Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene
A route based on pyrolysis and physical activation with H2O and CO2 was proposed to reuse citrus waste traditionally discarded. The citrus wastes were orange peel (OP), mandarine peel (MP), rangpur lime peel (RLP), and sweet lime peel (SLP). The main aim was to use the solid products of this new rou...
- Autores:
-
da Silva, Mariele D.
DA BOIT MARTINELLO, KATIA
Knani, Salah
Frantz Lütke, Sabrina
Machado, Lauren M.M.
Manera, Christian
Perondi, Daniele
Godinho, Marcelo
Collazzo, Gabriela C.
Silva Oliveira, Luis Felipe
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10742
- Acceso en línea:
- https://hdl.handle.net/11323/10742
https://repositorio.cuc.edu.co/
- Palabra clave:
- Adsorbent
Bio-oil
Cu(II) adsorption
D-limonene
Physical activation
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_2588e42487569573c595ab51320501d9 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10742 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene |
title |
Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene |
spellingShingle |
Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene Adsorbent Bio-oil Cu(II) adsorption D-limonene Physical activation |
title_short |
Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene |
title_full |
Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene |
title_fullStr |
Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene |
title_full_unstemmed |
Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene |
title_sort |
Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene |
dc.creator.fl_str_mv |
da Silva, Mariele D. DA BOIT MARTINELLO, KATIA Knani, Salah Frantz Lütke, Sabrina Machado, Lauren M.M. Manera, Christian Perondi, Daniele Godinho, Marcelo Collazzo, Gabriela C. Silva Oliveira, Luis Felipe Dotto, Guilherme Luiz |
dc.contributor.author.none.fl_str_mv |
da Silva, Mariele D. DA BOIT MARTINELLO, KATIA Knani, Salah Frantz Lütke, Sabrina Machado, Lauren M.M. Manera, Christian Perondi, Daniele Godinho, Marcelo Collazzo, Gabriela C. Silva Oliveira, Luis Felipe Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Adsorbent Bio-oil Cu(II) adsorption D-limonene Physical activation |
topic |
Adsorbent Bio-oil Cu(II) adsorption D-limonene Physical activation |
description |
A route based on pyrolysis and physical activation with H2O and CO2 was proposed to reuse citrus waste traditionally discarded. The citrus wastes were orange peel (OP), mandarine peel (MP), rangpur lime peel (RLP), and sweet lime peel (SLP). The main aim was to use the solid products of this new route as adsorbents for Cu(II) ions. Copper ions are among the most important water pollutants due to their non-degradability, toxicity, and bioaccumulation, facilitating their inclusion and long persistence in the food chain. Besides the solid products, the liquid and gaseous fractions were evaluated for possible applications. Results showed that the citrus waste composition favored the thermochemical treatment. In addition, the following yields were obtained from the pyrolysis process: approximately 30 % wt. of biochar, 40 % wt. of non-condensable gases, and 30 % wt. of bio-oil. The biochars did not present a high specific surface area. Nevertheless, activated carbons with CO2 and H2O presented specific surface areas of 212.4 m2/g and 399.4 m2/g, respectively, and reached Cu(II) adsorption capacities of 28.2 mg g−1 and 27.8 mg g−1. The adsorption kinetic study revealed that the equilibrium was attained at 60 min and the pseudo-second-order model presented a better fit to the experimental data. The main generated gases were CO2, which could be employed as an activating agent for activated carbon production. d-limonene, used for food and medicinal purposes, was the main constituent of the bio-oil. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.available.none.fl_str_mv |
2023 2024-02-20T17:43:41Z |
dc.date.accessioned.none.fl_str_mv |
2024-02-20T17:43:41Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Mariele D. da Silva, Kátia da Boit Martinello, Salah Knani, Sabrina F. Lütke, Lauren M.M. Machado, Christian Manera, Daniele Perondi, Marcelo Godinho, Gabriela C. Collazzo, Luis F.O. Silva, Guilherme L. Dotto, Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene, Waste Management, Volume 152, 2022, Pages 17-29, ISSN 0956-053X, https://doi.org/10.1016/j.wasman.2022.07.024 |
dc.identifier.issn.spa.fl_str_mv |
0956-053X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10742 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.wasman.2022.07.024 |
dc.identifier.eissn.spa.fl_str_mv |
1879-2456 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC – Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Mariele D. da Silva, Kátia da Boit Martinello, Salah Knani, Sabrina F. Lütke, Lauren M.M. Machado, Christian Manera, Daniele Perondi, Marcelo Godinho, Gabriela C. Collazzo, Luis F.O. Silva, Guilherme L. Dotto, Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene, Waste Management, Volume 152, 2022, Pages 17-29, ISSN 0956-053X, https://doi.org/10.1016/j.wasman.2022.07.024 0956-053X 10.1016/j.wasman.2022.07.024 1879-2456 Corporación Universidad de la Costa REDICUC – Repositorio CUC |
url |
https://hdl.handle.net/11323/10742 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Waste Management |
dc.relation.references.spa.fl_str_mv |
Aburto, J., Moran, M., Galano, A., Torres-García, E., 2015. Non-isothermal pyrolysis of pectin: a thermochemical and kinetic approach. J. Anal. Appl. Pyrolysis 112, 94–104. https://doi.org/10.1016/j.jaap.2015.02.012. Ahmad, Z., Gao, B., Mosa, A., Yu, H., Yin, X., Bashir, A., Ghoveisi, H., Wang, S., 2018. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J. Clean. Prod. 180, 437–449. https://doi.org/ 10.1016/J.JCLEPRO.2018.01.133. Akhavan-Mahdavi, S., Sadeghi, R., Faridi Esfanjani, A., Hedayati, S., Shaddel, R., Dima, C., Malekjani, N., Boostani, S., Jafari, S.M., 2022. Nanodelivery systems for dlimonene; techniques and applications. Food Chem. 384, 132479 https://doi.org/ 10.1016/J.FOODCHEM.2022.132479. Alatzas, S., Moustakas, K., Malamis, D., Vakalis, S., 2019. Biomass potential from agricultural waste for energetic utilization in Greece. Energies 12 (6), 1095. Alvarez, J., Hooshdaran, B., Cortazar, M., Amutio, M., Lopez, G., Freire, F.B., Haghshenasfard, M., Hosseini, S.H., Olazar, M., 2018. Valorization of citrus wastes by fast pyrolysis in a conical spouted bed reactor. Fuel 224, 111–120. https://doi. org/10.1016/j.fuel.2018.03.028. Bajpai, P., 2016. Pretreatment of Lignocellulosic Biomass for Biofuel Production. Springer Singapore, Singapore. doi: 10.4324/9780429346644-1. Banerjee, S., Mukherjee, S., LaminKa-ot, A., Joshi, S.R., Mandal, T., Halder, G., 2016. Biosorptive uptake of Fe2+, Cu2+ and As5+ by activated biochar derived from Colocasia esculenta: isotherm, kinetics, thermodynamics, and cost estimation. J. Adv. Res. 7, 597–610. doi: 10.1016/J.JARE.2016.06.002. Bhattacharjee, N., Biswas, A.B., 2019. Pyrolysis of orange bagasse: comparative study and parametric influence on the product yield and their characterization. J. Environ. Chem. Eng. 7 (1), 102903. Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Reynel-Avila, ´ H.E., 2017. Adsorption Processes for Water Treatment and Purification. Springer International Publishing. doi: 10.1007/978-3-319-58136-1. Brunauer, S., Deming, L.S., Deming, W.E., Teller, E., 1940. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732. https://doi.org/ 10.1021/ja01864a025. Bruun, E.W., Ambus, P., Egsgaard, H., Hauggaard-Nielsen, H., 2012. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol. Biochem. 46, 73–79. https://doi.org/10.1016/j.soilbio.2011.11.019. Chakraborty, P., Banerjee, S., Kumar, S., Sadhukhan, S., Halder, G., 2018. Elucidation of ibuprofen uptake capability of raw and steam activated biochar of Aegle marmelos shell: isotherm, kinetics, thermodynamics and cost estimation. Process Saf. Environ. Prot. 118, 10–23. https://doi.org/10.1016/J.PSEP.2018.06.015. Chemat-Djenni, Z., Ferhat, M.A., Tomao, V., Chemat, F., 2010. Carotenoid extraction from tomato using a green solvent resulting from orange processing waste. J. Essent. Oil-Bearing Plants 13, 139–147. https://doi.org/10.1080/ 0972060X.2010.10643803. Chen, W., Gong, M., Li, K., Xia, M., Chen, Z., Xiao, H., Fang, Y., Chen, Y., Yang, H., Chen, H., 2020. Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH. Appl. Energy 278, 115730. https://doi.org/10.1016/J.APENERGY.2020.115730. Cheng, D., Ngo, H.H., Guo, W., Chang, S.W., Nguyen, D.D., Zhang, X., Varjani, S., Liu, Y., 2020. Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. Sci. Total Environ. 720, 137662 https:// doi.org/10.1016/J.SCITOTENV.2020.137662. Cortes, ˆ L.N., Druzian, S.P., Streit, A.F.M., Godinho, M., Perondi, D., Collazzo, G.C., Oliveira, M.L.S., Cadaval, T.R.S., Dotto, G.L., 2019. Biochars from animal wastes as alternative materials to treat colored effluents containing basic red 9. J. Environ. Chem. Eng. 7 (6), 103446. Cunha, M.R., Lima, E.C., Lima, D.R., da Silva, R.S., Thue, P.S., Seliem, M.K., Sher, F., dos Reis, G.S., Larsson, S.H., 2020. Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: use of activated carbon derived from Butia catarinensis. J. Environ. Chem. Eng. 8 (6), 104506. Cuong, D.V., Liu, N.L., Nguyen, V.A., Hou, C.H., 2019. Meso/micropore-controlled hierarchical porous carbon derived from activated biochar as a high-performance adsorbent for copper removal. Sci. Total Environ. 692, 844–853. https://doi.org/ 10.1016/J.SCITOTENV.2019.07.125. Da Silva, J.C.G., Andersen, S.L.F., Costa, R.L., Moreira, R. de F.P.M., Jos´e, H.J., 2019. Bioenergetic potential of Ponkan peel waste (Citrus reticulata) pyrolysis by kinetic modelling and product characterization. Biomass Bioenergy 131, 1–9. https://doi. org/10.1016/j.biombioe.2019.105401. Daful, A.G., R Chandraratne, M., 2020. Biochar Production From Biomass Waste-Derived Material. In: Encyclopedia of Renewable and Sustainable Materials. Elsevier, pp. 370–378. doi: 10.1016/B978-0-12-803581-8.11249-4. Dissanayake Herath, G.A., Poh, L.S., Ng, W.J., 2019. Statistical optimization of glyphosate adsorption by biochar and activated carbon with response surface methodology. Chemosphere 227, 533–540. https://doi.org/10.1016/J. CHEMOSPHERE.2019.04.078. Fan, J., He, Z., Ma, L.Q., Stoffella, P.J., 2011. Accumulation and availability of copper in citrus grove soils as affected by fungicide application. J. Soils Sediments 11, 639–648. https://doi.org/10.1007/s11368-011-0349-0. Fiore, V., Valenza, A., Di Bella, G., 2011. Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures. Compos. Sci. Technol. 71, 1138–1144. https://doi.org/10.1016/j.compscitech.2011.04.003. Foong, S.Y., Liew, R.K., Yang, Y., Cheng, Y.W., Yek, P.N.Y., Wan Mahari, W.A., Lee, X.Y., Han, C.S., Vo, D.V.N., Van Le, Q., Aghbashlo, M., Tabatabaei, M., Sonne, C., Peng, W., Lam, S.S., 2020. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chem. Eng. J. 389, 124401 https://doi.org/10.1016/j.cej.2020.124401. Franciski, M.A., Peres, E.C., Godinho, M., Perondi, D., Foletto, E.L., Collazzo, G.C., Dotto, G.L., 2018. Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption. Waste Manag. 78, 630–638. https://doi.org/10.1016/j.wasman.2018.06.040. Georgin, J., Franco, D.S.P., Netto, M.S., de Salomon, ´ Y.L.O., Piccilli, D.G.A., Foletto, E.L., Dotto, G.L., 2021. Adsorption and mass transfer studies of methylene blue onto comminuted seedpods from Luehea divaricata and Inga laurina. Environ. Sci. Pollut. Res. 28, 20854–20868. https://doi.org/10.1007/s11356-020-11957-9. Gonzalez-García, ´ P., 2018. Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew. Sustain. Energy Rev. 82, 1393–1414. https://doi.org/10.1016/j.rser.2017.04.117. Gopu, C., Gao, L., Volpe, M., Fiori, L., Goldfarb, J.L., 2018. Valorizing municipal solid waste: waste to energy and activated carbons for water treatment via pyrolysis. J. Anal. Appl. Pyrolysis 133, 48–58. https://doi.org/10.1016/j.jaap.2018.05.002. Goyal, H.B., Seal, D., Saxena, R.C., 2008. Bio-fuels from thermochemical conversion of renewable resources: a review. Renew. Sustain. Energy Rev. 12, 504–517. https:// doi.org/10.1016/J.RSER.2006.07.014. Guilhen, S.N., Maˇsek, O., Ortiz, N., Izidoro, J.C., Fungaro, D.A., 2019. Pyrolytic temperature evaluation of macauba biochar for uranium adsorption from aqueous solutions. Biomass Bioenergy 122, 381–390. https://doi.org/10.1016/j. biombioe.2019.01.008. Guo, S., Peng, J., Li, W., Yang, K., Zhang, L., Zhang, S., Xia, H., 2009. Effects of CO 2 activation on porous structures of coconut shell-based activated carbons. Appl. Surf. Sci. 255, 8443–8449. https://doi.org/10.1016/j.apsusc.2009.05.150. Gupta, S., Kua, H.W., Low, C.Y., 2018. Use of biochar as carbon sequestering additive in cement mortar. Cem. Concr. Compos. 87, 110–129. https://doi.org/10.1016/J. CEMCONCOMP.2017.12.009. Guti´errez, M.C., Siles, J.A., Diz, J., Chica, A.F., Martín, M.A., 2017. Modelling of composting process of different organic waste at pilot scale: biodegradability and odor emissions. Waste Manag. 59, 48–58. https://doi.org/10.1016/j. wasman.2016.09.045. Hernandes, P.T., Franco, D.S.P., Georgin, J., Salau, N.P.G., Dotto, G.L., 2022. Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium. J. Environ. Chem. Eng. 10 (3), 107408. Hu, X., Zhang, X., Ngo, H.H., Guo, W., Wen, H., Li, C., Zhang, Y., Ma, C., 2020. Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Sci. Total Environ. 707, 135544 https://doi.org/ 10.1016/J.SCITOTENV.2019.135544. Januszewicz, K., Kazimierski, P., Suchocki, T., Karda´s, D., Lewandowski, W., KlugmannRadziemska, E., Łuczak, J., 2020. Waste rubber pyrolysis: product yields and limonene concentration. Materials (Basel) 13, 1–14. https://doi.org/10.3390/ ma13194435. Jaria, G., Calisto, V., Esteves, V.I., Otero, M., 2022. Overview of relevant economic and environmental aspects of waste-based activated carbons aimed at adsorptive water treatments. J. Clean. Prod. 344, 130984 https://doi.org/10.1016/J. JCLEPRO.2022.130984. Joseph, L., Jun, B.M., Flora, J.R.V., Park, C.M., Yoon, Y., 2019. Removal of heavy metals from water sources in the developing world using low-cost materials: a review. Chemosphere 229, 142–159. https://doi.org/10.1016/j.chemosphere.2019.04.198. Katiyar, R., Patel, A.K., Nguyen, T.B., Singhania, R.R., Chen, C.W., Dong, C.D., 2021. Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Bioresour. Technol. 328, 124829 https://doi.org/ 10.1016/j.biortech.2021.124829. Kumar, M., Upadhyay, S.N., Mishra, P.K., 2019. A comparative study of thermochemical characteristics of lignocellulosic biomasses. Bioresour. Technol. Rep. 8, 100186 https://doi.org/10.1016/j.biteb.2019.100186. Kwoczynski, Z., Cmelík, ˇ J., 2021. Characterization of biomass wastes and its possibility of agriculture utilization due to biochar production by torrefaction process. J. Clean. Prod. 280, 124302 https://doi.org/10.1016/j.jclepro.2020.124302. Lam, S.S., Liew, R.K., Lim, X.Y., Ani, F.N., Jusoh, A., 2016. Fruit waste as feedstock for recovery by pyrolysis technique. Int. Biodeterior. Biodegrad. 113, 325–333. https:// doi.org/10.1016/j.ibiod.2016.02.021. Lam, S.S., Liew, R.K., Cheng, C.K., Rasit, N., Ooi, C.K., Ma, N.L., Ng, J.H., Lam, W.H., Chong, C.T., Chase, H.A., 2018. Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent. J. Environ. Manage. 213, 400–408. https://doi.org/10.1016/j.jenvman.2018.02.092 Li, N., Bai, R., 2005. Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Sep. Purif. Technol. 42, 237–247. https://doi.org/10.1016/j. seppur.2004.08.002. Machado, L.M.M., Lütke, S.F., Perondi, D., Godinho, M., Oliveira, M.L.S., Collazzo, G.C., Dotto, G.L., 2020a. Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars. J. Environ. Chem. Eng. 8 (6), 104473. Machado, L.M.M., Lütke, S.F., Perondi, D., Godinho, M., Oliveira, M.L.S., Collazzo, G.C., Dotto, G.L., 2020b. Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes. Waste Manag. 113, 96–104. https:// doi.org/10.1016/j.wasman.2020.05.038. Marouˇsek, J., Gavurova, ´ B., 2022. Recovering phosphorous from biogas fermentation residues indicates promising economic results. Chemosphere 291, 133008. https:// doi.org/10.1016/J.CHEMOSPHERE.2021.133008. Marouˇsek, J., Marouˇskov´ a, A., 2021. Economic considerations on nutrient utilization in wastewater management. Energies 14 (12), 3468. Marouˇsek, J., Marouˇskova, ´ A., Kůs, T., 2020. Shower cooler reduces pollutants release in production of competitive cement substitute at low cost. Energy Sources Part A Recover. Util. Environ. Eff. 00, 1–10. https://doi.org/10.1080/ 15567036.2020.1825560. Marouˇsek, J., Trakal, L., 2022. Techno-economic analysis reveals the untapped potential of wood biochar. Chemosphere 291, 133000. https://doi.org/10.1016/J. CHEMOSPHERE.2021.133000. McKendry, P., 2002. Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37–46. https://doi.org/10.1016/S0960-8524(01)00118-3. Meseldzija, S., Petrovic, J., Onjia, A., Volkov-Husovic, T., Nesic, A., Vukelic, N., 2019. Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater. J. Ind. Eng. Chem. 75, 246–252. https://doi.org/ 10.1016/j.jiec.2019.03.031. Murali, R., Karthikeyan, A., Saravanan, R., 2013. Protective effects of d-limonene on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rats. Basic Clin. Pharmacol. Toxicol. 112, 175–181. https://doi.org/10.1111/bcpt.12010. Musule, R., Alarcon-Guti ´ ´errez, E., Houbron, E.P., Barcenas-Pazos, ´ G.M., del Rosario Pineda-Lopez, ´ M., Domínguez, Z., Sanchez-Vel ´ ´ asquez, L.R., 2016. Chemical composition of lignocellulosic biomass in the wood of Abies religiosa across an altitudinal gradient. J. Wood Sci. 62, 537–547. https://doi.org/10.1007/s10086- 016-1585-0. Negro, V., Ruggeri, B., Mancini, G., Fino, D., 2017. Recovery of D-limonene through moderate temperature extraction and pyrolytic products from orange peels. J. Chem. Technol. Biotechnol. 92, 1186–1191. https://doi.org/10.1002/jctb.5107. Obernberger, I., Thek, G., 2004. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 27, 653–669. https://doi.org/10.1016/j.biombioe.2003.07.006. Olah, J., Lengyel, P., Balogh, P., Harangi-R´ akos, M., Popp, J., 2017. The role of biofuels in food commodity prices volatility and land use. J. Compet. 9 (4), 81–93. Oliveira, F.R., Patel, A.K., Jaisi, D.P., Adhikari, S., Lu, H., Khanal, S.K., 2017. Environmental application of biochar: current status and perspectives. Bioresour. Technol. 246, 110–122. Orozco, R.S., Hernandez, ´ P.B., Ramírez, N.F., Morales, G.R., Luna, J.S., Montoya, A.J.C., 2012. Gamma irradiation induced degradation of orange peels. Energies 5, 3051–3063. https://doi.org/10.3390/en5083051. Orozco, R.S., Hern´ andez, P.B., Morales, G.R., Núnez, ˜ F.U., Villafuerte, J.O., Lugo, V.L., Ramírez, N.F., Díaz, C.E.B., Vazquez, ´ P.C., 2014. Characterization of lignocellulosic fruit waste as an alternative feedstock for bioethanol production. BioResources 9, 1873–1885. Pallar´es, J., Gonz´ alez-Cencerrado, A., Arauzo, I., 2018. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 115, 64–73. https://doi.org/10.1016/J. BIOMBIOE.2018.04.015. Pathak, P.D., Mandavgane, S.A., Kulkarni, B.D., 2017. Fruit peel waste: characterization and its potential uses. Curr. Sci. 113, 444–454. https://doi.org/10.18520/cs/v113/ i03/444-454. P´erez-Gomez, ´ E.O., García-Rosales, G., Longoria-Gandara, ´ L.C., Gomez-Vilchis, ´ J.C., 2022. Obtention of biochar-Ca nanoparticles using Citrus tangerina: a morphological, surface and study remotion of Aflatoxin AFB1. J. Hazard. Mater. 424, 127339 https://doi.org/10.1016/J.JHAZMAT.2021.127339. Perondi, D., Poletto, P., Restelatto, D., Manera, C., Silva, J.P., Junges, J., Collazzo, G.C., Dettmer, A., Godinho, M., Vilela, A.C.F., 2017. Steam gasification of poultry litter biochar for bio-syngas production. Process Saf. Environ. Prot. 109, 478–488. https:// doi.org/10.1016/j.psep.2017.04.029. Rajahmundry, G.K., Garlapati, C., Kumar, P.S., Alwi, R.S., Vo, D.V.N., 2021. Statistical analysis of adsorption isotherm models and its appropriate selection. Chemosphere 276, 130176. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130176. Rivas, B., Torrado, A., Torre, P., Converti, A., Domínguez, J.M., 2008. Submerged citric acid fermentation on orange peel autohydrolysate. J. Agric. Food Chem. 56, 2380–2387. https://doi.org/10.1021/jf073388r. Rom´ an, S., Valente Nabais, J.M., Ledesma, B., Gonzalez, ´ J.F., Laginhas, C., Titirici, M.M., 2013. Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Microporous Mesoporous Mater. 165, 127–133. https://doi.org/10.1016/j. micromeso.2012.08.006. Ruiz, B., Flotats, X., 2014. Citrus essential oils and their influence on the anaerobic digestion process: an overview. Waste Manag. 34, 2063–2079. https://doi.org/ 10.1016/J.WASMAN.2014.06.026. Ruthven, D., 1984. Principles of adsorption and adsorption processes. Sabela, M.I., Kunene, K., Kanchi, S., Xhakaza, N.M., Bathinapatla, A., Mdluli, P., Sharma, D., Bisetty, K., 2019. Removal of copper (II) from wastewater using green vegetable waste derived activated carbon: an approach to equilibrium and kinetic study. Arab. J. Chem. 12, 4331–4339. https://doi.org/10.1016/j. arabjc.2016.06.001. Saha, A., Sharabani, T., Evenstein, E., Nessim, G.D., Noked, M., Sharma, R., 2020. Probing electrochemical behaviour of lignocellulosic, orange peel derived hard carbon as anode for sodium ion battery. J. Electrochem. Soc. 167 (9), 090505. Selvaraju, G., Bakar, N.K.A., 2017. Production of a new industrially viable greenactivated carbon from Artocarpus integer fruit processing waste and evaluation of its chemical, morphological and adsorption properties. J. Clean. Prod. 141, 989–999. https://doi.org/10.1016/J.JCLEPRO.2016.09.056. Shakya, A., Núnez-delgado, ˜ A., Agarwal, T., 2019. Biochar synthesis from sweet lime peel for hexavalent chromium remediation from aqueous solution. J. Environ. Manage. 251, 109570 https://doi.org/10.1016/j.jenvman.2019.109570. Sheng, Y., Zhu, L., 2018. Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci. Total Environ. 622–623, 1391–1399. https:// doi.org/10.1016/J.SCITOTENV.2017.11.337. Shimada, N., Kawamoto, H., Saka, S., 2008. Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis. J. Anal. Appl. Pyrolysis 81, 80–87. https:// doi.org/10.1016/j.jaap.2007.09.005. Sing, K., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603–619. Skapa, ˇ S., Vochozka, M., 2019. Waste energy recovery improves price competitiveness of artificial forage from rapeseed straw. Clean Technol. Environ. Policy 21, 1165–1171. https://doi.org/10.1007/s10098-019-01697-x. Stavkov ´ ´ a, J., Marouˇsek, J., 2021. Novel sorbent shows promising financial results on P recovery from sludge water. Chemosphere 276, 130097. https://doi.org/10.1016/J. CHEMOSPHERE.2021.130097. Streit, A.F.M., Collazzo, G.C., Druzian, S.P., Verdi, R.S., Foletto, E.L., Oliveira, L.F.S., Dotto, G.L., 2021. Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere 262, 128322. https://doi.org/10.1016/j. chemosphere.2020.128322. Sukumar, V., Manieniyan, V., Senthilkumar, R., Sivaprakasam, S., 2020. Production of bio oil from sweet lime empty fruit bunch by pyrolysis. Renew. Energy 146, 309–315. https://doi.org/10.1016/j.renene.2019.06.156. Sun, J., Zhang, Z., Ji, J., Dou, M., Wang, F., 2017. Removal of Cr6+ from wastewater via adsorption with high-specific-surface-area nitrogen-doped hierarchical porous carbon derived from silkworm cocoon. Appl. Surf. Sci. 405, 372–379. https://doi. org/10.1016/J.APSUSC.2017.02.044. Taghizadeh-Alisaraei, A., Hosseini, S.H., Ghobadian, B., Motevali, A., 2017. Biofuel production from citrus wastes: a feasibility study in Iran. Renew. Sustain. Energy Rev. 69, 1100–1112. Terragreen Global Waste, 2022. Solvable Problem as a Renewable Energy Resource [WWW Document]. Available from: <https://medium.com/@support_61820/ global-waste-solvable-problem-as-a-renewable-energy-resource-5d8f05cc1a7d>. Thue, P.S., Umpierres, C.S., Lima, E.C., Lima, D.R., Machado, F.M., dos Reis, G.S., da Silva, R.S., Pavan, F.A., Tran, H.N., 2020. Single-step pyrolysis for producing magnetic activated carbon from tucum˜ a (Astrocaryum aculeatum) seed and nickel (II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol. J. Hazard. Mater. 398, 122903 https://doi.org/10.1016/j. jhazmat.2020.122903. Tran, H.N., You, S.J., Chao, H.P., 2016. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Manag. Res. 34, 129–138. doi: 10.1177/0734242X15615698. Triantafyllidis, V., Zotos, A., Kosma, C., Kokkotos, E., 2020. Environmental implications from long-term citrus cultivation and wide use of Cu fungicides in mediterranean soils. Water. Air. Soil Pollut. 231 https://doi.org/10.1007/s11270-020-04577-z. Tripathi, M., Sahu, J.N., Ganesan, P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew. Sustain. Energy Rev. 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122. Trubetskaya, A., Surup, G., Shapiro, A., Bates, R.B., 2017. Modeling the influence of potassium content and heating rate on biomass pyrolysis. Appl. Energy 194, 199–211. https://doi.org/10.1016/j.apenergy.2017.03.009. Uddin, M.K., Rao, R.A.K., Chandra Mouli, K.V.V., 2018. The artificial neural network and Box-Behnken design for Cu2+ removal by the pottery sludge from water samples: equilibrium, kinetic and thermodynamic studies. J. Mol. Liq. 266, 617–627. https:// doi.org/10.1016/J.MOLLIQ.2018.06.098. Van Soest, P.J., Wine, R.H., 1968. Determination of lignin and cellulose in acid-detergent fiber with permanganate. J. Assoc. Off. Anal. Chem. 51, 780–785. https://doi.org/ 10.1093/jaoac/51.4.780. Varma, A.K., Mondal, P., 2017. Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Ind. Crops Prod. 95, 704–717. https://doi.org/10.1016/j.indcrop.2016.11.039. Vochozka, M., Rowland, Z., Suler, P., Marousek, J., 2020. The influence of the international price of oil on the value of the EUR/USD exchange rate. J. Compet. 12 (2), 167–190. Volpe, M., Panno, D., Volpe, R., Messineo, A., 2015. Upgrade of citrus waste as a biofuel via slow pyrolysis. J. Anal. Appl. Pyrolysis 115, 66–76. https://doi.org/10.1016/j. jaap.2015.06.015. Wang, X., Li, X., Liu, G., He, Y., Chen, C., Liu, X., Li, G., Gu, Y., Zhao, Y., 2019. Mixed heavy metal removal from wastewater by using discarded mushroom-stick biochar: adsorption properties and mechanisms. Environ. Sci. Process. Impacts 21, 584–592. https://doi.org/10.1039/c8em00457a. Wang, J., Wang, S., 2019. Preparation, modification and environmental application of biochar: a review. J. Clean. Prod. 227, 1002–1022. https://doi.org/10.1016/j. jclepro.2019.04.282. Xie, R., Jin, Y., Chen, Y., Jiang, W., 2017. The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon. Water Sci. Technol. 76, 3022–3034. https://doi.org/10.2166/wst.2017.471. Xiong, X., Yu, I.K.M., Tsang, D.C.W., Bolan, N.S., Sik Ok, Y., Igalavithana, A.D., Kirkham, M.B., Kim, K.H., Vikrant, K., 2019. Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects. Chem. Eng. J. 375, 121983 https://doi.org/10.1016/J.CEJ.2019.121983. Xu, J., Chen, L., Qu, H., Jiao, Y., Xie, J., Xing, G., 2014. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H 3 PO 4. Appl. Surf. Sci. 320, 674–680. https://doi.org/10.1016/j.apsusc.2014.08.178. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788. https://doi.org/10.1016/j. fuel.2006.12.013. Zazycki, M.A., Godinho, M., Perondi, D., Foletto, E.L., Collazzo, G.C., Dotto, G.L., 2018. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J. Clean. Prod. 171, 57–65. https://doi.org/ 10.1016/j.jclepro.2017.10.007. Zhang, H., Zhu, Y., Liu, Q., Li, X., 2022. Preparation of porous carbon materials from biomass pyrolysis vapors for hydrogen storage. Appl. Energy 306, 118131. https:// doi.org/10.1016/J.APENERGY.2021.118131. Zhao, D., Dai, Y., Chen, K., Sun, Y., Yang, F., Chen, K., 2013. Effect of potassium inorganic and organic salts on the pyrolysis kinetics of cigarette paper. J. Anal. Appl. Pyrolysis 102, 114–123. https://doi.org/10.1016/j.jaap.2013.03.007. Zhu, T., Li, Q., Xu, L., Zhang, Q., Lv, W., Yu, H., Feng, T., Qian, B., 2021. Stratification of lung adenocarcinoma patients for d-limonene intervention based on the expression signature genes. Food Funct. 12, 7214–7226. https://doi.org/10.1039/d0fo02675a. |
dc.relation.citationendpage.spa.fl_str_mv |
29 |
dc.relation.citationstartpage.spa.fl_str_mv |
17 |
dc.relation.citationvolume.spa.fl_str_mv |
152 |
dc.rights.eng.fl_str_mv |
© 2022 Elsevier Ltd. All rights reserved. |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2022 Elsevier Ltd. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
13 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier Ltd. |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0956053X22003725 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/da769dc7-80bb-407d-95e5-6987cd8ac5d0/download https://repositorio.cuc.edu.co/bitstreams/e5506629-7b75-4550-9742-b9c7325166f4/download https://repositorio.cuc.edu.co/bitstreams/c9ca6150-9e93-4e1a-9b25-fd21ab865880/download https://repositorio.cuc.edu.co/bitstreams/b7509390-817f-45cb-8710-e43fe047ef50/download |
bitstream.checksum.fl_str_mv |
08566cf0bc49acea2f9d42c54884e2dc 2f9959eaf5b71fae44bbf9ec84150c7a 0e0d3632e5b5edd1463e71919485091e e334709b101d443f9b593784f780ae9c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760667882946560 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Elsevier Ltd. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfda Silva, Mariele D.DA BOIT MARTINELLO, KATIAKnani, SalahFrantz Lütke, SabrinaMachado, Lauren M.M.Manera, ChristianPerondi, DanieleGodinho, MarceloCollazzo, Gabriela C.Silva Oliveira, Luis FelipeDotto, Guilherme Luiz2024-02-20T17:43:41Z20232024-02-20T17:43:41Z2022Mariele D. da Silva, Kátia da Boit Martinello, Salah Knani, Sabrina F. Lütke, Lauren M.M. Machado, Christian Manera, Daniele Perondi, Marcelo Godinho, Gabriela C. Collazzo, Luis F.O. Silva, Guilherme L. Dotto, Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene, Waste Management, Volume 152, 2022, Pages 17-29, ISSN 0956-053X, https://doi.org/10.1016/j.wasman.2022.07.0240956-053Xhttps://hdl.handle.net/11323/1074210.1016/j.wasman.2022.07.0241879-2456Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/A route based on pyrolysis and physical activation with H2O and CO2 was proposed to reuse citrus waste traditionally discarded. The citrus wastes were orange peel (OP), mandarine peel (MP), rangpur lime peel (RLP), and sweet lime peel (SLP). The main aim was to use the solid products of this new route as adsorbents for Cu(II) ions. Copper ions are among the most important water pollutants due to their non-degradability, toxicity, and bioaccumulation, facilitating their inclusion and long persistence in the food chain. Besides the solid products, the liquid and gaseous fractions were evaluated for possible applications. Results showed that the citrus waste composition favored the thermochemical treatment. In addition, the following yields were obtained from the pyrolysis process: approximately 30 % wt. of biochar, 40 % wt. of non-condensable gases, and 30 % wt. of bio-oil. The biochars did not present a high specific surface area. Nevertheless, activated carbons with CO2 and H2O presented specific surface areas of 212.4 m2/g and 399.4 m2/g, respectively, and reached Cu(II) adsorption capacities of 28.2 mg g−1 and 27.8 mg g−1. The adsorption kinetic study revealed that the equilibrium was attained at 60 min and the pseudo-second-order model presented a better fit to the experimental data. The main generated gases were CO2, which could be employed as an activating agent for activated carbon production. d-limonene, used for food and medicinal purposes, was the main constituent of the bio-oil.13 páginasapplication/pdfengElsevier Ltd.United Kingdomhttps://www.sciencedirect.com/science/article/pii/S0956053X22003725Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limoneneArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Waste ManagementAburto, J., Moran, M., Galano, A., Torres-García, E., 2015. Non-isothermal pyrolysis of pectin: a thermochemical and kinetic approach. J. Anal. Appl. Pyrolysis 112, 94–104. https://doi.org/10.1016/j.jaap.2015.02.012.Ahmad, Z., Gao, B., Mosa, A., Yu, H., Yin, X., Bashir, A., Ghoveisi, H., Wang, S., 2018. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J. Clean. Prod. 180, 437–449. https://doi.org/ 10.1016/J.JCLEPRO.2018.01.133.Akhavan-Mahdavi, S., Sadeghi, R., Faridi Esfanjani, A., Hedayati, S., Shaddel, R., Dima, C., Malekjani, N., Boostani, S., Jafari, S.M., 2022. Nanodelivery systems for dlimonene; techniques and applications. Food Chem. 384, 132479 https://doi.org/ 10.1016/J.FOODCHEM.2022.132479.Alatzas, S., Moustakas, K., Malamis, D., Vakalis, S., 2019. Biomass potential from agricultural waste for energetic utilization in Greece. Energies 12 (6), 1095.Alvarez, J., Hooshdaran, B., Cortazar, M., Amutio, M., Lopez, G., Freire, F.B., Haghshenasfard, M., Hosseini, S.H., Olazar, M., 2018. Valorization of citrus wastes by fast pyrolysis in a conical spouted bed reactor. Fuel 224, 111–120. https://doi. org/10.1016/j.fuel.2018.03.028.Bajpai, P., 2016. Pretreatment of Lignocellulosic Biomass for Biofuel Production. Springer Singapore, Singapore. doi: 10.4324/9780429346644-1.Banerjee, S., Mukherjee, S., LaminKa-ot, A., Joshi, S.R., Mandal, T., Halder, G., 2016. Biosorptive uptake of Fe2+, Cu2+ and As5+ by activated biochar derived from Colocasia esculenta: isotherm, kinetics, thermodynamics, and cost estimation. J. Adv. Res. 7, 597–610. doi: 10.1016/J.JARE.2016.06.002.Bhattacharjee, N., Biswas, A.B., 2019. Pyrolysis of orange bagasse: comparative study and parametric influence on the product yield and their characterization. J. Environ. Chem. Eng. 7 (1), 102903.Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Reynel-Avila, ´ H.E., 2017. Adsorption Processes for Water Treatment and Purification. Springer International Publishing. doi: 10.1007/978-3-319-58136-1.Brunauer, S., Deming, L.S., Deming, W.E., Teller, E., 1940. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732. https://doi.org/ 10.1021/ja01864a025.Bruun, E.W., Ambus, P., Egsgaard, H., Hauggaard-Nielsen, H., 2012. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol. Biochem. 46, 73–79. https://doi.org/10.1016/j.soilbio.2011.11.019.Chakraborty, P., Banerjee, S., Kumar, S., Sadhukhan, S., Halder, G., 2018. Elucidation of ibuprofen uptake capability of raw and steam activated biochar of Aegle marmelos shell: isotherm, kinetics, thermodynamics and cost estimation. Process Saf. Environ. Prot. 118, 10–23. https://doi.org/10.1016/J.PSEP.2018.06.015.Chemat-Djenni, Z., Ferhat, M.A., Tomao, V., Chemat, F., 2010. Carotenoid extraction from tomato using a green solvent resulting from orange processing waste. J. Essent. Oil-Bearing Plants 13, 139–147. https://doi.org/10.1080/ 0972060X.2010.10643803.Chen, W., Gong, M., Li, K., Xia, M., Chen, Z., Xiao, H., Fang, Y., Chen, Y., Yang, H., Chen, H., 2020. Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH. Appl. Energy 278, 115730. https://doi.org/10.1016/J.APENERGY.2020.115730.Cheng, D., Ngo, H.H., Guo, W., Chang, S.W., Nguyen, D.D., Zhang, X., Varjani, S., Liu, Y., 2020. Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. Sci. Total Environ. 720, 137662 https:// doi.org/10.1016/J.SCITOTENV.2020.137662.Cortes, ˆ L.N., Druzian, S.P., Streit, A.F.M., Godinho, M., Perondi, D., Collazzo, G.C., Oliveira, M.L.S., Cadaval, T.R.S., Dotto, G.L., 2019. Biochars from animal wastes as alternative materials to treat colored effluents containing basic red 9. J. Environ. Chem. Eng. 7 (6), 103446.Cunha, M.R., Lima, E.C., Lima, D.R., da Silva, R.S., Thue, P.S., Seliem, M.K., Sher, F., dos Reis, G.S., Larsson, S.H., 2020. Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: use of activated carbon derived from Butia catarinensis. J. Environ. Chem. Eng. 8 (6), 104506.Cuong, D.V., Liu, N.L., Nguyen, V.A., Hou, C.H., 2019. Meso/micropore-controlled hierarchical porous carbon derived from activated biochar as a high-performance adsorbent for copper removal. Sci. Total Environ. 692, 844–853. https://doi.org/ 10.1016/J.SCITOTENV.2019.07.125.Da Silva, J.C.G., Andersen, S.L.F., Costa, R.L., Moreira, R. de F.P.M., Jos´e, H.J., 2019. Bioenergetic potential of Ponkan peel waste (Citrus reticulata) pyrolysis by kinetic modelling and product characterization. Biomass Bioenergy 131, 1–9. https://doi. org/10.1016/j.biombioe.2019.105401.Daful, A.G., R Chandraratne, M., 2020. Biochar Production From Biomass Waste-Derived Material. In: Encyclopedia of Renewable and Sustainable Materials. Elsevier, pp. 370–378. doi: 10.1016/B978-0-12-803581-8.11249-4.Dissanayake Herath, G.A., Poh, L.S., Ng, W.J., 2019. Statistical optimization of glyphosate adsorption by biochar and activated carbon with response surface methodology. Chemosphere 227, 533–540. https://doi.org/10.1016/J. CHEMOSPHERE.2019.04.078.Fan, J., He, Z., Ma, L.Q., Stoffella, P.J., 2011. Accumulation and availability of copper in citrus grove soils as affected by fungicide application. J. Soils Sediments 11, 639–648. https://doi.org/10.1007/s11368-011-0349-0.Fiore, V., Valenza, A., Di Bella, G., 2011. Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures. Compos. Sci. Technol. 71, 1138–1144. https://doi.org/10.1016/j.compscitech.2011.04.003.Foong, S.Y., Liew, R.K., Yang, Y., Cheng, Y.W., Yek, P.N.Y., Wan Mahari, W.A., Lee, X.Y., Han, C.S., Vo, D.V.N., Van Le, Q., Aghbashlo, M., Tabatabaei, M., Sonne, C., Peng, W., Lam, S.S., 2020. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chem. Eng. J. 389, 124401 https://doi.org/10.1016/j.cej.2020.124401.Franciski, M.A., Peres, E.C., Godinho, M., Perondi, D., Foletto, E.L., Collazzo, G.C., Dotto, G.L., 2018. Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption. Waste Manag. 78, 630–638. https://doi.org/10.1016/j.wasman.2018.06.040.Georgin, J., Franco, D.S.P., Netto, M.S., de Salomon, ´ Y.L.O., Piccilli, D.G.A., Foletto, E.L., Dotto, G.L., 2021. Adsorption and mass transfer studies of methylene blue onto comminuted seedpods from Luehea divaricata and Inga laurina. Environ. Sci. Pollut. Res. 28, 20854–20868. https://doi.org/10.1007/s11356-020-11957-9.Gonzalez-García, ´ P., 2018. Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew. Sustain. Energy Rev. 82, 1393–1414. https://doi.org/10.1016/j.rser.2017.04.117.Gopu, C., Gao, L., Volpe, M., Fiori, L., Goldfarb, J.L., 2018. Valorizing municipal solid waste: waste to energy and activated carbons for water treatment via pyrolysis. J. Anal. Appl. Pyrolysis 133, 48–58. https://doi.org/10.1016/j.jaap.2018.05.002.Goyal, H.B., Seal, D., Saxena, R.C., 2008. Bio-fuels from thermochemical conversion of renewable resources: a review. Renew. Sustain. Energy Rev. 12, 504–517. https:// doi.org/10.1016/J.RSER.2006.07.014.Guilhen, S.N., Maˇsek, O., Ortiz, N., Izidoro, J.C., Fungaro, D.A., 2019. Pyrolytic temperature evaluation of macauba biochar for uranium adsorption from aqueous solutions. Biomass Bioenergy 122, 381–390. https://doi.org/10.1016/j. biombioe.2019.01.008.Guo, S., Peng, J., Li, W., Yang, K., Zhang, L., Zhang, S., Xia, H., 2009. Effects of CO 2 activation on porous structures of coconut shell-based activated carbons. Appl. Surf. Sci. 255, 8443–8449. https://doi.org/10.1016/j.apsusc.2009.05.150.Gupta, S., Kua, H.W., Low, C.Y., 2018. Use of biochar as carbon sequestering additive in cement mortar. Cem. Concr. Compos. 87, 110–129. https://doi.org/10.1016/J. CEMCONCOMP.2017.12.009.Guti´errez, M.C., Siles, J.A., Diz, J., Chica, A.F., Martín, M.A., 2017. Modelling of composting process of different organic waste at pilot scale: biodegradability and odor emissions. Waste Manag. 59, 48–58. https://doi.org/10.1016/j. wasman.2016.09.045.Hernandes, P.T., Franco, D.S.P., Georgin, J., Salau, N.P.G., Dotto, G.L., 2022. Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium. J. Environ. Chem. Eng. 10 (3), 107408.Hu, X., Zhang, X., Ngo, H.H., Guo, W., Wen, H., Li, C., Zhang, Y., Ma, C., 2020. Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Sci. Total Environ. 707, 135544 https://doi.org/ 10.1016/J.SCITOTENV.2019.135544.Januszewicz, K., Kazimierski, P., Suchocki, T., Karda´s, D., Lewandowski, W., KlugmannRadziemska, E., Łuczak, J., 2020. Waste rubber pyrolysis: product yields and limonene concentration. Materials (Basel) 13, 1–14. https://doi.org/10.3390/ ma13194435.Jaria, G., Calisto, V., Esteves, V.I., Otero, M., 2022. Overview of relevant economic and environmental aspects of waste-based activated carbons aimed at adsorptive water treatments. J. Clean. Prod. 344, 130984 https://doi.org/10.1016/J. JCLEPRO.2022.130984.Joseph, L., Jun, B.M., Flora, J.R.V., Park, C.M., Yoon, Y., 2019. Removal of heavy metals from water sources in the developing world using low-cost materials: a review. Chemosphere 229, 142–159. https://doi.org/10.1016/j.chemosphere.2019.04.198.Katiyar, R., Patel, A.K., Nguyen, T.B., Singhania, R.R., Chen, C.W., Dong, C.D., 2021. Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Bioresour. Technol. 328, 124829 https://doi.org/ 10.1016/j.biortech.2021.124829.Kumar, M., Upadhyay, S.N., Mishra, P.K., 2019. A comparative study of thermochemical characteristics of lignocellulosic biomasses. Bioresour. Technol. Rep. 8, 100186 https://doi.org/10.1016/j.biteb.2019.100186.Kwoczynski, Z., Cmelík, ˇ J., 2021. Characterization of biomass wastes and its possibility of agriculture utilization due to biochar production by torrefaction process. J. Clean. Prod. 280, 124302 https://doi.org/10.1016/j.jclepro.2020.124302.Lam, S.S., Liew, R.K., Lim, X.Y., Ani, F.N., Jusoh, A., 2016. Fruit waste as feedstock for recovery by pyrolysis technique. Int. Biodeterior. Biodegrad. 113, 325–333. https:// doi.org/10.1016/j.ibiod.2016.02.021.Lam, S.S., Liew, R.K., Cheng, C.K., Rasit, N., Ooi, C.K., Ma, N.L., Ng, J.H., Lam, W.H., Chong, C.T., Chase, H.A., 2018. Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent. J. Environ. Manage. 213, 400–408. https://doi.org/10.1016/j.jenvman.2018.02.092Li, N., Bai, R., 2005. Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Sep. Purif. Technol. 42, 237–247. https://doi.org/10.1016/j. seppur.2004.08.002.Machado, L.M.M., Lütke, S.F., Perondi, D., Godinho, M., Oliveira, M.L.S., Collazzo, G.C., Dotto, G.L., 2020a. Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars. J. Environ. Chem. Eng. 8 (6), 104473.Machado, L.M.M., Lütke, S.F., Perondi, D., Godinho, M., Oliveira, M.L.S., Collazzo, G.C., Dotto, G.L., 2020b. Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes. Waste Manag. 113, 96–104. https:// doi.org/10.1016/j.wasman.2020.05.038.Marouˇsek, J., Gavurova, ´ B., 2022. Recovering phosphorous from biogas fermentation residues indicates promising economic results. Chemosphere 291, 133008. https:// doi.org/10.1016/J.CHEMOSPHERE.2021.133008.Marouˇsek, J., Marouˇskov´ a, A., 2021. Economic considerations on nutrient utilization in wastewater management. Energies 14 (12), 3468.Marouˇsek, J., Marouˇskova, ´ A., Kůs, T., 2020. Shower cooler reduces pollutants release in production of competitive cement substitute at low cost. Energy Sources Part A Recover. Util. Environ. Eff. 00, 1–10. https://doi.org/10.1080/ 15567036.2020.1825560.Marouˇsek, J., Trakal, L., 2022. Techno-economic analysis reveals the untapped potential of wood biochar. Chemosphere 291, 133000. https://doi.org/10.1016/J. CHEMOSPHERE.2021.133000.McKendry, P., 2002. Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37–46. https://doi.org/10.1016/S0960-8524(01)00118-3.Meseldzija, S., Petrovic, J., Onjia, A., Volkov-Husovic, T., Nesic, A., Vukelic, N., 2019. Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater. J. Ind. Eng. Chem. 75, 246–252. https://doi.org/ 10.1016/j.jiec.2019.03.031.Murali, R., Karthikeyan, A., Saravanan, R., 2013. Protective effects of d-limonene on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rats. Basic Clin. Pharmacol. Toxicol. 112, 175–181. https://doi.org/10.1111/bcpt.12010.Musule, R., Alarcon-Guti ´ ´errez, E., Houbron, E.P., Barcenas-Pazos, ´ G.M., del Rosario Pineda-Lopez, ´ M., Domínguez, Z., Sanchez-Vel ´ ´ asquez, L.R., 2016. Chemical composition of lignocellulosic biomass in the wood of Abies religiosa across an altitudinal gradient. J. Wood Sci. 62, 537–547. https://doi.org/10.1007/s10086- 016-1585-0.Negro, V., Ruggeri, B., Mancini, G., Fino, D., 2017. Recovery of D-limonene through moderate temperature extraction and pyrolytic products from orange peels. J. Chem. Technol. Biotechnol. 92, 1186–1191. https://doi.org/10.1002/jctb.5107.Obernberger, I., Thek, G., 2004. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 27, 653–669. https://doi.org/10.1016/j.biombioe.2003.07.006.Olah, J., Lengyel, P., Balogh, P., Harangi-R´ akos, M., Popp, J., 2017. The role of biofuels in food commodity prices volatility and land use. J. Compet. 9 (4), 81–93.Oliveira, F.R., Patel, A.K., Jaisi, D.P., Adhikari, S., Lu, H., Khanal, S.K., 2017. Environmental application of biochar: current status and perspectives. Bioresour. Technol. 246, 110–122.Orozco, R.S., Hernandez, ´ P.B., Ramírez, N.F., Morales, G.R., Luna, J.S., Montoya, A.J.C., 2012. Gamma irradiation induced degradation of orange peels. Energies 5, 3051–3063. https://doi.org/10.3390/en5083051.Orozco, R.S., Hern´ andez, P.B., Morales, G.R., Núnez, ˜ F.U., Villafuerte, J.O., Lugo, V.L., Ramírez, N.F., Díaz, C.E.B., Vazquez, ´ P.C., 2014. Characterization of lignocellulosic fruit waste as an alternative feedstock for bioethanol production. BioResources 9, 1873–1885.Pallar´es, J., Gonz´ alez-Cencerrado, A., Arauzo, I., 2018. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 115, 64–73. https://doi.org/10.1016/J. BIOMBIOE.2018.04.015.Pathak, P.D., Mandavgane, S.A., Kulkarni, B.D., 2017. Fruit peel waste: characterization and its potential uses. Curr. Sci. 113, 444–454. https://doi.org/10.18520/cs/v113/ i03/444-454.P´erez-Gomez, ´ E.O., García-Rosales, G., Longoria-Gandara, ´ L.C., Gomez-Vilchis, ´ J.C., 2022. Obtention of biochar-Ca nanoparticles using Citrus tangerina: a morphological, surface and study remotion of Aflatoxin AFB1. J. Hazard. Mater. 424, 127339 https://doi.org/10.1016/J.JHAZMAT.2021.127339.Perondi, D., Poletto, P., Restelatto, D., Manera, C., Silva, J.P., Junges, J., Collazzo, G.C., Dettmer, A., Godinho, M., Vilela, A.C.F., 2017. Steam gasification of poultry litter biochar for bio-syngas production. Process Saf. Environ. Prot. 109, 478–488. https:// doi.org/10.1016/j.psep.2017.04.029.Rajahmundry, G.K., Garlapati, C., Kumar, P.S., Alwi, R.S., Vo, D.V.N., 2021. Statistical analysis of adsorption isotherm models and its appropriate selection. Chemosphere 276, 130176. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130176.Rivas, B., Torrado, A., Torre, P., Converti, A., Domínguez, J.M., 2008. Submerged citric acid fermentation on orange peel autohydrolysate. J. Agric. Food Chem. 56, 2380–2387. https://doi.org/10.1021/jf073388r.Rom´ an, S., Valente Nabais, J.M., Ledesma, B., Gonzalez, ´ J.F., Laginhas, C., Titirici, M.M., 2013. Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Microporous Mesoporous Mater. 165, 127–133. https://doi.org/10.1016/j. micromeso.2012.08.006.Ruiz, B., Flotats, X., 2014. Citrus essential oils and their influence on the anaerobic digestion process: an overview. Waste Manag. 34, 2063–2079. https://doi.org/ 10.1016/J.WASMAN.2014.06.026.Ruthven, D., 1984. Principles of adsorption and adsorption processes.Sabela, M.I., Kunene, K., Kanchi, S., Xhakaza, N.M., Bathinapatla, A., Mdluli, P., Sharma, D., Bisetty, K., 2019. Removal of copper (II) from wastewater using green vegetable waste derived activated carbon: an approach to equilibrium and kinetic study. Arab. J. Chem. 12, 4331–4339. https://doi.org/10.1016/j. arabjc.2016.06.001.Saha, A., Sharabani, T., Evenstein, E., Nessim, G.D., Noked, M., Sharma, R., 2020. Probing electrochemical behaviour of lignocellulosic, orange peel derived hard carbon as anode for sodium ion battery. J. Electrochem. Soc. 167 (9), 090505.Selvaraju, G., Bakar, N.K.A., 2017. Production of a new industrially viable greenactivated carbon from Artocarpus integer fruit processing waste and evaluation of its chemical, morphological and adsorption properties. J. Clean. Prod. 141, 989–999. https://doi.org/10.1016/J.JCLEPRO.2016.09.056.Shakya, A., Núnez-delgado, ˜ A., Agarwal, T., 2019. Biochar synthesis from sweet lime peel for hexavalent chromium remediation from aqueous solution. J. Environ. Manage. 251, 109570 https://doi.org/10.1016/j.jenvman.2019.109570.Sheng, Y., Zhu, L., 2018. Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci. Total Environ. 622–623, 1391–1399. https:// doi.org/10.1016/J.SCITOTENV.2017.11.337.Shimada, N., Kawamoto, H., Saka, S., 2008. Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis. J. Anal. Appl. Pyrolysis 81, 80–87. https:// doi.org/10.1016/j.jaap.2007.09.005.Sing, K., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603–619.Skapa, ˇ S., Vochozka, M., 2019. Waste energy recovery improves price competitiveness of artificial forage from rapeseed straw. Clean Technol. Environ. Policy 21, 1165–1171. https://doi.org/10.1007/s10098-019-01697-x.Stavkov ´ ´ a, J., Marouˇsek, J., 2021. Novel sorbent shows promising financial results on P recovery from sludge water. Chemosphere 276, 130097. https://doi.org/10.1016/J. CHEMOSPHERE.2021.130097.Streit, A.F.M., Collazzo, G.C., Druzian, S.P., Verdi, R.S., Foletto, E.L., Oliveira, L.F.S., Dotto, G.L., 2021. Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere 262, 128322. https://doi.org/10.1016/j. chemosphere.2020.128322.Sukumar, V., Manieniyan, V., Senthilkumar, R., Sivaprakasam, S., 2020. Production of bio oil from sweet lime empty fruit bunch by pyrolysis. Renew. Energy 146, 309–315. https://doi.org/10.1016/j.renene.2019.06.156.Sun, J., Zhang, Z., Ji, J., Dou, M., Wang, F., 2017. Removal of Cr6+ from wastewater via adsorption with high-specific-surface-area nitrogen-doped hierarchical porous carbon derived from silkworm cocoon. Appl. Surf. Sci. 405, 372–379. https://doi. org/10.1016/J.APSUSC.2017.02.044.Taghizadeh-Alisaraei, A., Hosseini, S.H., Ghobadian, B., Motevali, A., 2017. Biofuel production from citrus wastes: a feasibility study in Iran. Renew. Sustain. Energy Rev. 69, 1100–1112.Terragreen Global Waste, 2022. Solvable Problem as a Renewable Energy Resource [WWW Document]. Available from: <https://medium.com/@support_61820/ global-waste-solvable-problem-as-a-renewable-energy-resource-5d8f05cc1a7d>.Thue, P.S., Umpierres, C.S., Lima, E.C., Lima, D.R., Machado, F.M., dos Reis, G.S., da Silva, R.S., Pavan, F.A., Tran, H.N., 2020. Single-step pyrolysis for producing magnetic activated carbon from tucum˜ a (Astrocaryum aculeatum) seed and nickel (II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol. J. Hazard. Mater. 398, 122903 https://doi.org/10.1016/j. jhazmat.2020.122903.Tran, H.N., You, S.J., Chao, H.P., 2016. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Manag. Res. 34, 129–138. doi: 10.1177/0734242X15615698.Triantafyllidis, V., Zotos, A., Kosma, C., Kokkotos, E., 2020. Environmental implications from long-term citrus cultivation and wide use of Cu fungicides in mediterranean soils. Water. Air. Soil Pollut. 231 https://doi.org/10.1007/s11270-020-04577-z.Tripathi, M., Sahu, J.N., Ganesan, P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew. Sustain. Energy Rev. 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122.Trubetskaya, A., Surup, G., Shapiro, A., Bates, R.B., 2017. Modeling the influence of potassium content and heating rate on biomass pyrolysis. Appl. Energy 194, 199–211. https://doi.org/10.1016/j.apenergy.2017.03.009.Uddin, M.K., Rao, R.A.K., Chandra Mouli, K.V.V., 2018. The artificial neural network and Box-Behnken design for Cu2+ removal by the pottery sludge from water samples: equilibrium, kinetic and thermodynamic studies. J. Mol. Liq. 266, 617–627. https:// doi.org/10.1016/J.MOLLIQ.2018.06.098.Van Soest, P.J., Wine, R.H., 1968. Determination of lignin and cellulose in acid-detergent fiber with permanganate. J. Assoc. Off. Anal. Chem. 51, 780–785. https://doi.org/ 10.1093/jaoac/51.4.780.Varma, A.K., Mondal, P., 2017. Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Ind. Crops Prod. 95, 704–717. https://doi.org/10.1016/j.indcrop.2016.11.039.Vochozka, M., Rowland, Z., Suler, P., Marousek, J., 2020. The influence of the international price of oil on the value of the EUR/USD exchange rate. J. Compet. 12 (2), 167–190.Volpe, M., Panno, D., Volpe, R., Messineo, A., 2015. Upgrade of citrus waste as a biofuel via slow pyrolysis. J. Anal. Appl. Pyrolysis 115, 66–76. https://doi.org/10.1016/j. jaap.2015.06.015.Wang, X., Li, X., Liu, G., He, Y., Chen, C., Liu, X., Li, G., Gu, Y., Zhao, Y., 2019. Mixed heavy metal removal from wastewater by using discarded mushroom-stick biochar: adsorption properties and mechanisms. Environ. Sci. Process. Impacts 21, 584–592. https://doi.org/10.1039/c8em00457a.Wang, J., Wang, S., 2019. Preparation, modification and environmental application of biochar: a review. J. Clean. Prod. 227, 1002–1022. https://doi.org/10.1016/j. jclepro.2019.04.282.Xie, R., Jin, Y., Chen, Y., Jiang, W., 2017. The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon. Water Sci. Technol. 76, 3022–3034. https://doi.org/10.2166/wst.2017.471.Xiong, X., Yu, I.K.M., Tsang, D.C.W., Bolan, N.S., Sik Ok, Y., Igalavithana, A.D., Kirkham, M.B., Kim, K.H., Vikrant, K., 2019. Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects. Chem. Eng. J. 375, 121983 https://doi.org/10.1016/J.CEJ.2019.121983.Xu, J., Chen, L., Qu, H., Jiao, Y., Xie, J., Xing, G., 2014. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H 3 PO 4. Appl. Surf. Sci. 320, 674–680. https://doi.org/10.1016/j.apsusc.2014.08.178.Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788. https://doi.org/10.1016/j. fuel.2006.12.013.Zazycki, M.A., Godinho, M., Perondi, D., Foletto, E.L., Collazzo, G.C., Dotto, G.L., 2018. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J. Clean. Prod. 171, 57–65. https://doi.org/ 10.1016/j.jclepro.2017.10.007.Zhang, H., Zhu, Y., Liu, Q., Li, X., 2022. Preparation of porous carbon materials from biomass pyrolysis vapors for hydrogen storage. Appl. Energy 306, 118131. https:// doi.org/10.1016/J.APENERGY.2021.118131.Zhao, D., Dai, Y., Chen, K., Sun, Y., Yang, F., Chen, K., 2013. Effect of potassium inorganic and organic salts on the pyrolysis kinetics of cigarette paper. J. Anal. Appl. Pyrolysis 102, 114–123. https://doi.org/10.1016/j.jaap.2013.03.007.Zhu, T., Li, Q., Xu, L., Zhang, Q., Lv, W., Yu, H., Feng, T., Qian, B., 2021. Stratification of lung adenocarcinoma patients for d-limonene intervention based on the expression signature genes. Food Funct. 12, 7214–7226. https://doi.org/10.1039/d0fo02675a.2917152AdsorbentBio-oilCu(II) adsorptionD-limonenePhysical activationPublicationORIGINALPyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene.pdfPyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene.pdfArtículoapplication/pdf4632975https://repositorio.cuc.edu.co/bitstreams/da769dc7-80bb-407d-95e5-6987cd8ac5d0/download08566cf0bc49acea2f9d42c54884e2dcMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/e5506629-7b75-4550-9742-b9c7325166f4/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTPyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene.pdf.txtPyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene.pdf.txtExtracted texttext/plain90609https://repositorio.cuc.edu.co/bitstreams/c9ca6150-9e93-4e1a-9b25-fd21ab865880/download0e0d3632e5b5edd1463e71919485091eMD53THUMBNAILPyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene.pdf.jpgPyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene.pdf.jpgGenerated Thumbnailimage/jpeg14476https://repositorio.cuc.edu.co/bitstreams/b7509390-817f-45cb-8710-e43fe047ef50/downloade334709b101d443f9b593784f780ae9cMD5411323/10742oai:repositorio.cuc.edu.co:11323/107422024-09-16 16:39:28.823https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 Elsevier Ltd. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |