59] B. Bhattacharyya, A. Pandey, CuFeS2 quantum dots and highly luminescent CuFeS2 based core/shell structures: synthesis, tunability, and photophysics, J. Am. Chem. Soc. 138 (32) (2016) 10207–10213, https://doi.org/ 10.1021/jacs.6b04981. [60] L.V. Kradinova, A.M. Polubotko, V.V. Popov, V.D. Prochukhan, Y.V. Rud, V.E. Skoriukin, Novel zero-gap compounds, magnetics: CuFeS2 and CuFeTe 2, Semicond. Sci. Technol. 8 (8) (1993) 1616–1619, https://doi.org/10.1088/ 0268-1242/8/8/022. [61] A.P. Mikhailovskii, A.M. Polubotko, V.D. Prochukhan, Y.V. Rud, Gapless state in CuFeS2, Phys. Status Solidi. 158 (1) (1990) 229–238, https://doi.org/10.1002/ pssb:2221580122. [62] R.M. Garrels, C.L. Christ, Solutions, Minerals, and Equilibria, Harper & Row, 1965. [63] E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, A. Ballester, Leaching of chalcopyrite with ferric ion. Part I: General aspects, Hydrometallurgy. 93 (3-4) (2008) 81–87, https://doi.org/10.1016/j.hydromet.2008.04.015. [64] A. Jamali, R. Vanraes, P. Hanselaer, T. Van Gerven, A batch LED reactor for the photocatalytic degradation of phenol, Chem. Eng. Process. Process Intensif. 71 (2013) 43–50, https://doi.org/10.1016/j.cep.2013.03.010. [65] C.M. So, M.Y. Cheng, J.C. Yu, P.K. Wong, Degradation of azo dye procion red MX-5B by photocatalytic oxidation, Chemosphere 46 (6) (2002) 905–912, https://doi.org/10.1016/S0045-6535(01)00153-9. [66] T.C. dos Santos, G.J. Zocolo, D.A. Morales, G.d.A. Umbuzeiro, M.V.B. Zanoni, Assessment of the breakdown products of solar/UV induced photolytic degradation of food dye tartrazine, Food Chem. Toxicol. 68 (2014) 307–315, https://doi.org/10.1016/j.fct.2014.03.025. [67] P. Oancea, V. Meltzer, Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution, Chem. Pap. 68 (2014) 105–111, https://doi.org/10.2478/ s11696-013-0426-5. [68] I.P.A.F. Souza, L.H.S. Crespo, L. Spessato, S.A.R. Melo, A.F. Martins, A.L. Cazetta, V.C. Almeida, Optimization of thermal conditions of sol-gel method for synthesis of TiO2using RSM and its influence on photodegradation of tartrazine yellow dye, J. Environ. Chem. Eng. 9 (2) (2021) 104753, https:// doi.org/10.1016/j.jece:2020.104753. [69] G. Nascimento, V. Cavalcanti, R. Santana, D. Sales, J. Rodríguez-Díaz, D. Napoleão, M. Duarte, Degradation of a sunset yellow and tartrazine dye mixture: optimization using statistical design and empirical mathematical modeling, Water. Air. Soil Pollut. 231 (2020) 1–17, https://doi.org/10.1007/ s11270-020-04547-5. [70] M. Rashidi, S.M. Sajjadi, H.Z. Mousavi, Kinetic analysis of azo dye decolorization during their acid–base equilibria: photocatalytic degradation of tartrazine and sunset yellow, React. Kinet. Mech. Catal. 128 (1) (2019) 555– 570, https://doi.org/10.1007/s11144-019-01654-1. [71] J. Leichtweis, S. Silvestri, Y. Vieira, T.A. de Lima Burgo, E.L. Foletto, A novel tin ferrite/polymer composite use in photo-Fenton reactions, Int. J. Environ. Sci. Technol. 18 (6) (2021) 1537–1548, https://doi.org/10.1007/s13762-020- 02944-1. [72] M. Martín-Sómer, C. Pablos, R. van Grieken, J. Marugán, Influence of light distribution on the performance of photocatalytic reactors: LED vs mercury lamps, Appl. Catal. B Environ. 215 (2017) 1–7, https://doi.org/10.1016/j. apcatb.2017.05.048. [73] O.K. Dalrymple, D.H. Yeh, M.A. Trotz, Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis, J. Chem. Technol. Biotechnol. 82 (2) (2007) 121–134, https://doi.org/10.1002/ jctb.v82:210.1002/jctb.1657. [74] D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation processmediated removal of pharmaceuticals from water: a review, J. Environ. Manage. 219 (2018) 189–207, https://doi.org/10.1016/j.jenvman.2018.04.103. [75] Y. Vieira, J. Leichtweis, E.L. Foletto, S. Silvestri, Reactive oxygen speciesinduced heterogeneous photocatalytic degradation of organic pollutant Rhodamine B by copper and zinc aluminate spinels, J. Chem. Technol. Biotechnol. 95 (3) (2020) 791–797, https://doi.org/10.1002/jctb. v95.310.1002/jctb.6267. [76] J.T. Schneider, D.S. Firak, R.R. Ribeiro, P. Peralta-Zamora, Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations, Phys. Chem. Chem. Phys. 22 (27) (2020) 15723–15733, https://doi.org/10.1039/D0CP02411B. [77] A. Thiam, M. Zhou, E. Brillas, I. Sirés, Two-step mineralization of Tartrazine solutions: Study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes, Appl. Catal. B Environ. 150–151 (2014) 116–125, https://doi.org/10.1016/j. apcatb.2013.12.011. [78] C. Ràfols, D. Barceló, Determination of mono- and disulphonated azo dyes by liquid chromatography-armospheric pressure ionization mass spectrometry, in, J. Chromatogr. A, Elsevier (1997) 177–192, https://doi.org/10.1016/S0021- 9673(97)00429-9. [79] M. Holcˇapek, K. Volná, D. Vaneˇrková, Effects of functional groups on the fragmentation of dyes in electrospray and atmospheric pressure chemical ionization mass spectra, Dye. Pigment. 75 (1) (2007) 156–165, https://doi.org/ 10.1016/j.dyepig.2006.05.040. |
dc.relation.citationstartpage.spa.fl_str_mv |
103368 |
dc.relation.citationvolume.spa.fl_str_mv |
33 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0921883121005574?via%3Dihub |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/21c605c6-2002-4524-95db-6917f483d117/download https://repositorio.cuc.edu.co/bitstreams/838c9e22-a09d-4f91-b14a-276ba1d1bcc9/download https://repositorio.cuc.edu.co/bitstreams/0caab878-6551-458f-958b-987ef2c67aaa/download https://repositorio.cuc.edu.co/bitstreams/ffb61bd1-1adb-422e-8861-0ff7b2727788/download |
bitstream.checksum.fl_str_mv |
030c168338c518368c4a694ca8211db4 e30e9215131d99561d40d6b0abbe9bad b70757225a24b065c12ac8b6402e0dfc c371df496b126b6d3428e091aee062f6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166821155438592 |
spelling |
Vieira, YasminDA BOIT MARTINELLO, KATIARibeiro, TatianeSilveira, Juliano P.Salla, Julia S.O. Silva, Luis F.Foletto, Edson L.Dotto, Guilherme L.2022-06-21T15:44:07Z2023-11-272022-06-21T15:44:07Z2021-11-270921-8831https://hdl.handle.net/11323/9277https://doi.org/10.1016/j.apt.2021.11.02010.1016/j.apt.2021.11.0201568-5527Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This work investigated the relation between direct band-gap conversion and excitation wavelength towards catalysis efficiency in red, green, and blue (RGB) light-emitting diode (LED) reactors. An integrating sphere and spectroradiometer system obtained the emission wavelengths of the operating modes spectra of the RGB-LED reactors. The effects of pH, catalyst, and H2O2 dosage were investigated, and the optimal photocatalysis conditions were found to be at pH 3, catalyst loading of 0.25 g L 1, 0.25 mmol L 1 of H2O2(aq) (30% v/v) for an initial model pollutant concentration of 75 mg L 1 and reaction time of 60 min. Under the higher intensity red mode (R1), the highest color removal rate was reached (88.1%), while in the conventional white light mode (WL), the decolorization efficiency remained 64.3%. Furthermore, the R1 mode showed a superior TOC removal than the WL mode, reaching the final removal efficiencies of 91.86% and 61.06%, respectively. Contrary to what has been reported, as the dominant wavelength of the irradiation source decreased, the efficiency also tended to decrease. The electronhole recombination increased as the irradiation mode decreased, and a work function (u) representing this phenomenon was obtained by the deduction of the relation between energy (E) and frequency (f) of the photons involved. Therefore, the insights presented in this work are valuable tools in increasing LED photocatalysis efficiency11 páginasapplication/pdfengElsevierNetherlands2021 The Society of Powder Technology Japan. Published by Elsevier BV and The Society of Powder Technology Japan. All rights reserved.Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfPhoto-assisted degradation of organic pollutant by CuFeS2 powder in RGB-LED reactors: A comprehensive study of band gap values and the relation between wavelength and electron-hole recombinationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S0921883121005574?via%3DihubAdvanced Powder Technology[1] K. Kabra, R. Chaudhary, R.L. Sawhney, Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review, Ind. Eng. Chem. Res. 43 (2004) 7683–7696, https://doi.org/10.1021/ie0498551.[2] J.P. Ghosh, C.H. Langford, G. Achari, Characterization of an LED based photoreactor to degrade 4-chlorophenol in an aqueous medium using coumarin (C-343) sensitized TiO2, J. Phys. Chem. A. 112 (41) (2008) 10310– 10314, https://doi.org/10.1021/jp804356w.[3] X. Wang, T.-T. Lim, Solvothermal synthesis of C-N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor, Appl. Catal. B Environ. 100 (1-2) (2010) 355–364, https://doi.org/10.1016/j.apcatb.2010.08.012.[4] R. Dalven, Introduction to Applied Solid State Physics, Springer, US (1990), https://doi.org/10.1007/978-1-4684-1330-4.[5] C. Kittel, Introduction to Solid State Physics, 8th ed.,., 2004.[6] L. Wang, X. Huang, M. Han, L. Lyu, T. Li, Y. Gao, Q. Zeng, C. Hu, Efficient inhibition of photogenerated electron-hole recombination through persulfate activation and dual-pathway degradation of micropollutants over iron molybdate, Appl. Catal. B Environ. 257 (2019) 117904, https://doi.org/ 10.1016/j.apcatb.2019.117904.[7] Y. Wang, X. Sun, T. Xian, G. Liu, H. Yang, Photocatalytic purification of simulated dye wastewater in different pH environments by using BaTiO3/ Bi2WO6 heterojunction photocatalysts, Opt. Mater. (Amst). 113 (2021) 110853, https://doi.org/10.1016/j.optmat.2021.110853.[8] X.Z. Li, F.B. Li, Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol. 35 (11) (2001) 2381–2387, https://doi.org/10.1021/es001752w.[9] F.B. Li, X.Z. Li, Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment, Appl. Catal. A Gen. 228 (1-2) (2002) 15–27, https://doi.org/10.1016/S0926-860X(01)00953-X.[10] M. Zhou, K.e. Xiao, X. Jiang, H. Huang, Z. Lin, J. Yao, Y. Wu, Visible-lightresponsive chalcogenide photocatalyst Ba2ZnSe3: crystal and electronic structure, thermal, optical, and photocatalytic activity, Inorg. Chem. 55 (24) (2016) 12783–12790, https://doi.org/10.1021/acs.inorgchem.6b02072.[11] S. Wu, Z. Wu, X.-L. Wang, X. Wang, R. Zhou, D.-S. Li, T. Wu, Two new layered metal chalcogenide frameworks as photocatalysts for highly efficient and selective dye degradation, Dalt. Trans. 49 (38) (2020) 13276–13281, https:// doi.org/10.1039/D0DT02454F.[12] L. Nie, Q. Zhang, Recent progress in crystalline metal chalcogenides as efficient photocatalysts for organic pollutant degradation, Inorg. Chem. Front. 4 (12) (2017) 1953–1962, https://doi.org/10.1039/C7QI00651A.[13] H. Pei, L.i. Wang, An open framework chalcogenide supertetrahedral cluster as visible-light driven photocatalysts for selective degradation, Cryst. Growth Des. 19 (10) (2019) 5716–5719, https://doi.org/10.1021/acs. cgd.9b0068510.1021/acs.cgd.9b00685.s001.[14] S. Conejeros, P. Alemany, M. Llunell, I.d.P.R. Moreira, Vı´ ctor Sánchez, J. Llanos, Electronic structure and magnetic properties of CuFeS2, Inorg. Chem. 54 (10) (2015) 4840–4849, https://doi.org/10.1021/acs.inorgchem.5b00399.[15] Y.-H. Wang, N. Bao, A. Gupta, Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals, Solid State Sci. 12 (3) (2010) 387–390, https://doi.org/ 10.1016/j.solidstatesciences.2009.11.019.[16] J. da Silveira Salla, S. Silvestri, E.M. de Moraes Flores, E. Luiz Foletto, A Novel application of Cu2FeSnS4 particles prepared by solvothermal route as solar photo-Fenton catalyst, Mater. Lett. 228 (2018) 160–163, https://doi.org/ 10.1016/j.matlet.2018.06.004.[17] S. Tian, J. Zhang, J. Chen, L. Kong, J. Lu, F. Ding, Y.a. Xiong, Fe2(MoO4)3 as an effective photo-fenton-like catalyst for the degradation of anionic and cationic dyes in a wide pH range, Ind. Eng. Chem. Res. 52 (37) (2013) 13333–13341, https://doi.org/10.1021/ie401522a.[18] H. Lee, H.-J. Lee, J. Seo, H.-E. Kim, Y.K. Shin, J.-H. Kim, C. Lee, Activation of oxygen and hydrogen peroxide by copper(II) coupled with hydroxylamine for oxidation of organic contaminants, Environ. Sci. Technol. 50 (15) (2016) 8231– 8238, https://doi.org/10.1021/acs.est.6b02067.[19] P. Ranjan, P. Kumar, T. Chakraborty, M. Sharma, S. Sharma, A study of structure and electronic properties of chalcopyrites semiconductor invoking Density Functional Theory, Mater. Chem. Phys. 241 (2020) 122346, https://doi.org/ 10.1016/j.matchemphys.2019.122346.[20] L. Khayyat, A. Essawy, J. Sorour, A. Soffar, Tartrazine induces structural and functional aberrations and genotoxic effects in vivo, PeerJ. 2017 (2017) 1–14. https://doi.org/10.7717/peerj.3041.[21] M.M. Hashem, Y.M. Abd-Elhakim, K. Abo-EL-Sooud, M.M.E. Eleiwa, Embryotoxic and teratogenic effects of tartrazine in rats, Toxicol. Res. 35 (1) (2019) 75–81, https://doi.org/10.5487/TR.2019.35.1.075.[22] J.F. Borzelleca, J.B. Hallagan, Chronic toxicity/carcinogenicity studies of FD & C Yellow No. 5 (tartrazine) in rats, Food Chem. Toxicol. 26 (1988) 179–187, https://doi.org/10.1016/0278-6915(88)90117-2.[23] J. da Silveira Salla, G.L. Dotto, D. Hotza, R. Landers, K. da Boit Martinello, E.L. Foletto, Enhanced catalytic performance of CuFeS2chalcogenide prepared by microwave-assisted route for photo-Fenton oxidation of emerging pollutant in water, J. Environ Chem. Eng. 8 (5) (2020) 104077, https://doi.org/10.1016/ j.jece:2020.104077.[24] A. Layek, S. Middya, A. Dey, M. Das, J. Datta, C. Banerjee, P.P. Ray, Study of resonance energy transfer between MEH-PPV and CuFeS2 nanoparticle and their application in energy harvesting device, J. Alloys Compd. 613 (2014) 364–369, https://doi.org/10.1016/j.jallcom.2014.06.007.[25] A.V. Chichagov, Information-calculating system on crystal structure data of minerals (MINCRYST), Mater. Sci. Forum. 166–169 (1994) 193–198, https:// doi.org/10.4028/www.scientific.net/msf.166-169.193.[26] Y. Zhang, Z. Cao, Y. Cao, C. Sun, FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces, J. Mol. Struct. 1048 (2013) 434– 440, https://doi.org/10.1016/j.molstruc.2013.06.015.[27] L. Reyes-Bozo, M. Escudey, E. Vyhmeister, P. Higueras, A. Godoy-Faúndez, J.L. Salazar, H. Valdés-González, G. Wolf-Sepúlveda, R. Herrera-Urbina, Adsorption of biosolids and their main components on chalcopyrite, molybdenite and pyrite: Zeta potential and FTIR spectroscopy studies, Miner. Eng. 78 (2015) 128–135, https://doi.org/10.1016/j.mineng.2015.04.021.[28] H. Yu, J. Xu, Y. Hu, H. Zhang, C. Zhang, C. Qiu, X. Wang, B. Liu, L. Wei, J. Li, Synthesis and characterization of CuFeS2 and Se doped CuFeS2 xSex nanoparticles, J. Mater. Sci. Mater. Electron. 30 (13) (2019) 12269–12274, https://doi.org/10.1007/s10854-019-01586-5.[29] P. Rupa Ranjani, P.M. Anjana, R.B. Rakhi, Solvothermal synthesis of CuFeS2 nanoflakes as a promising electrode material for supercapacitors, J. Energy Storage. 33 (2021) 102063, https://doi.org/10.1016/j.est.2020.102063.[30] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/PAC-2014- 1117.[31] J. da Silveira Salla, K. da Boit Martinello, G.L. Dotto, E. García-Díaz, H. Javed, P.J.J. Alvarez, E.L. Foletto, Synthesis of citrate–modified CuFeS2 catalyst with significant effect on the photo–Fenton degradation efficiency of bisphenol a under visible light and near–neutral pH, Colloids Surfaces A Physicochem. Eng. Asp. 595 (2020) 124679, https://doi.org/10.1016/ j.colsurfa.2020.124679.[32] W. Cen, T. Xiong, C. Tang, S. Yuan, F. Dong, Effects of morphology and crystallinity on the photocatalytic activity of (BiO)2CO3 nano/microstructures, Ind. Eng. Chem. Res. 53 (39) (2014) 15002–15011, https://doi.org/10.1021/ ie502670n.[33] W. Li, X. Wang, Z. Wang, Y. Meng, X. Sun, T. Yan, J. You, D. Kong, Relationship between crystalline phases and photocatalytic activities of BiVO4, Mater. Res. Bull. 83 (2016) 259–267, https://doi.org/10.1016/ j.materresbull.2016.06.021.[34] J. Yang, Q. Li, W. Zhu, W. Qu, M. Li, Z. Xu, Z. Yang, H. Liu, H. Li, Recyclable chalcopyrite sorbent for mercury removal from coal combustion flue gas, Fuel. 290 (2021) 120049, https://doi.org/10.1016/j.fuel.2020.120049.[35] A. Ghahremaninezhad, D.G. Dixon, E. Asselin, Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution, Electrochim. Acta. 87 (2013) 97–112, https://doi.org/10.1016/j.electacta.2012.07.119.[36] K.M. Deen, E. Asselin, Differentiation of the non-faradaic and pseudocapacitive electrochemical response of graphite felt/CuFeS2 composite electrodes, Electrochim. Acta. 212 (2016) 979–991, https://doi.org/10.1016/ j.electacta.2016.07.083.[37] I. Nakai, Y. Sugitani, K. Nagashima, Y. Niwa, X-ray photoelectron spectroscopic study of copper minerals, J. Inorg. Nucl. Chem. 40 (5) (1978) 789–791, https:// doi.org/10.1016/0022-1902(78)80152-3.[38] R.P. Hackl, D.B. Dreisinger, E. Peters, J.A. King, Passivation of chalcopyrite during oxidative leaching in sulfate media, Hydrometallurgy. 39 (1-3) (1995) 25–48, https://doi.org/10.1016/0304-386X(95)00023-A.[39] V. Nair, M.J. Muñoz-Batista, M. Fernández-García, R. Luque, J.C. Colmenares, Thermo-photocatalysis: environmental and energy applications, ChemSusChem. 12 (10) (2019) 2098–2116, https://doi.org/10.1002/cssc. v12.1010.1002/cssc.201900175.[40] J.C. Colmenares, R. Luque, Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds, Chem. Soc. Rev. 43 (3) (2014) 765–778, https://doi.org/10.1039/ C3CS60262A.[41] D.A. Giannakoudakis, K. Vikrant, A.P. LaGrow, D. Lisovytskiy, K.-H. Kim, T.J. Bandosz, J. Carlos Colmenares, Scrolled titanate nanosheet composites with reduced graphite oxide for photocatalytic and adsorptive removal of toxic vapors, Chem. Eng. J. 415 (2021) 128907, https://doi.org/10.1016/j. cej.2021.128907.[42] D.A. Giannakoudakis, A. Qayyum, D. Łomot, M.O. Besenhard, D. Lisovytskiy, T.J. Bandosz, J.C. Colmenares, Boosting the photoactivity of grafted titania: ultrasound-driven synthesis of a multi-phase heterogeneous nanoarchitected photocatalyst, Adv. Funct. Mater. 31 (1) (2021) 2007115, https:// doi.org/10.1002/adfm.v31.110.1002/adfm.202007115.[43] E.O. Oseghe, A.E. Ofomaja, Study on light emission diode/carbon modified TiO2 system for tetracycline hydrochloride degradation, J. Photochem. Photobiol. A Chem. 360 (2018) 242–248, https://doi.org/10.1016/j. jphotochem.2018.04.048.[44] J. Peña-Bahamonde, C. Wu, S.K. Fanourakis, S.M. Louie, J. Bao, D.F. Rodrigues, Oxidation state of Mo affects dissolution and visible-light photocatalytic activity of MoO3 nanostructures, J. Catal. 381 (2020) 508–519, https://doi.org/ 10.1016/j.jcat.2019.11.035.[45] E. Yablonovitch, Photonic band-gap structures, J. Opt. Soc. Am. B. 10 (2) (1993) 283, https://doi.org/10.1364/JOSAB.10.000283.[46] S. John, J. Wang, Quantum optics of localized light in a photonic band gap, Phys. Rev. B. 43 (16) (1991) 12772–12789, https://doi.org/10.1103/ PhysRevB.43.12772.[47] R.A. Powell, Photoelectric effect: back to basics, Am. J. Phys. 46 (10) (1978) 1046–1051, https://doi.org/10.1119/1.11493.[48] M. Alonso, E.J. Finn, F.L. Wilson, Fundamental University Physics, Vol. 3: Quantum and Statistical Physics, Phys. Today. 22 (1969) 86–86. https://doi. org/10.1063/1.3035704.[49] C.V. Raman, S. Bhagavantam, Experimental proof of the spin of the photon [3], Nature 129 (3244) (1932) 22–23, https://doi.org/10.1038/129022a0.[50] S. Weinberg, Photons and gravitons in perturbation theory: Derivation of maxwell’s and einstein’s equations, Phys. Rev. 138 (4B) (1965) B988–B1002, https://doi.org/10.1103/PhysRev.138.B988.[51] M. Planck, Ueber das Gesetz der Energieverteilung im Normalspectrum, Ann. Phys. 309 (3) (1901) 553–563, https://doi.org/10.1002/andp.19013090310.[52] P. Kovtun, A. Shukla, Einstein’s equations in matter, Phys. Rev. D. 101 (2020), https://doi.org/10.1103/PhysRevD.101.104051 104051.[53] D. Wong, P. Lee, G. Shenghan, W. Xuezhou, H.Y. Qi, F.S. Kit, The photoelectric effect: Experimental confirmation concerning a widespread misconception in the theory, Eur. J. Phys. 32 (4) (2011) 1059–1064, https://doi.org/10.1088/ 0143-0807/32/4/018.[54] C. Kittel, Introduction to solid state physics, 1 1976.[55] H. Ünlü, A thermodynamic model for determining pressure and temperature effects on the bandgap energies and other properties of some semiconductors, Solid. State. Electron. 35 (9) (1992) 1343–1352, https://doi.org/10.1016/0038- 1101(92)90170-H.[56] H.G. Hecht, The Interpretation of Diffuse Reflectance Spectra, J. Res. Natl. Bur. Stand. Sect. A, Phys. Chem. 80A (1976) 567. https://doi.org/10.6028/ JRES.080A.056.[57] L. Barkat, N. Hamdadou, M. Morsli, A. Khelil, J.C. Bernède, Growth and characterization of CuFeS2 thin films, J. Cryst. Growth. 297 (2) (2006) 426– 431, https://doi.org/10.1016/j.jcrysgro.2006.10.105.[58] M.X. Wang, L.S. Wang, G.H. Yue, X. Wang, P.X. Yan, D.L. Peng, Single crystal of CuFeS2 nanowires synthesized through solventothermal process, Mater. Chem. Phys. 115 (1) (2009) 147–150, https://doi.org/10.1016/ j.matchemphys.2008.11.032.[59] B. Bhattacharyya, A. Pandey, CuFeS2 quantum dots and highly luminescent CuFeS2 based core/shell structures: synthesis, tunability, and photophysics, J. Am. Chem. Soc. 138 (32) (2016) 10207–10213, https://doi.org/ 10.1021/jacs.6b04981.[60] L.V. Kradinova, A.M. Polubotko, V.V. Popov, V.D. Prochukhan, Y.V. Rud, V.E. Skoriukin, Novel zero-gap compounds, magnetics: CuFeS2 and CuFeTe 2, Semicond. Sci. Technol. 8 (8) (1993) 1616–1619, https://doi.org/10.1088/ 0268-1242/8/8/022.[61] A.P. Mikhailovskii, A.M. Polubotko, V.D. Prochukhan, Y.V. Rud, Gapless state in CuFeS2, Phys. Status Solidi. 158 (1) (1990) 229–238, https://doi.org/10.1002/ pssb:2221580122.[62] R.M. Garrels, C.L. Christ, Solutions, Minerals, and Equilibria, Harper & Row, 1965.[63] E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, A. Ballester, Leaching of chalcopyrite with ferric ion. Part I: General aspects, Hydrometallurgy. 93 (3-4) (2008) 81–87, https://doi.org/10.1016/j.hydromet.2008.04.015.[64] A. Jamali, R. Vanraes, P. Hanselaer, T. Van Gerven, A batch LED reactor for the photocatalytic degradation of phenol, Chem. Eng. Process. Process Intensif. 71 (2013) 43–50, https://doi.org/10.1016/j.cep.2013.03.010.[65] C.M. So, M.Y. Cheng, J.C. Yu, P.K. Wong, Degradation of azo dye procion red MX-5B by photocatalytic oxidation, Chemosphere 46 (6) (2002) 905–912, https://doi.org/10.1016/S0045-6535(01)00153-9.[66] T.C. dos Santos, G.J. Zocolo, D.A. Morales, G.d.A. Umbuzeiro, M.V.B. Zanoni, Assessment of the breakdown products of solar/UV induced photolytic degradation of food dye tartrazine, Food Chem. Toxicol. 68 (2014) 307–315, https://doi.org/10.1016/j.fct.2014.03.025.[67] P. Oancea, V. Meltzer, Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution, Chem. Pap. 68 (2014) 105–111, https://doi.org/10.2478/ s11696-013-0426-5.[68] I.P.A.F. Souza, L.H.S. Crespo, L. Spessato, S.A.R. Melo, A.F. Martins, A.L. Cazetta, V.C. Almeida, Optimization of thermal conditions of sol-gel method for synthesis of TiO2using RSM and its influence on photodegradation of tartrazine yellow dye, J. Environ. Chem. Eng. 9 (2) (2021) 104753, https:// doi.org/10.1016/j.jece:2020.104753.[69] G. Nascimento, V. Cavalcanti, R. Santana, D. Sales, J. Rodríguez-Díaz, D. Napoleão, M. Duarte, Degradation of a sunset yellow and tartrazine dye mixture: optimization using statistical design and empirical mathematical modeling, Water. Air. Soil Pollut. 231 (2020) 1–17, https://doi.org/10.1007/ s11270-020-04547-5.[70] M. Rashidi, S.M. Sajjadi, H.Z. Mousavi, Kinetic analysis of azo dye decolorization during their acid–base equilibria: photocatalytic degradation of tartrazine and sunset yellow, React. Kinet. Mech. Catal. 128 (1) (2019) 555– 570, https://doi.org/10.1007/s11144-019-01654-1.[71] J. Leichtweis, S. Silvestri, Y. Vieira, T.A. de Lima Burgo, E.L. Foletto, A novel tin ferrite/polymer composite use in photo-Fenton reactions, Int. J. Environ. Sci. Technol. 18 (6) (2021) 1537–1548, https://doi.org/10.1007/s13762-020- 02944-1.[72] M. Martín-Sómer, C. Pablos, R. van Grieken, J. Marugán, Influence of light distribution on the performance of photocatalytic reactors: LED vs mercury lamps, Appl. Catal. B Environ. 215 (2017) 1–7, https://doi.org/10.1016/j. apcatb.2017.05.048.[73] O.K. Dalrymple, D.H. Yeh, M.A. Trotz, Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis, J. Chem. Technol. Biotechnol. 82 (2) (2007) 121–134, https://doi.org/10.1002/ jctb.v82:210.1002/jctb.1657.[74] D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation processmediated removal of pharmaceuticals from water: a review, J. Environ. Manage. 219 (2018) 189–207, https://doi.org/10.1016/j.jenvman.2018.04.103.[75] Y. Vieira, J. Leichtweis, E.L. Foletto, S. Silvestri, Reactive oxygen speciesinduced heterogeneous photocatalytic degradation of organic pollutant Rhodamine B by copper and zinc aluminate spinels, J. Chem. Technol. Biotechnol. 95 (3) (2020) 791–797, https://doi.org/10.1002/jctb. v95.310.1002/jctb.6267.[76] J.T. Schneider, D.S. Firak, R.R. Ribeiro, P. Peralta-Zamora, Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations, Phys. Chem. Chem. Phys. 22 (27) (2020) 15723–15733, https://doi.org/10.1039/D0CP02411B.[77] A. Thiam, M. Zhou, E. Brillas, I. Sirés, Two-step mineralization of Tartrazine solutions: Study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes, Appl. Catal. B Environ. 150–151 (2014) 116–125, https://doi.org/10.1016/j. apcatb.2013.12.011.[78] C. Ràfols, D. Barceló, Determination of mono- and disulphonated azo dyes by liquid chromatography-armospheric pressure ionization mass spectrometry, in, J. Chromatogr. A, Elsevier (1997) 177–192, https://doi.org/10.1016/S0021- 9673(97)00429-9.[79] M. Holcˇapek, K. Volná, D. Vaneˇrková, Effects of functional groups on the fragmentation of dyes in electrospray and atmospheric pressure chemical ionization mass spectra, Dye. Pigment. 75 (1) (2007) 156–165, https://doi.org/ 10.1016/j.dyepig.2006.05.040.10336833Electron-hole recombinationLED photoreactorPhotocatalytic degradationChalcopyriteBand-gapPublicationORIGINAL1-s2.0-S0921883121005574-main.pdf1-s2.0-S0921883121005574-main.pdfapplication/pdf1731244https://repositorio.cuc.edu.co/bitstreams/21c605c6-2002-4524-95db-6917f483d117/download030c168338c518368c4a694ca8211db4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/838c9e22-a09d-4f91-b14a-276ba1d1bcc9/downloade30e9215131d99561d40d6b0abbe9badMD52TEXT1-s2.0-S0921883121005574-main.pdf.txt1-s2.0-S0921883121005574-main.pdf.txttext/plain66260https://repositorio.cuc.edu.co/bitstreams/0caab878-6551-458f-958b-987ef2c67aaa/downloadb70757225a24b065c12ac8b6402e0dfcMD53THUMBNAIL1-s2.0-S0921883121005574-main.pdf.jpg1-s2.0-S0921883121005574-main.pdf.jpgimage/jpeg16603https://repositorio.cuc.edu.co/bitstreams/ffb61bd1-1adb-422e-8861-0ff7b2727788/downloadc371df496b126b6d3428e091aee062f6MD5411323/9277oai:repositorio.cuc.edu.co:11323/92772024-09-17 14:13:59.481https://creativecommons.org/licenses/by-nc-nd/4.0/2021 The Society of Powder Technology Japan. Published by Elsevier BV and The Society of Powder Technology Japan. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |