New concept of safeprocess based on a fault detection methodology: super alarms
Industrial plants, especially on mining, metal processing, energy and chemical/petrochemical processes require integrated management of all the events that may cause accidents and translate into alarms. Process alarm management can be formulated as an eventbased pattern recognition problem in which...
- Autores:
-
Vasquez, John William
Pérez-Zúñiga, Gustavo
Sotomayor-Moriano, Javier
Muñoz, Yecid A.
Ospino, A.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6013
- Acceso en línea:
- https://hdl.handle.net/11323/6013
https://repositorio.cuc.edu.co/
- Palabra clave:
- Alarm management
Protection layers
Safeprocess
Diagnosis
Super alarms
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_25262802560360282057107a17dfd57e |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6013 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
New concept of safeprocess based on a fault detection methodology: super alarms |
title |
New concept of safeprocess based on a fault detection methodology: super alarms |
spellingShingle |
New concept of safeprocess based on a fault detection methodology: super alarms Alarm management Protection layers Safeprocess Diagnosis Super alarms |
title_short |
New concept of safeprocess based on a fault detection methodology: super alarms |
title_full |
New concept of safeprocess based on a fault detection methodology: super alarms |
title_fullStr |
New concept of safeprocess based on a fault detection methodology: super alarms |
title_full_unstemmed |
New concept of safeprocess based on a fault detection methodology: super alarms |
title_sort |
New concept of safeprocess based on a fault detection methodology: super alarms |
dc.creator.fl_str_mv |
Vasquez, John William Pérez-Zúñiga, Gustavo Sotomayor-Moriano, Javier Muñoz, Yecid A. Ospino, A. |
dc.contributor.author.spa.fl_str_mv |
Vasquez, John William Pérez-Zúñiga, Gustavo Sotomayor-Moriano, Javier Muñoz, Yecid A. Ospino, A. |
dc.subject.spa.fl_str_mv |
Alarm management Protection layers Safeprocess Diagnosis Super alarms |
topic |
Alarm management Protection layers Safeprocess Diagnosis Super alarms |
description |
Industrial plants, especially on mining, metal processing, energy and chemical/petrochemical processes require integrated management of all the events that may cause accidents and translate into alarms. Process alarm management can be formulated as an eventbased pattern recognition problem in which temporal patterns are used to characterize different typical situations, particularly at startup and shutdown stages. In this paper, a new layer based on a diagnosis process is proposed over the typical layers of protection in industrial processes. Considering the alarms and the actions of the standard operating procedure as discrete events, the diagnosis step relies on situation recognition to provide the operators with relevant information about the failures inducing the alarm flow. The new concept of super alarms is based on a methodology with a diagnosis step that permits generate these types of superior alarms. For example, the Chronicle Based Alarm Management (CBAM) methodology involves different techniques to take the hybrid aspect and the standard operational procedures of the concerned processes into account. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-02-07T20:30:39Z |
dc.date.available.none.fl_str_mv |
2020-02-07T20:30:39Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2405-8963 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6013 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2405-8963 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/6013 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.1016/j.ifacol.2019.09.192 |
dc.relation.references.spa.fl_str_mv |
Agudelo, C. (2015). Integraci´on de t´ecnicas y las secuencias de alarmas para la detecci´on y el diagnostico de fallos. Doctoral Thesis, Universidad Politecnica De Valencia - Spain. Astolfi, A. and Praly, L. (2006). Global complete observability and output- to-state stability imply the existence of a globally convergent observer. Mathematics of Control Signals and Systems, Vol:18, ISSN:0932-4194, Pages:32-65. Bayoudh, M., Trav´e-Massuy`es, L., and Olive, X. (2006). Hybrid systems diagnosability by abstracting faulty continuous dynamics. In Proc. of the 17th International Workshop on Principles of Diagnosis, pages 915, 2006. Beebe, D., Ferrer, S., and Logerot, D. (2013). The connection of peak alarm rates to plant incidents and what you can do to minimize. Process Safety Progress. Chen, Y. and Lee, J. (2011). Autonomous mining for alarm correlation patterns based on time-shift similarity clustering in manufacturing system. 2011 IEEE International Conference on Prognostics and Health Management. Ding, S. (2008). Model-based fault diagnosis techniques design schemes, algorithms, and tools. ISBN 978-3-54076303-1. Springer 2008. Fernandez, I., Camacho, A., Gasco, C., Macias, A., and M.A. Martin, G. Reyes, J.R. (2012). Seguridad funcional en instalaciones de proceso: sistemas, instrumentados de seguridad y an´alisis SIL. Ediciones D´ıaz de Santos, S.A. Garcia, E., Agudelo, C., and Morant, F. (2012). Secuencias de alarmas para detecci´on y diagn´ostico de fallos. Universidad Politcnica de Valencia, 460022 Spain. 3er Congreso internacional de ingeniera mecatrnica. UNAB 2012. Habibi, E. and Hollifiled, B. (2006). Alarm systems greatly affect offshore facilities amid high oil prices. World Oil, septiembre de 2006, pgs. 101-105. Hollender, M., Skovholt, T., and Evans, J. (2016). Holistic alarm management throughout the plant lifecycle. In 2016 Petroleum and Chemical Industry Conference Europe (PCIC Europe), 1–6. doi: 10.1109/PCICEurope.2016.7604645. Koscielny, J.M. and Bartys, M. (2015). The requirements for a new layer in the industrial safety systems. IFAC-PapersOnLine, 48(21), 1333 – 1338. doi: https://doi.org/10.1016/j.ifacol.2015.09.710. 9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2015. Lew, J., Juang, J., and Keel, H. (1994). Quantification of parametric uncertainty via an interval model. Journal of Guidance Control and Dynamics - J GUID CONTROL DYNAM. 01/1994; 17(6):1212-1218. Magni, L., Scattolini, R., and Rossi, C. (2000). A fault detection and isolation method for complex industrial systems. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans ( Volume: 30, Issue: 6, Nov 2000). Palomeque, D. (2005). Enfoque integral y herramientas de gestin. Petrotecnia, Vol 46, pp. 42-48. Patton, R.J. and Chen, J. (1997). Observer-based fault detection and isolation: robustness and applications. Control Engineering Practice, vol. 5, no. 5, pp. 671682. Rodrigo, V., Chioua, M., Hagglund, T., and Hollender, M. (2016). Causal analysis for alarm flood reduction. IFAC-PapersOnLine, 49(7), 723 – 728. doi: https://doi.org/10.1016/j.ifacol.2016.07.269. 11th IFAC Symposium on Dynamics and Control of Process SystemsIncluding Biosystems DYCOPS-CAB 2016. Sarmiento, H. and Isaza, C. (2012). Identification and estimation of functional states in drinking water plant based on fuzzy clustering. 22st European Symposium on Computer Aided Process Engineering. pp 1317 to 1327. Vasquez, J.W. (2017). Chronicle based alarm management. Doctoral thesis of Automatic Control Engineering. INSA Toulouse. Vasquez, J., Prada, J., Agudelo, C., and Jimenez, F. (2013). Analysis of alarm management in startups and shutdowns for oil refining processes. IEEE Explorer. Engineering Mechatronics and Automation (CIIMA), 2013 II International Congress, Bogota. Vasquez, J., Trav´e-Massuy`es, L., Subias, A., Jimenez, F., and Agudelo, C. (2015). Chronicle based alarm management in startup and shutdown stages. International Workshop on Principles of Diagnosis (DX-2015), Paris. Vasquez, J., Trav´e-Massuy`es, L., Subias, A., Jimenez, F., and Agudelo, C. (2016). Alarm management based on diagnosis. 4th IFAC International Conference on Intelligent Control and Automation Sciences (ICONS 2016), Reims. Vasquez, J., Trav´e-Massuy`es, L., Subias, A., Jimenez, F., and Agudelo, C. (2017). Enhanced chronicle learning for process supervision. 20th IFAC World Congress, IFACPapersOnLine. Volume 50, Issue 1, July 2017, Pages 5035-5040. Vries, R. (1990). An automated methodology for generating a fault tree. IEEE Transactions on Reliability. Yang, F. and Xiao, D. (2012). Progress in root cause and fault propagation analysis of large scale industrial processes. Journal of Control Science and Engineering. Volume 2012 (2012), Article ID 478373, 10 pages. Zhu, J., Shu, Y., Zhao, J., and Yang, F. (2013). A dynamic alarm management strategy for chemical process transitions. Journal of Loss Prevention in the Process Industries. Volume 30, July 2014, Pages 207-218. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
IFAC-PapersOnLine |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/5b14bcea-1db2-4c5f-97b7-0270a1fdd396/download https://repositorio.cuc.edu.co/bitstreams/f3883efb-41b9-45a2-a265-9a8ce7838861/download https://repositorio.cuc.edu.co/bitstreams/39502187-2cef-45e7-9e53-626ebdc614fb/download https://repositorio.cuc.edu.co/bitstreams/7f40b008-31d1-464e-8450-10cc0a01c056/download https://repositorio.cuc.edu.co/bitstreams/04da59c8-dbf5-4dce-a2f9-78d4d1091e5f/download |
bitstream.checksum.fl_str_mv |
493a13a6f7ea05d39411b7a895bd15e5 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 c0725cc46b5a8c33b6ecb5743d0114da bda3daf0b53a8554fd7bf7b5635cd644 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760801844822016 |
spelling |
Vasquez, John WilliamPérez-Zúñiga, GustavoSotomayor-Moriano, JavierMuñoz, Yecid A.Ospino, A.2020-02-07T20:30:39Z2020-02-07T20:30:39Z20192405-8963https://hdl.handle.net/11323/6013Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Industrial plants, especially on mining, metal processing, energy and chemical/petrochemical processes require integrated management of all the events that may cause accidents and translate into alarms. Process alarm management can be formulated as an eventbased pattern recognition problem in which temporal patterns are used to characterize different typical situations, particularly at startup and shutdown stages. In this paper, a new layer based on a diagnosis process is proposed over the typical layers of protection in industrial processes. Considering the alarms and the actions of the standard operating procedure as discrete events, the diagnosis step relies on situation recognition to provide the operators with relevant information about the failures inducing the alarm flow. The new concept of super alarms is based on a methodology with a diagnosis step that permits generate these types of superior alarms. For example, the Chronicle Based Alarm Management (CBAM) methodology involves different techniques to take the hybrid aspect and the standard operational procedures of the concerned processes into account.Vasquez, John William-will be generated-orcid-0000-0003-3710-1086-600Pérez-Zúñiga, GustavoSotomayor-Moriano, Javier-will be generated-orcid-0000-0003-0782-0530-600Muñoz, Yecid A.Ospino, A.engIFAC-PapersOnLinehttps://doi.org/10.1016/j.ifacol.2019.09.192Agudelo, C. (2015). Integraci´on de t´ecnicas y las secuencias de alarmas para la detecci´on y el diagnostico de fallos. Doctoral Thesis, Universidad Politecnica De Valencia - Spain.Astolfi, A. and Praly, L. (2006). Global complete observability and output- to-state stability imply the existence of a globally convergent observer. Mathematics of Control Signals and Systems, Vol:18, ISSN:0932-4194, Pages:32-65.Bayoudh, M., Trav´e-Massuy`es, L., and Olive, X. (2006). Hybrid systems diagnosability by abstracting faulty continuous dynamics. In Proc. of the 17th International Workshop on Principles of Diagnosis, pages 915, 2006.Beebe, D., Ferrer, S., and Logerot, D. (2013). The connection of peak alarm rates to plant incidents and what you can do to minimize. Process Safety Progress.Chen, Y. and Lee, J. (2011). Autonomous mining for alarm correlation patterns based on time-shift similarity clustering in manufacturing system. 2011 IEEE International Conference on Prognostics and Health Management.Ding, S. (2008). Model-based fault diagnosis techniques design schemes, algorithms, and tools. ISBN 978-3-54076303-1. Springer 2008.Fernandez, I., Camacho, A., Gasco, C., Macias, A., and M.A. Martin, G. Reyes, J.R. (2012). Seguridad funcional en instalaciones de proceso: sistemas, instrumentados de seguridad y an´alisis SIL.Ediciones D´ıaz de Santos, S.A. Garcia, E., Agudelo, C., and Morant, F. (2012). Secuencias de alarmas para detecci´on y diagn´ostico de fallos. Universidad Politcnica de Valencia, 460022 Spain. 3er Congreso internacional de ingeniera mecatrnica. UNAB 2012.Habibi, E. and Hollifiled, B. (2006). Alarm systems greatly affect offshore facilities amid high oil prices. World Oil, septiembre de 2006, pgs. 101-105.Hollender, M., Skovholt, T., and Evans, J. (2016). Holistic alarm management throughout the plant lifecycle. In 2016 Petroleum and Chemical Industry Conference Europe (PCIC Europe), 1–6. doi: 10.1109/PCICEurope.2016.7604645.Koscielny, J.M. and Bartys, M. (2015). The requirements for a new layer in the industrial safety systems. IFAC-PapersOnLine, 48(21), 1333 – 1338. doi: https://doi.org/10.1016/j.ifacol.2015.09.710. 9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2015.Lew, J., Juang, J., and Keel, H. (1994). Quantification of parametric uncertainty via an interval model. Journal of Guidance Control and Dynamics - J GUID CONTROL DYNAM. 01/1994; 17(6):1212-1218.Magni, L., Scattolini, R., and Rossi, C. (2000). A fault detection and isolation method for complex industrial systems. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans ( Volume: 30, Issue: 6, Nov 2000).Palomeque, D. (2005). Enfoque integral y herramientas de gestin. Petrotecnia, Vol 46, pp. 42-48.Patton, R.J. and Chen, J. (1997). Observer-based fault detection and isolation: robustness and applications. Control Engineering Practice, vol. 5, no. 5, pp. 671682.Rodrigo, V., Chioua, M., Hagglund, T., and Hollender, M. (2016). Causal analysis for alarm flood reduction. IFAC-PapersOnLine, 49(7), 723 – 728. doi: https://doi.org/10.1016/j.ifacol.2016.07.269. 11th IFAC Symposium on Dynamics and Control of Process SystemsIncluding Biosystems DYCOPS-CAB 2016.Sarmiento, H. and Isaza, C. (2012). Identification and estimation of functional states in drinking water plant based on fuzzy clustering. 22st European Symposium on Computer Aided Process Engineering. pp 1317 to 1327.Vasquez, J.W. (2017). Chronicle based alarm management. Doctoral thesis of Automatic Control Engineering. INSA Toulouse.Vasquez, J., Prada, J., Agudelo, C., and Jimenez, F. (2013). Analysis of alarm management in startups and shutdowns for oil refining processes. IEEE Explorer. Engineering Mechatronics and Automation (CIIMA), 2013 II International Congress, Bogota.Vasquez, J., Trav´e-Massuy`es, L., Subias, A., Jimenez, F., and Agudelo, C. (2015). Chronicle based alarm management in startup and shutdown stages. International Workshop on Principles of Diagnosis (DX-2015), Paris.Vasquez, J., Trav´e-Massuy`es, L., Subias, A., Jimenez, F., and Agudelo, C. (2016). Alarm management based on diagnosis. 4th IFAC International Conference on Intelligent Control and Automation Sciences (ICONS 2016), Reims.Vasquez, J., Trav´e-Massuy`es, L., Subias, A., Jimenez, F., and Agudelo, C. (2017). Enhanced chronicle learning for process supervision. 20th IFAC World Congress, IFACPapersOnLine. Volume 50, Issue 1, July 2017, Pages 5035-5040.Vries, R. (1990). An automated methodology for generating a fault tree. IEEE Transactions on Reliability.Yang, F. and Xiao, D. (2012). Progress in root cause and fault propagation analysis of large scale industrial processes. Journal of Control Science and Engineering. Volume 2012 (2012), Article ID 478373, 10 pages.Zhu, J., Shu, Y., Zhao, J., and Yang, F. (2013). A dynamic alarm management strategy for chemical process transitions. Journal of Loss Prevention in the Process Industries. Volume 30, July 2014, Pages 207-218.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Alarm managementProtection layersSafeprocessDiagnosisSuper alarmsNew concept of safeprocess based on a fault detection methodology: super alarmsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALNew concept of safeprocess based on a fault detection methodology. Super Alarms.pdfNew concept of safeprocess based on a fault detection methodology. Super Alarms.pdfapplication/pdf850410https://repositorio.cuc.edu.co/bitstreams/5b14bcea-1db2-4c5f-97b7-0270a1fdd396/download493a13a6f7ea05d39411b7a895bd15e5MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/f3883efb-41b9-45a2-a265-9a8ce7838861/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/39502187-2cef-45e7-9e53-626ebdc614fb/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILNew concept of safeprocess based on a fault detection methodology. Super Alarms.pdf.jpgNew concept of safeprocess based on a fault detection methodology. Super Alarms.pdf.jpgimage/jpeg76958https://repositorio.cuc.edu.co/bitstreams/7f40b008-31d1-464e-8450-10cc0a01c056/downloadc0725cc46b5a8c33b6ecb5743d0114daMD55TEXTNew concept of safeprocess based on a fault detection methodology. Super Alarms.pdf.txtNew concept of safeprocess based on a fault detection methodology. Super Alarms.pdf.txttext/plain68849https://repositorio.cuc.edu.co/bitstreams/04da59c8-dbf5-4dce-a2f9-78d4d1091e5f/downloadbda3daf0b53a8554fd7bf7b5635cd644MD5611323/6013oai:repositorio.cuc.edu.co:11323/60132024-09-17 12:46:06.238http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |