Bio-2,3-butanediol production from banana waste: Preliminary techno-economic evaluation of processing strategies

This study evaluates different fermentation strategies to produce 2,3-butanediol (2,3-BD) from banana industry waste, such as whole bananas (fruit + peels) and banana peels, selecting the most favorable from a technical and economic point of view. Both residues have enough free sugars (17.8 %–35.8 %...

Full description

Autores:
Fernández-Delgado, Marina
Rodríguez-Sarmiento, Mercedes
Coral Medina, Jesus David
Lucas, Susana
García-Cubero, M. Teresa
Coca, Mónica
López-Linares, Juan Carlos
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13428
Acceso en línea:
https://hdl.handle.net/11323/13428
https://repositorio.cuc.edu.co/
Palabra clave:
2,3-Butanediol
Banana waste
Sustainable bioprocessing
Simultaneous saccharification and fermentation (SSF)
Sequential hydrolysis and fermentation (SHF)
Economic analysis
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_2439cb88d33cc9e9aaceb4e70137eeb9
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13428
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Bio-2,3-butanediol production from banana waste: Preliminary techno-economic evaluation of processing strategies
title Bio-2,3-butanediol production from banana waste: Preliminary techno-economic evaluation of processing strategies
spellingShingle Bio-2,3-butanediol production from banana waste: Preliminary techno-economic evaluation of processing strategies
2,3-Butanediol
Banana waste
Sustainable bioprocessing
Simultaneous saccharification and fermentation (SSF)
Sequential hydrolysis and fermentation (SHF)
Economic analysis
title_short Bio-2,3-butanediol production from banana waste: Preliminary techno-economic evaluation of processing strategies
title_full Bio-2,3-butanediol production from banana waste: Preliminary techno-economic evaluation of processing strategies
title_fullStr Bio-2,3-butanediol production from banana waste: Preliminary techno-economic evaluation of processing strategies
title_full_unstemmed Bio-2,3-butanediol production from banana waste: Preliminary techno-economic evaluation of processing strategies
title_sort Bio-2,3-butanediol production from banana waste: Preliminary techno-economic evaluation of processing strategies
dc.creator.fl_str_mv Fernández-Delgado, Marina
Rodríguez-Sarmiento, Mercedes
Coral Medina, Jesus David
Lucas, Susana
García-Cubero, M. Teresa
Coca, Mónica
López-Linares, Juan Carlos
dc.contributor.author.none.fl_str_mv Fernández-Delgado, Marina
Rodríguez-Sarmiento, Mercedes
Coral Medina, Jesus David
Lucas, Susana
García-Cubero, M. Teresa
Coca, Mónica
López-Linares, Juan Carlos
dc.subject.proposal.eng.fl_str_mv 2,3-Butanediol
Banana waste
Sustainable bioprocessing
Simultaneous saccharification and fermentation (SSF)
Sequential hydrolysis and fermentation (SHF)
Economic analysis
topic 2,3-Butanediol
Banana waste
Sustainable bioprocessing
Simultaneous saccharification and fermentation (SSF)
Sequential hydrolysis and fermentation (SHF)
Economic analysis
description This study evaluates different fermentation strategies to produce 2,3-butanediol (2,3-BD) from banana industry waste, such as whole bananas (fruit + peels) and banana peels, selecting the most favorable from a technical and economic point of view. Both residues have enough free sugars (17.8 %–35.8 %), glucan (11.0 %–14.2 %) and hemicellulose (2.8 %–6.3 %), to be promising substrates for 2,3-BD fermentation. Saccharification was studied by comparing enzymatic hydrolysis, hydrothermal pretreatment, and hydrothermal pretreatment followed by enzymatic hydrolysis. Different fermentation scenarios were also compared regarding the 2,3-BD yield and productivity: Separate Hydrolysis and Fermentation (SHF), Simultaneous Saccharification and Fermentation (SSF), and direct fermentation without prior saccharification using Paenibacillus polymyxa DSM-365 as the fermenting microorganism. The results showed that the pretreatment step was not necessary to improve the release of fermentable sugars. Enzymatic hydrolysis was the most effective alternative for maximizing sugar recovery, reaching sugar concentrations of 18.1 g/L (recovery: 92.5 %) for banana peels and 33.3 g/L (recovery: ∼100 %) for whole bananas. The SSF strategy led to higher 2,3-BD concentrations of 15.0 g/L and 26.6 g/L for banana peels and whole bananas, respectively. The preliminary economic analysis indicated that SSF and direct fermentation could be the more cost-effective process alternatives for banana peels and whole bananas, respectively. Thus, it was demonstrated that banana waste is an interesting resource for the production of 2,3-BD. The bioprocess can be competitive when using a low-cost raw material and reducing the number of process steps compared to traditional technologies.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-03T16:48:57Z
dc.date.available.none.fl_str_mv 2024-10-03T16:48:57Z
dc.date.issued.none.fl_str_mv 2024-05
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Marina Fernández-Delgado, Mercedes Rodríguez-Sarmiento, Jesus David Coral Medina, Susana Lucas, M. Teresa García-Cubero, Mónica Coca, Juan Carlos López-Linares, Bio-2,3-butanediol production from banana waste: Preliminary techno-economic evaluation of processing strategies, Biomass and Bioenergy, Volume 184, 2024, 107218, ISSN 0961-9534, https://doi.org/10.1016/j.biombioe.2024.107218.
dc.identifier.issn.none.fl_str_mv 0961-9534
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13428
dc.identifier.doi.none.fl_str_mv 10.1016/j.biombioe.2024.107218
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Marina Fernández-Delgado, Mercedes Rodríguez-Sarmiento, Jesus David Coral Medina, Susana Lucas, M. Teresa García-Cubero, Mónica Coca, Juan Carlos López-Linares, Bio-2,3-butanediol production from banana waste: Preliminary techno-economic evaluation of processing strategies, Biomass and Bioenergy, Volume 184, 2024, 107218, ISSN 0961-9534, https://doi.org/10.1016/j.biombioe.2024.107218.
0961-9534
10.1016/j.biombioe.2024.107218
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13428
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Biomass and bioenergy
dc.relation.references.none.fl_str_mv [1] G. Gupta, M. Baranwal, S. Saxena, M.S. Reddy, Utilization of banana waste as a resource material for biofuels and other value-added products, Biomass Convers Biorefin (2022), https://doi.org/10.1007/s13399-022-02306-6
[2] FAOstat, Crops and Livestock Products, 2023. https://www.fao.org/faostat/en/ #data/QCL/visualize. (Accessed 6 July 2023).
[3] Ministerio de Agricultura y Desarrollo Rural de Colombia, Banana chain. https://si oc.minagricultura.gov.co/Platano/Documentos/2021-06-30%20Cifras%20Sectori ales.pdf, 2023. (Accessed 30 October 2023).
[4] FAO, FAO Statistics, 2023. https://www.fao.org/faostat/en/#home. (Accessed 30 October 2023).
[5] C.A. Guevara, H.A. Arenas, A. Mejía, C.A. Pel´ aez, Biogas and bioethanol production from non-exportable low quality banana, Inf. Tecnol. 23 (2012) 19–30, https://doi. org/10.4067/S0718-07642012000200004.
[6] M. Castillo, M.J.K. de Guzman, J.M. Aberilla, Environmental sustainability assessment of banana waste utilization into food packaging and liquid fertilizer, Sustain. Prod. Consum. 37 (2023) 356–368, https://doi.org/10.1016/j. spc.2023.03.012.
[7] J.A. Serna-Jimenez, F. Luna-Lama, A. Caballero, M. de los A. Martín, A.F. Chica, J. A. Siles, Valorisation of banana peel waste as a precursor material for different renewable energy systems, Biomass Bioenergy 155 (2021), https://doi.org/ 10.1016/j.biombioe.2021.106279.
[8] H. Mohd Zaini, J. Roslan, S. Saallah, E. Munsu, N.S. Sulaiman, W. Pindi, Banana peels as a bioactive ingredient and its potential application in the food industry, J. Funct.Foods 92 (2022), https://doi.org/10.1016/j.jff.2022.105054.
[9] N. Ayala-Ruíz, D.H. Malagon-Romero, ´ H.A. Milquez-Sanabria, Exergoeconomic evaluation of a banana waste pyrolysis plant for biofuel production, J. Clean. Prod. 359 (2022), https://doi.org/10.1016/j.jclepro.2022.132108.
[10] R.R. Mishra, B. Samantaray, B. Chandra Behera, B.R. Pradhan, S. Mohapatra, Process optimization for conversion of Waste Banana peels to biobutanol by A yeast Co-Culture fermentation system, Renew. Energy 162 (2020) 478–488, https://doi.org/10.1016/j.renene.2020.08.045.
[11] S. Maina, A.A. Prabhu, N. Vivek, A. Vlysidis, A. Koutinas, V. Kumar, Prospects on bio-based 2,3-butanediol and acetoin production: recent progress and advances, Biotechnol. Adv. 54 (2022), https://doi.org/10.1016/j.biotechadv.2021.107783.
[12] C.C. Okonkwo, V. Ujor, T.C. Ezeji, Investigation of relationship between 2,3- butanediol toxicity and production during growth of Paenibacillus polymyxa, N Biotechnol 34 (2017) 23–31, https://doi.org/10.1016/j.nbt.2016.10.006.
[13] S. Xie, Z. Li, G. Zhu, W. Song, C. Yi, Cleaner production and downstream processing of bio-based 2,3-butanediol: a review, J. Clean. Prod. 343 (2022), https://doi.org/ 10.1016/j.jclepro.2022.131033.
[14] H. Grafje, ¨ W. Kornig, ¨ H.-M. Weitz, W. Reiß, G. Steffan, H. Diehl, H. Bosche, K. Schneider, H. Kieczka, R. Pinkos, Butenediol Butanediols, Butynediol, Ullmann’s Encyclopedia of Industrial Chemistry (2019) 1–12, https://doi.org/10.1002/ 14356007.a04_455.pub2.
[15] S. Rehman, M. Khairul Islam, N. Khalid Khanzada, A. Kyoungjin An, S. Chaiprapat, S.Y. Leu, Whole sugar 2,3-butanediol fermentation for oil palm empty fruit bunches biorefinery by a newly isolated Klebsiella pneumoniae PM2, Bioresour. Technol. 333 (2021), https://doi.org/10.1016/j.biortech.2021.125206.
[16] D. Tinoco, ˆ L. Seldin, P. Luiz de Andrade Coutinho, D. Maria Guimaraes ˜ Freire, Optimization of fermentation conditions as a metabolic strategy for the high-yield and high-selectivity bio-based 2,3-butanediol production, J. Ind. Eng. Chem. (2023), https://doi.org/10.1016/j.jiec.2023.05.044.
[17] P. Jeevitha, J. Ranjitha, M. Anand, S. Mahboob, S. Vijayalakshmi, Production of 2,3-butanediol from various microorganisms, in: Valorization of Biomass to Bioproducts, Elsevier, 2023, pp. 223–239, https://doi.org/10.1016/B978-0-12- 822888-3.00009-8.
[18] L.Q. Jiang, Z. Fang, Z.L. Zhao, F. He, H.B. Li, 2,3-butanediol and acetoin production from enzymatic hydrolysate of ionic liquid-pretreated cellulose by Paenibacillus polymyxa, Bioresources 10 (2015) 1318–1329.
[19] D. Tinoco, ˆ C. Pateraki, A.A. Koutinas, D.M.G. Freire, Bioprocess development for 2,3-butanediol production by Paenibacillus strains, ChemBioEng Rev. 8 (2021) 44–62, https://doi.org/10.1002/cben.202000022.
[20] Y. Bai, H. Feng, N. Liu, X. Zhao, Biomass-derived 2,3-butanediol and its application in biofuels production, Energies 16 (2023), https://doi.org/10.3390/en16155802.
[21] A.C. Dimian, C.S. Bildea, A.A. Kiss, Process intensification, 397–448, https://doi. org/10.1016/B978-0-444-62700-1.00010-3, 2014.
[22] M.F. Ibrahim, N. Ramli, E. Kamal Bahrin, S. Abd-Aziz, Cellulosic biobutanol by clostridia: challenges and improvements, Renew. Sustain. Energy Rev. 79 (2017) 1241–1254, https://doi.org/10.1016/j.rser.2017.05.184.
[23] A. Valles, F.J. Alvarez-Hornos, ´ V. Martínez-Soria, P. Marzal, C. Gabaldon, ´ Comparison of simultaneous saccharification and fermentation and separate hydrolysis and fermentation processes for butanol production from rice straw, Fuel 282 (2020), https://doi.org/10.1016/j.fuel.2020.118831.
[24] K. Szambelan, J. Nowak, A. Szwengiel, H. Jelen, ´ G. Łukaszewski, Separate hydrolysis and fermentation and simultaneous saccharification and fermentation methods in bioethanol production and formation of volatile by-products from selected corn cultivars, Ind. Crops Prod. 118 (2018) 355–361, https://doi.org/ 10.1016/j.indcrop.2018.03.059
[25] J.C. Lopez-Linares, ´ I. Romero, C. Cara, E. Ruiz, M. Moya, E. Castro, Bioethanol production from rapeseed straw at high solids loading with different process configurations, Fuel 122 (2014) 112–118, https://doi.org/10.1016/j. fuel.2014.01.024
[26] H.S. Oberoi, P.V. Vadlani, L. Saida, S. Bansal, J.D. Hughes, Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process, Waste Management 31 (2011) 1576–1584, https://doi.org/ 10.1016/j.wasman.2011.02.007.
[27] United Nations, Goal 12. Ensure sustainable consumption and production patterns. https://sdgs.un.org/goals/goal12, 2023. (Accessed 18 July 2023).
[28] T. Ha¨ßler, D. Schieder, R. Pfaller, M. Faulstich, V. Sieber, Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365, Bioresour. Technol. 124 (2012) 237–244, https://doi.org/10.1016/j.biortech.2012.08.047.
[29] A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, Determination of extractives in biomass: laboratory analytical procedure (LAP); issue date 7/17/ 2005, in: http://www.nrel.gov/biomass/analytical_procedures.html, 2008.
[30] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker, Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP), in: http://www.nrel.gov/biomass/analytical_proced ures.html, 2011.
[31] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP), 2005. www.nrel.gov.
[32] M. Fern´ andez-Delgado, E. del Amo-Mateos, S. Lucas, M.T. García-Cubero, M. Coca, Recovery of organic carbon from municipal mixed waste compost for the production of fertilizers, J. Clean. Prod. 265 (2020) 121805, https://doi.org/ 10.1016/j.jclepro.2020.121805.
[33] Matches, Matches’ Equipment Cost Estimation, 2023. https://www.matche. com/equipcost/Default.html. (Accessed 6 July 2023).
[34] R.K. Sinnott, Costing and project evaluation, in: Coulson & Richardson’s Chemical Engineering Volume 6. Chemical Engineering Design, Fourth, Elsevier, London, 2005, pp. 242–282.
[35] M. Fern´ andez-Delgado, E. del Amo-Mateos, S. Lucas, M.T. García-Cubero, M. Coca, Liquid fertilizer production from organic waste by conventional and microwaveassisted extraction technologies: techno-economic and environmental assessment, Sci. Total Environ. 806 (2022) 150904, https://doi.org/10.1016/j. scitotenv.2021.150904
[36] M. Fernandez-Delgado, ´ E. Amo-Mateos, M.T. García-Cubero, S. Lucas, Phosphorus recovery from organic waste for its agronomic valorization : technical and economic evaluation. https://doi.org/10.1002/jctb.6926, 2021.
[37] C. Barrios, M. Fernandez-Delgado, ´ J.C. Lopez-Linares, ´ M.T. García-Cubero, M. Coca, S. Lucas, A techno-economic perspective on a microwave extraction process for efficient protein recovery from agri-food wastes, Ind. Crops Prod. 186 (2022) 115166, https://doi.org/10.1016/j.indcrop.2022.115166.
[38] A. Kruschitz, B. Nidetzky, Downstream processing technologies in the biocatalytic production of oligosaccharides, Biotechnol. Adv. 43 (2020) 107568, https://doi. org/10.1016/j.biotechadv.2020.107568.
[39] S.H. Duque, C.A. Cardona, J. Moncada, Techno-economic and environmental analysis of ethanol production from 10 agroindustrial residues in Colombia, Energy & Fuels 29 (2015) 775–783, https://doi.org/10.1021/ef5019274.
[40] Aquavall, Supply service fees 2017. http://aquavall.es/wp-content/uploads/2017/ 06/tarifas_agua_2017.pdf, 2017. (Accessed 27 June 2019).
[41] B. Pratto, M.S.R. dos Santos-Rocha, A.A. Longati, R. de Sousa Júnior, A.J.G. Cruz, Experimental optimization and techno-economic analysis of bioethanol production by simultaneous saccharification and fermentation process using sugarcane straw, Bioresour. Technol. 297 (2020) 122494, https://doi.org/10.1016/j. biortech.2019.122494.
[42] S. Mailaram, V. Narisetty, V.V. Ranade, V. Kumar, S.K. Maity, Techno-economic analysis for the production of 2,3-butanediol from brewers’ spent grain using pinch Technology, Ind. Eng. Chem. Res. 61 (2022) 2195–2205, https://doi.org/10.1021/ acs.iecr.1c04410.
[43] M. Ortiz-Sanchez, J.C. Solarte-Toro, C.A.C. Alzate, Food waste valorization applying the biorefinery concept in the Colombian context: pre-feasibility analysis of the organic kitchen food waste processing, Biochem. Eng. J. 194 (2023) 108864, https://doi.org/10.1016/j.bej.2023.108864.
[44] M. Fernandez-Delgado, ´ P.E. Plaza, M. Coca, M.T. García-Cubero, G. Gonz´ alezBenito, S. Lucas, Comparison of mild alkaline and oxidative pretreatment methods for biobutanol production from brewer’s spent grains, Ind. Crops Prod. 130 (2019) 409–419, https://doi.org/10.1016/j.indcrop.2018.12.087.
[45] P.D. Pathak, S.A. Mandavgane, B.D. Kulkarni, Fruit peel waste:characterization and its potential uses, Curr. Sci. 113 (2017) 444, https://doi.org/10.18520/cs/ v113/i03/444-454.
[46] S. Díaz, A.N. Benítez, S. Ramírez-Bolanos, ˜ L. Robaina, Z. Ortega, Optimization of banana crop by-products solvent extraction for the production of bioactive compounds, Biomass Convers Biorefin 13 (2023) 7701–7712, https://doi.org/ 10.1007/s13399-021-01703-7
[47] T.´I.S. Oliveira, M.F. Rosa, F.L. Cavalcante, P.H.F. Pereira, G.K. Moates, N. Wellner, S.E. Mazzetto, K.W. Waldron, H.M.C. Azeredo, Optimization of pectin extraction from banana peels with citric acid by using response surface methodology, Food Chem. 198 (2016) 113–118, https://doi.org/10.1016/j.foodchem.2015.08.080.
[48] H. Nadeeshani, G. Samarasinghe, R. Silva, D. Hunter, T. Madhujith, Proximate composition, fatty acid profile, vitamin and mineral content of selected banana varieties grown in Sri Lanka, J. Food Compos. Anal. 100 (2021) 103887, https:// doi.org/10.1016/j.jfca.2021.103887.
[49] L. Tan, Y. He, S. Li, J. Deng, B. Avula, J. Zhang, N.D. Pugh, J.C. Solis-Sainz, M. Wang, K. Katragunta, Proximate composition and nutritional analysis of selected bananas cultivated in Hainan, China, J. Food Compos. Anal. 125 (2024) 105798, https://doi.org/10.1016/j.jfca.2023.105798.
[50] R. Sathendra Elumalai, P. Ramanujam, M.A. Tawfik, P. Ravichandran, B. Gurunathan, Optimization and kinetics modelling for enhancing the bioethanol production from banana peduncle using Trichoderma reesei and Kluveromyces marxianus by Co-Pretreatment methods, Sustain. Energy Technol. Assessments 56 (2023) 103129, https://doi.org/10.1016/j.seta.2023.103129.
[51] H.S. Oberoi, S.K. Sandhu, P.V. Vadlani, Statistical optimization of hydrolysis process for banana peels using cellulolytic and pectinolytic enzymes, Food Bioprod. Process. 90 (2012) 257–265, https://doi.org/10.1016/j.fbp.2011.05.002.
[52] J.C. Lopez-Linares, ´ M. Coca, P.E. Plaza, S. Lucas, M.T. García-Cubero, Waste-to-fuel technologies for the bioconversion of carrot discards into biobutanol, Renew. Energy 202 (2023) 362–369, https://doi.org/10.1016/j.renene.2022.11.093.
[53] I. Habinshuti, D. Nsengumuremyi, B. Muhoza, F. Ebenezer, A. Yinka Aregbe, M. Antoine Ndisanze, Recent and novel processing technologies coupled with enzymatic hydrolysis to enhance the production of antioxidant peptides from food proteins: a review, Food Chem. 423 (2023) 136313, https://doi.org/10.1016/j. foodchem.2023.136313.
[54] S. Rezania, B. Oryani, J. Cho, A. Talaiekhozani, F. Sabbagh, B. Hashemi, P. F. Rupani, A.A. Mohammadi, Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview, Energy 199 (2020) 117457, https://doi.org/10.1016/j.energy.2020.117457.
[55] S.F. Baltaci, H. Hamamci, Enzymatic hydrolysis of orange bagasse and effect of filtration on lactic acid fermentation, SN Appl. Sci. 2 (2020) 605, https://doi.org/ 10.1007/s42452-020-2421-0.
[56] J.C. Lopez-Linares, ´ M.T. García-Cubero, M. Coca, S. Lucas, Efficient biobutanol production by acetone-butanol-ethanol fermentation from spent coffee grounds with microwave assisted dilute sulfuric acid pretreatment, Bioresour. Technol. 320 (2021) 124348, https://doi.org/10.1016/j.biortech.2020.124348.
[57] D.P.C. Favaretto, A. Rempel, J.R. Lanzini, A.C.M. Silva, T. Lazzari, L.D. Barbizan, V.B. Bri˜ ao, L.M. Colla, H. Treichel, Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment, World J. Microbiol. Biotechnol. 39 (2023) 144, https://doi.org/10.1007/s11274-023-03588-2.
[58] Z. Zhou, S. Peng, Y. Jing, S. Wei, Q. Zhang, H. Ding, H. Li, Exploration of separate hydrolysis and fermentation and simultaneous saccharification and cofermentation for acetone, butanol, and ethanol production from combined diluted acid with laccase pretreated Puerariae Slag in Clostridium beijerinckii ART44, Energy 279 (2023) 128063, https://doi.org/10.1016/j.energy.2023.128063.
[59] G.P. Philippidis, T.K. Smith, C.E. Wyman, Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process, Biotechnol. Bioeng. 41 (1993) 846–853, https://doi.org/ 10.1002/bit.260410903.
[60] O. Hakizimana, E. Matabaro, B.H. Lee, The current strategies and parameters for the enhanced microbial production of 2,3-butanediol, Biotechnology Reports 25 (2020) e00397, https://doi.org/10.1016/J.BTRE.2019.E00397.
[61] S.H. Hazeena, C. Nair Salini, R. Sindhu, A. Pandey, P. Binod, Simultaneous saccharification and fermentation of oil palm front for the production of 2,3- butanediol, Bioresour. Technol. 278 (2019) 145–149, https://doi.org/10.1016/j. biortech.2019.01.042.
[62] C.Y. Zhang, X.P. Peng, W. Li, X.W. Guo, D.G. Xiao, Optimization of 2,3-butanediol production by Enterobacter cloacae in simultaneous saccharification and fermentation of corncob residue, Biotechnol. Appl. Biochem. 61 (2014) 501–509, https://doi.org/10.1002/bab.1198.
[63] J.C. Lopez-Linares, ´ A. Mateo Martínez, M. Coca, S. Lucas, M.T. García-Cubero, Carrot discard as a promising feedstock to produce 2,3-butanediol by fermentation with P. Polymyxa DSM 365, Bioengineering 10 (2023) 937, https://doi.org/ 10.3390/bioengineering10080937.
[64] C.C. Okonkwo, V. Ujor, T.C. Ezeji, Production of 2,3-Butanediol from nondetoxified wheat straw hydrolysate: impact of microbial inhibitors on Paenibacillus polymyxa DSM 365, Ind. Crops Prod. 159 (2021) 113047, https://doi.org/ 10.1016/j.indcrop.2020.113047.
[65] N.Z. Xie, J.X. Li, L.F. Song, J.F. Hou, L. Guo, Q.S. Du, B. Yu, R.-B. Huang, Genome sequence of type strain Paenibacillus polymyxa DSM 365, a highly efficient producer of optically active (R,R)-2,3-butanediol, J. Biotechnol. 195 (2015) 72–73, https://doi.org/10.1016/j.jbiotec.2014.07.441.
[66] ChemAnalyst, butanediol price trend and forecast. https://www.chemanalyst. com/Pricing-data/butanediol-54, 2023. (Accessed 10 August 2023).
dc.relation.citationendpage.none.fl_str_mv 11
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 184
dc.rights.none.fl_str_mv © 2024 The Authors. Published by Elsevier Ltd.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2024 The Authors. Published by Elsevier Ltd.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 11 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.place.none.fl_str_mv United Kingdom
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv https://www-sciencedirect-com.ezproxy.cuc.edu.co/science/article/pii/S0961953424001715?via%3Dihub
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d0943dc8-acd2-49bb-8ba3-d4765c85df34/download
https://repositorio.cuc.edu.co/bitstreams/30cc30d9-2282-4331-8b07-5502d8117698/download
https://repositorio.cuc.edu.co/bitstreams/a6a53a54-e9e4-4dc3-88e4-2e3128ae98cf/download
https://repositorio.cuc.edu.co/bitstreams/f1acd7a5-2cce-41f7-8f8b-60f68f81e471/download
bitstream.checksum.fl_str_mv 8ef1dd879d27f7359a09f55cff193195
73a5432e0b76442b22b026844140d683
92e6ff9496cd8b8725f9a9d9491668cf
c0dcc0f276b5aed19415a2e17da0c3d8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166804545994752
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2024 The Authors. Published by Elsevier Ltd.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fernández-Delgado, MarinaRodríguez-Sarmiento, MercedesCoral Medina, Jesus DavidLucas, SusanaGarcía-Cubero, M. TeresaCoca, MónicaLópez-Linares, Juan Carlos2024-10-03T16:48:57Z2024-10-03T16:48:57Z2024-05Marina Fernández-Delgado, Mercedes Rodríguez-Sarmiento, Jesus David Coral Medina, Susana Lucas, M. Teresa García-Cubero, Mónica Coca, Juan Carlos López-Linares, Bio-2,3-butanediol production from banana waste: Preliminary techno-economic evaluation of processing strategies, Biomass and Bioenergy, Volume 184, 2024, 107218, ISSN 0961-9534, https://doi.org/10.1016/j.biombioe.2024.107218.0961-9534https://hdl.handle.net/11323/1342810.1016/j.biombioe.2024.107218Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study evaluates different fermentation strategies to produce 2,3-butanediol (2,3-BD) from banana industry waste, such as whole bananas (fruit + peels) and banana peels, selecting the most favorable from a technical and economic point of view. Both residues have enough free sugars (17.8 %–35.8 %), glucan (11.0 %–14.2 %) and hemicellulose (2.8 %–6.3 %), to be promising substrates for 2,3-BD fermentation. Saccharification was studied by comparing enzymatic hydrolysis, hydrothermal pretreatment, and hydrothermal pretreatment followed by enzymatic hydrolysis. Different fermentation scenarios were also compared regarding the 2,3-BD yield and productivity: Separate Hydrolysis and Fermentation (SHF), Simultaneous Saccharification and Fermentation (SSF), and direct fermentation without prior saccharification using Paenibacillus polymyxa DSM-365 as the fermenting microorganism. The results showed that the pretreatment step was not necessary to improve the release of fermentable sugars. Enzymatic hydrolysis was the most effective alternative for maximizing sugar recovery, reaching sugar concentrations of 18.1 g/L (recovery: 92.5 %) for banana peels and 33.3 g/L (recovery: ∼100 %) for whole bananas. The SSF strategy led to higher 2,3-BD concentrations of 15.0 g/L and 26.6 g/L for banana peels and whole bananas, respectively. The preliminary economic analysis indicated that SSF and direct fermentation could be the more cost-effective process alternatives for banana peels and whole bananas, respectively. Thus, it was demonstrated that banana waste is an interesting resource for the production of 2,3-BD. The bioprocess can be competitive when using a low-cost raw material and reducing the number of process steps compared to traditional technologies.11 páginasapplication/pdfengElsevier LtdUnited Kingdomhttps://www-sciencedirect-com.ezproxy.cuc.edu.co/science/article/pii/S0961953424001715?via%3DihubBio-2,3-butanediol production from banana waste: Preliminary techno-economic evaluation of processing strategiesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Biomass and bioenergy[1] G. Gupta, M. Baranwal, S. Saxena, M.S. Reddy, Utilization of banana waste as a resource material for biofuels and other value-added products, Biomass Convers Biorefin (2022), https://doi.org/10.1007/s13399-022-02306-6[2] FAOstat, Crops and Livestock Products, 2023. https://www.fao.org/faostat/en/ #data/QCL/visualize. (Accessed 6 July 2023).[3] Ministerio de Agricultura y Desarrollo Rural de Colombia, Banana chain. https://si oc.minagricultura.gov.co/Platano/Documentos/2021-06-30%20Cifras%20Sectori ales.pdf, 2023. (Accessed 30 October 2023).[4] FAO, FAO Statistics, 2023. https://www.fao.org/faostat/en/#home. (Accessed 30 October 2023).[5] C.A. Guevara, H.A. Arenas, A. Mejía, C.A. Pel´ aez, Biogas and bioethanol production from non-exportable low quality banana, Inf. Tecnol. 23 (2012) 19–30, https://doi. org/10.4067/S0718-07642012000200004.[6] M. Castillo, M.J.K. de Guzman, J.M. Aberilla, Environmental sustainability assessment of banana waste utilization into food packaging and liquid fertilizer, Sustain. Prod. Consum. 37 (2023) 356–368, https://doi.org/10.1016/j. spc.2023.03.012.[7] J.A. Serna-Jimenez, F. Luna-Lama, A. Caballero, M. de los A. Martín, A.F. Chica, J. A. Siles, Valorisation of banana peel waste as a precursor material for different renewable energy systems, Biomass Bioenergy 155 (2021), https://doi.org/ 10.1016/j.biombioe.2021.106279.[8] H. Mohd Zaini, J. Roslan, S. Saallah, E. Munsu, N.S. Sulaiman, W. Pindi, Banana peels as a bioactive ingredient and its potential application in the food industry, J. Funct.Foods 92 (2022), https://doi.org/10.1016/j.jff.2022.105054.[9] N. Ayala-Ruíz, D.H. Malagon-Romero, ´ H.A. Milquez-Sanabria, Exergoeconomic evaluation of a banana waste pyrolysis plant for biofuel production, J. Clean. Prod. 359 (2022), https://doi.org/10.1016/j.jclepro.2022.132108.[10] R.R. Mishra, B. Samantaray, B. Chandra Behera, B.R. Pradhan, S. Mohapatra, Process optimization for conversion of Waste Banana peels to biobutanol by A yeast Co-Culture fermentation system, Renew. Energy 162 (2020) 478–488, https://doi.org/10.1016/j.renene.2020.08.045.[11] S. Maina, A.A. Prabhu, N. Vivek, A. Vlysidis, A. Koutinas, V. Kumar, Prospects on bio-based 2,3-butanediol and acetoin production: recent progress and advances, Biotechnol. Adv. 54 (2022), https://doi.org/10.1016/j.biotechadv.2021.107783.[12] C.C. Okonkwo, V. Ujor, T.C. Ezeji, Investigation of relationship between 2,3- butanediol toxicity and production during growth of Paenibacillus polymyxa, N Biotechnol 34 (2017) 23–31, https://doi.org/10.1016/j.nbt.2016.10.006.[13] S. Xie, Z. Li, G. Zhu, W. Song, C. Yi, Cleaner production and downstream processing of bio-based 2,3-butanediol: a review, J. Clean. Prod. 343 (2022), https://doi.org/ 10.1016/j.jclepro.2022.131033.[14] H. Grafje, ¨ W. Kornig, ¨ H.-M. Weitz, W. Reiß, G. Steffan, H. Diehl, H. Bosche, K. Schneider, H. Kieczka, R. Pinkos, Butenediol Butanediols, Butynediol, Ullmann’s Encyclopedia of Industrial Chemistry (2019) 1–12, https://doi.org/10.1002/ 14356007.a04_455.pub2.[15] S. Rehman, M. Khairul Islam, N. Khalid Khanzada, A. Kyoungjin An, S. Chaiprapat, S.Y. Leu, Whole sugar 2,3-butanediol fermentation for oil palm empty fruit bunches biorefinery by a newly isolated Klebsiella pneumoniae PM2, Bioresour. Technol. 333 (2021), https://doi.org/10.1016/j.biortech.2021.125206.[16] D. Tinoco, ˆ L. Seldin, P. Luiz de Andrade Coutinho, D. Maria Guimaraes ˜ Freire, Optimization of fermentation conditions as a metabolic strategy for the high-yield and high-selectivity bio-based 2,3-butanediol production, J. Ind. Eng. Chem. (2023), https://doi.org/10.1016/j.jiec.2023.05.044.[17] P. Jeevitha, J. Ranjitha, M. Anand, S. Mahboob, S. Vijayalakshmi, Production of 2,3-butanediol from various microorganisms, in: Valorization of Biomass to Bioproducts, Elsevier, 2023, pp. 223–239, https://doi.org/10.1016/B978-0-12- 822888-3.00009-8.[18] L.Q. Jiang, Z. Fang, Z.L. Zhao, F. He, H.B. Li, 2,3-butanediol and acetoin production from enzymatic hydrolysate of ionic liquid-pretreated cellulose by Paenibacillus polymyxa, Bioresources 10 (2015) 1318–1329.[19] D. Tinoco, ˆ C. Pateraki, A.A. Koutinas, D.M.G. Freire, Bioprocess development for 2,3-butanediol production by Paenibacillus strains, ChemBioEng Rev. 8 (2021) 44–62, https://doi.org/10.1002/cben.202000022.[20] Y. Bai, H. Feng, N. Liu, X. Zhao, Biomass-derived 2,3-butanediol and its application in biofuels production, Energies 16 (2023), https://doi.org/10.3390/en16155802.[21] A.C. Dimian, C.S. Bildea, A.A. Kiss, Process intensification, 397–448, https://doi. org/10.1016/B978-0-444-62700-1.00010-3, 2014.[22] M.F. Ibrahim, N. Ramli, E. Kamal Bahrin, S. Abd-Aziz, Cellulosic biobutanol by clostridia: challenges and improvements, Renew. Sustain. Energy Rev. 79 (2017) 1241–1254, https://doi.org/10.1016/j.rser.2017.05.184.[23] A. Valles, F.J. Alvarez-Hornos, ´ V. Martínez-Soria, P. Marzal, C. Gabaldon, ´ Comparison of simultaneous saccharification and fermentation and separate hydrolysis and fermentation processes for butanol production from rice straw, Fuel 282 (2020), https://doi.org/10.1016/j.fuel.2020.118831.[24] K. Szambelan, J. Nowak, A. Szwengiel, H. Jelen, ´ G. Łukaszewski, Separate hydrolysis and fermentation and simultaneous saccharification and fermentation methods in bioethanol production and formation of volatile by-products from selected corn cultivars, Ind. Crops Prod. 118 (2018) 355–361, https://doi.org/ 10.1016/j.indcrop.2018.03.059[25] J.C. Lopez-Linares, ´ I. Romero, C. Cara, E. Ruiz, M. Moya, E. Castro, Bioethanol production from rapeseed straw at high solids loading with different process configurations, Fuel 122 (2014) 112–118, https://doi.org/10.1016/j. fuel.2014.01.024[26] H.S. Oberoi, P.V. Vadlani, L. Saida, S. Bansal, J.D. Hughes, Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process, Waste Management 31 (2011) 1576–1584, https://doi.org/ 10.1016/j.wasman.2011.02.007.[27] United Nations, Goal 12. Ensure sustainable consumption and production patterns. https://sdgs.un.org/goals/goal12, 2023. (Accessed 18 July 2023).[28] T. Ha¨ßler, D. Schieder, R. Pfaller, M. Faulstich, V. Sieber, Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365, Bioresour. Technol. 124 (2012) 237–244, https://doi.org/10.1016/j.biortech.2012.08.047.[29] A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, Determination of extractives in biomass: laboratory analytical procedure (LAP); issue date 7/17/ 2005, in: http://www.nrel.gov/biomass/analytical_procedures.html, 2008.[30] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker, Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP), in: http://www.nrel.gov/biomass/analytical_proced ures.html, 2011.[31] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP), 2005. www.nrel.gov.[32] M. Fern´ andez-Delgado, E. del Amo-Mateos, S. Lucas, M.T. García-Cubero, M. Coca, Recovery of organic carbon from municipal mixed waste compost for the production of fertilizers, J. Clean. Prod. 265 (2020) 121805, https://doi.org/ 10.1016/j.jclepro.2020.121805.[33] Matches, Matches’ Equipment Cost Estimation, 2023. https://www.matche. com/equipcost/Default.html. (Accessed 6 July 2023).[34] R.K. Sinnott, Costing and project evaluation, in: Coulson & Richardson’s Chemical Engineering Volume 6. Chemical Engineering Design, Fourth, Elsevier, London, 2005, pp. 242–282.[35] M. Fern´ andez-Delgado, E. del Amo-Mateos, S. Lucas, M.T. García-Cubero, M. Coca, Liquid fertilizer production from organic waste by conventional and microwaveassisted extraction technologies: techno-economic and environmental assessment, Sci. Total Environ. 806 (2022) 150904, https://doi.org/10.1016/j. scitotenv.2021.150904[36] M. Fernandez-Delgado, ´ E. Amo-Mateos, M.T. García-Cubero, S. Lucas, Phosphorus recovery from organic waste for its agronomic valorization : technical and economic evaluation. https://doi.org/10.1002/jctb.6926, 2021.[37] C. Barrios, M. Fernandez-Delgado, ´ J.C. Lopez-Linares, ´ M.T. García-Cubero, M. Coca, S. Lucas, A techno-economic perspective on a microwave extraction process for efficient protein recovery from agri-food wastes, Ind. Crops Prod. 186 (2022) 115166, https://doi.org/10.1016/j.indcrop.2022.115166.[38] A. Kruschitz, B. Nidetzky, Downstream processing technologies in the biocatalytic production of oligosaccharides, Biotechnol. Adv. 43 (2020) 107568, https://doi. org/10.1016/j.biotechadv.2020.107568.[39] S.H. Duque, C.A. Cardona, J. Moncada, Techno-economic and environmental analysis of ethanol production from 10 agroindustrial residues in Colombia, Energy & Fuels 29 (2015) 775–783, https://doi.org/10.1021/ef5019274.[40] Aquavall, Supply service fees 2017. http://aquavall.es/wp-content/uploads/2017/ 06/tarifas_agua_2017.pdf, 2017. (Accessed 27 June 2019).[41] B. Pratto, M.S.R. dos Santos-Rocha, A.A. Longati, R. de Sousa Júnior, A.J.G. Cruz, Experimental optimization and techno-economic analysis of bioethanol production by simultaneous saccharification and fermentation process using sugarcane straw, Bioresour. Technol. 297 (2020) 122494, https://doi.org/10.1016/j. biortech.2019.122494.[42] S. Mailaram, V. Narisetty, V.V. Ranade, V. Kumar, S.K. Maity, Techno-economic analysis for the production of 2,3-butanediol from brewers’ spent grain using pinch Technology, Ind. Eng. Chem. Res. 61 (2022) 2195–2205, https://doi.org/10.1021/ acs.iecr.1c04410.[43] M. Ortiz-Sanchez, J.C. Solarte-Toro, C.A.C. Alzate, Food waste valorization applying the biorefinery concept in the Colombian context: pre-feasibility analysis of the organic kitchen food waste processing, Biochem. Eng. J. 194 (2023) 108864, https://doi.org/10.1016/j.bej.2023.108864.[44] M. Fernandez-Delgado, ´ P.E. Plaza, M. Coca, M.T. García-Cubero, G. Gonz´ alezBenito, S. Lucas, Comparison of mild alkaline and oxidative pretreatment methods for biobutanol production from brewer’s spent grains, Ind. Crops Prod. 130 (2019) 409–419, https://doi.org/10.1016/j.indcrop.2018.12.087.[45] P.D. Pathak, S.A. Mandavgane, B.D. Kulkarni, Fruit peel waste:characterization and its potential uses, Curr. Sci. 113 (2017) 444, https://doi.org/10.18520/cs/ v113/i03/444-454.[46] S. Díaz, A.N. Benítez, S. Ramírez-Bolanos, ˜ L. Robaina, Z. Ortega, Optimization of banana crop by-products solvent extraction for the production of bioactive compounds, Biomass Convers Biorefin 13 (2023) 7701–7712, https://doi.org/ 10.1007/s13399-021-01703-7[47] T.´I.S. Oliveira, M.F. Rosa, F.L. Cavalcante, P.H.F. Pereira, G.K. Moates, N. Wellner, S.E. Mazzetto, K.W. Waldron, H.M.C. Azeredo, Optimization of pectin extraction from banana peels with citric acid by using response surface methodology, Food Chem. 198 (2016) 113–118, https://doi.org/10.1016/j.foodchem.2015.08.080.[48] H. Nadeeshani, G. Samarasinghe, R. Silva, D. Hunter, T. Madhujith, Proximate composition, fatty acid profile, vitamin and mineral content of selected banana varieties grown in Sri Lanka, J. Food Compos. Anal. 100 (2021) 103887, https:// doi.org/10.1016/j.jfca.2021.103887.[49] L. Tan, Y. He, S. Li, J. Deng, B. Avula, J. Zhang, N.D. Pugh, J.C. Solis-Sainz, M. Wang, K. Katragunta, Proximate composition and nutritional analysis of selected bananas cultivated in Hainan, China, J. Food Compos. Anal. 125 (2024) 105798, https://doi.org/10.1016/j.jfca.2023.105798.[50] R. Sathendra Elumalai, P. Ramanujam, M.A. Tawfik, P. Ravichandran, B. Gurunathan, Optimization and kinetics modelling for enhancing the bioethanol production from banana peduncle using Trichoderma reesei and Kluveromyces marxianus by Co-Pretreatment methods, Sustain. Energy Technol. Assessments 56 (2023) 103129, https://doi.org/10.1016/j.seta.2023.103129.[51] H.S. Oberoi, S.K. Sandhu, P.V. Vadlani, Statistical optimization of hydrolysis process for banana peels using cellulolytic and pectinolytic enzymes, Food Bioprod. Process. 90 (2012) 257–265, https://doi.org/10.1016/j.fbp.2011.05.002.[52] J.C. Lopez-Linares, ´ M. Coca, P.E. Plaza, S. Lucas, M.T. García-Cubero, Waste-to-fuel technologies for the bioconversion of carrot discards into biobutanol, Renew. Energy 202 (2023) 362–369, https://doi.org/10.1016/j.renene.2022.11.093.[53] I. Habinshuti, D. Nsengumuremyi, B. Muhoza, F. Ebenezer, A. Yinka Aregbe, M. Antoine Ndisanze, Recent and novel processing technologies coupled with enzymatic hydrolysis to enhance the production of antioxidant peptides from food proteins: a review, Food Chem. 423 (2023) 136313, https://doi.org/10.1016/j. foodchem.2023.136313.[54] S. Rezania, B. Oryani, J. Cho, A. Talaiekhozani, F. Sabbagh, B. Hashemi, P. F. Rupani, A.A. Mohammadi, Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview, Energy 199 (2020) 117457, https://doi.org/10.1016/j.energy.2020.117457.[55] S.F. Baltaci, H. Hamamci, Enzymatic hydrolysis of orange bagasse and effect of filtration on lactic acid fermentation, SN Appl. Sci. 2 (2020) 605, https://doi.org/ 10.1007/s42452-020-2421-0.[56] J.C. Lopez-Linares, ´ M.T. García-Cubero, M. Coca, S. Lucas, Efficient biobutanol production by acetone-butanol-ethanol fermentation from spent coffee grounds with microwave assisted dilute sulfuric acid pretreatment, Bioresour. Technol. 320 (2021) 124348, https://doi.org/10.1016/j.biortech.2020.124348.[57] D.P.C. Favaretto, A. Rempel, J.R. Lanzini, A.C.M. Silva, T. Lazzari, L.D. Barbizan, V.B. Bri˜ ao, L.M. Colla, H. Treichel, Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment, World J. Microbiol. Biotechnol. 39 (2023) 144, https://doi.org/10.1007/s11274-023-03588-2.[58] Z. Zhou, S. Peng, Y. Jing, S. Wei, Q. Zhang, H. Ding, H. Li, Exploration of separate hydrolysis and fermentation and simultaneous saccharification and cofermentation for acetone, butanol, and ethanol production from combined diluted acid with laccase pretreated Puerariae Slag in Clostridium beijerinckii ART44, Energy 279 (2023) 128063, https://doi.org/10.1016/j.energy.2023.128063.[59] G.P. Philippidis, T.K. Smith, C.E. Wyman, Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process, Biotechnol. Bioeng. 41 (1993) 846–853, https://doi.org/ 10.1002/bit.260410903.[60] O. Hakizimana, E. Matabaro, B.H. Lee, The current strategies and parameters for the enhanced microbial production of 2,3-butanediol, Biotechnology Reports 25 (2020) e00397, https://doi.org/10.1016/J.BTRE.2019.E00397.[61] S.H. Hazeena, C. Nair Salini, R. Sindhu, A. Pandey, P. Binod, Simultaneous saccharification and fermentation of oil palm front for the production of 2,3- butanediol, Bioresour. Technol. 278 (2019) 145–149, https://doi.org/10.1016/j. biortech.2019.01.042.[62] C.Y. Zhang, X.P. Peng, W. Li, X.W. Guo, D.G. Xiao, Optimization of 2,3-butanediol production by Enterobacter cloacae in simultaneous saccharification and fermentation of corncob residue, Biotechnol. Appl. Biochem. 61 (2014) 501–509, https://doi.org/10.1002/bab.1198.[63] J.C. Lopez-Linares, ´ A. Mateo Martínez, M. Coca, S. Lucas, M.T. García-Cubero, Carrot discard as a promising feedstock to produce 2,3-butanediol by fermentation with P. Polymyxa DSM 365, Bioengineering 10 (2023) 937, https://doi.org/ 10.3390/bioengineering10080937.[64] C.C. Okonkwo, V. Ujor, T.C. Ezeji, Production of 2,3-Butanediol from nondetoxified wheat straw hydrolysate: impact of microbial inhibitors on Paenibacillus polymyxa DSM 365, Ind. Crops Prod. 159 (2021) 113047, https://doi.org/ 10.1016/j.indcrop.2020.113047.[65] N.Z. Xie, J.X. Li, L.F. Song, J.F. Hou, L. Guo, Q.S. Du, B. Yu, R.-B. Huang, Genome sequence of type strain Paenibacillus polymyxa DSM 365, a highly efficient producer of optically active (R,R)-2,3-butanediol, J. Biotechnol. 195 (2015) 72–73, https://doi.org/10.1016/j.jbiotec.2014.07.441.[66] ChemAnalyst, butanediol price trend and forecast. https://www.chemanalyst. com/Pricing-data/butanediol-54, 2023. (Accessed 10 August 2023).1111842,3-ButanediolBanana wasteSustainable bioprocessingSimultaneous saccharification and fermentation (SSF)Sequential hydrolysis and fermentation (SHF)Economic analysisPublicationORIGINALBio-2,3-butanediol production from banana waste Preliminary techno-economic evaluation of processing strategies.pdfBio-2,3-butanediol production from banana waste Preliminary techno-economic evaluation of processing strategies.pdfapplication/pdf2192880https://repositorio.cuc.edu.co/bitstreams/d0943dc8-acd2-49bb-8ba3-d4765c85df34/download8ef1dd879d27f7359a09f55cff193195MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/30cc30d9-2282-4331-8b07-5502d8117698/download73a5432e0b76442b22b026844140d683MD52TEXTBio-2,3-butanediol production from banana waste Preliminary techno-economic evaluation of processing strategies.pdf.txtBio-2,3-butanediol production from banana waste Preliminary techno-economic evaluation of processing strategies.pdf.txtExtracted texttext/plain65854https://repositorio.cuc.edu.co/bitstreams/a6a53a54-e9e4-4dc3-88e4-2e3128ae98cf/download92e6ff9496cd8b8725f9a9d9491668cfMD53THUMBNAILBio-2,3-butanediol production from banana waste Preliminary techno-economic evaluation of processing strategies.pdf.jpgBio-2,3-butanediol production from banana waste Preliminary techno-economic evaluation of processing strategies.pdf.jpgGenerated Thumbnailimage/jpeg14743https://repositorio.cuc.edu.co/bitstreams/f1acd7a5-2cce-41f7-8f8b-60f68f81e471/downloadc0dcc0f276b5aed19415a2e17da0c3d8MD5411323/13428oai:repositorio.cuc.edu.co:11323/134282024-10-04 03:01:46.388https://creativecommons.org/licenses/by-nc-nd/4.0/© 2024 The Authors. Published by Elsevier Ltd.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K