Polishing of painting process effluents through adsorption with biochar from winemaking residues
A real industrial efuent from the pre-treatment and painting processes was polished through adsorption using alternative biochar derived from grape pomace wastes. The biochar was produced in a pilot-scale plant from composted grape pomace. Biochar showed an equilibrium between acidic and basic group...
- Autores:
-
Carvalho, Fernando L.
Pinto, Diana
Schio, Rejiane R.
dos Santos, Jaqueline P.
Ketzer, Felipe
Silva, Luis F.O.
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9344
- Acceso en línea:
- https://hdl.handle.net/11323/9344
https://doi.org/10.1007/s11356-022-20488-4
https://repositorio.cuc.edu.co/
- Palabra clave:
- Grape pomace biochar
Efuent
Metal removal
Adsorption
- Rights
- embargoedAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_232a40b8c6bc94e94c3c16f2907987d5 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9344 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Polishing of painting process effluents through adsorption with biochar from winemaking residues |
title |
Polishing of painting process effluents through adsorption with biochar from winemaking residues |
spellingShingle |
Polishing of painting process effluents through adsorption with biochar from winemaking residues Grape pomace biochar Efuent Metal removal Adsorption |
title_short |
Polishing of painting process effluents through adsorption with biochar from winemaking residues |
title_full |
Polishing of painting process effluents through adsorption with biochar from winemaking residues |
title_fullStr |
Polishing of painting process effluents through adsorption with biochar from winemaking residues |
title_full_unstemmed |
Polishing of painting process effluents through adsorption with biochar from winemaking residues |
title_sort |
Polishing of painting process effluents through adsorption with biochar from winemaking residues |
dc.creator.fl_str_mv |
Carvalho, Fernando L. Pinto, Diana Schio, Rejiane R. dos Santos, Jaqueline P. Ketzer, Felipe Silva, Luis F.O. Dotto, Guilherme Luiz |
dc.contributor.author.spa.fl_str_mv |
Carvalho, Fernando L. Pinto, Diana Schio, Rejiane R. dos Santos, Jaqueline P. Ketzer, Felipe Silva, Luis F.O. Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Grape pomace biochar Efuent Metal removal Adsorption |
topic |
Grape pomace biochar Efuent Metal removal Adsorption |
description |
A real industrial efuent from the pre-treatment and painting processes was polished through adsorption using alternative biochar derived from grape pomace wastes. The biochar was produced in a pilot-scale plant from composted grape pomace. Biochar showed an equilibrium between acidic and basic groups on the surface. The presence of irregular cavities in the structure and mesopores was confrmed by analyzing N2 physisorption and SEM. Concerning the efuent, Ni and Zn were the main problematic elements. The adsorption isotherms and kinetics of Ni and Zn from the efuent using the biochar could be represented by the Henry, pseudo-frst-order, and pseudo-second-order models, respectively. Adsorption equilibrium was reached within 60 min for Ni and Zn present in the real efuent. Besides, the adsorption process was endothermic, favorable, and spontaneous. These results demonstrate that Zn and Ni metals were successfully removed from the industrial efuent, presenting fnal concentration values within the limit of legislation for efuent disposal in agricultural soil. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-07T13:41:58Z |
dc.date.available.none.fl_str_mv |
2022-07-07T13:41:58Z 2023-05-02 |
dc.date.issued.none.fl_str_mv |
2022-05-02 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.spa.fl_str_mv |
0944-1344 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9344 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1007/s11356-022-20488-4 |
dc.identifier.doi.spa.fl_str_mv |
10.1007/s11356-022-20488-4 |
dc.identifier.eissn.spa.fl_str_mv |
1614-7499 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0944-1344 10.1007/s11356-022-20488-4 1614-7499 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9344 https://doi.org/10.1007/s11356-022-20488-4 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Environmental Science and Pollution Research |
dc.relation.references.spa.fl_str_mv |
Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, Ok YS (2012) Efects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544. https://doi.org/10.1016/j. biortech.2012.05.042 Al-Lagtah NMA, Al-Muhtaseb AH, Ahmad MNM, Salameh Y (2016) Chemical and physical characteristics of optimal synthesized acti vated carbons from grass-derived sulfonated lignin versus com mercial activated carbon. Micropor Mesopor Mat 225:504–514. https://doi.org/10.1016/j.micromeso.2016.01.043 Anirudhan TS, Sreekumari SS (2011) Adsorptive removal of heavy metal ions from industrial efuents using activated carbon derived from waste coconut buttons. J Environ Sci (china) 23:1989–1998. https://doi.org/10.1016/S1001-0742(10)60515-3 Bilal M, Shah JA, Ashfaq T, Gardazi SMH, Tahir AA, Pervez A, Haroon H, Mahmood Q (2013) Waste biomass adsorbents for cop per removal from industrial wastewater—a review. J Hazard Mater 263:322–333. https://doi.org/10.1016/j.jhazmat.2013.07.071 Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran Valle, C.J. 2019. 1 ed. Adsorption in water treatment. Reference module in chemistry, molecular sciences and chemical engineer ing 1 Elsevier, Amsterdam, pp. 1–21. https://doi.org/10.1016/ B978-0-12-409547-2.14390-2 Brezoiu AM, Matei C, Deaconu M, Stanciuc AM, Trifan A, Pin tiliescu AG, Berger D (2019) Polyphenols extract from grape pomace. Characterization and valorisation through encapsula tion into mesoporous silica-type matrices. Food Chem Toxicol 133:110787. https://doi.org/10.1016/j.fct.2019.110787 Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228. https://doi.org/10.1016/j.biortech.2010.02.052 Cao X, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immo bilization of lead and atrazine in contaminated soils using dairy manure biochar. Environ Sci Technol 45:4884–4889. https://doi. org/10.1021/es103752u Casazza AA, Aliakbarian B, Lagazzo A, Garbarino G, Carnasciali MM, Perego P, Busca G (2016) Pyrolysis of grape marc before and after the recovery of polyphenol fraction. Fuel Process Tech nol 153:121–128. https://doi.org/10.1016/j.fuproc.2016.07.014 Dil EA, Ghaedi M, Asfaram A, Mehrabi F, Sadeghfar F (2019) Ef cient adsorption of azure B onto CNTs/Zn:ZnO@Ni2P-NCs from aqueous solution in the presence of ultrasound wave based on multivariate optimization. J Ind Eng Chem 74:55–62. https://doi. org/10.1016/j.jiec.2018.12.050 Dotto GL, McKay G (2020) Current scenario and challenges in adsorp tion for water treatment. J Environ Chem Eng 8:103988. https:// doi.org/10.1016/j.jece.2020.103988 Dotto, G.L., Salau, N.P.G., Piccin, J.S., Cadaval Jr., T.R.S., Pinto, L.A.A. 2017. Adsorption kinetics in liquid phase: modeling for discontinuous and continuous systems, Chapter 3, In: A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila (Eds.), Adsorption processes for water treatment and purifca tion, Springer International Publishing. https://doi.org/10.1007/ 978-3-319-58136-1_3 Dotto GL, Vieira MLG, Gonçalves JO, Pinto LAA (2011) Removal of acid blue 9, food yellow 3 and fd&c yellow n° 5 dyes from aqueous solutions using activated carbon, activated earth, diato maceous earth, chitin and chitosan: equilibrium studies and ther modynamic. Quím Nova 34:1193–1199. https://doi.org/10.1590/ s0100-40422011000700017 Fan X, Gao Y, He W, Hu H, Tian M, Wang K, Pan S (2016) Produc tion of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Car bohydr Polym 151:1068–1072. https://doi.org/10.1016/j.carbpol. 2016.06.062 Ferrari V, Tafarel SR, Espinosa-Fuentes E, Oliveira MLS, Saikia BK, Silva LFO (2019) Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. J Clean Prod 208:297–306. https://doi.org/10.1016/j.jclepro.2018.10.032 Georgin J, de Salomón YIO, Franco DSP, Netto MS, Piccilli DGA, Perondi D, Silva LFO, Foletto EL, Dotto GL (2021) Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen. J Environ Chem Eng 9:105676. https://doi.org/10.1016/j.jece. 2021.105676 González-García P (2018) Activated carbon from lignocellulosics pre cursors: a review of the synthesis methods, characterization tech niques and applications. Renew Sust Energ Rev 82:1393–1414. https://doi.org/10.1016/j.rser.2017.04.117 Gope, M., Saha, R. 2021. Removal of heavy metals from industrial efuents by using biochar, Intelligent Environmental Data Moni toring for Pollution Management, p. 25–48. https://doi.org/10. 1016/B978-0-12-819671-7.00002-6 Jiang K, Liu K, Peng Q, Zhou M (2021) Adsorption of Pb(II) and Zn(II) ions on humus-like substances modifed montmorillonite. Colloids Surf, A Physicochem Eng Asp 631:127706. https://doi. org/10.1016/j.colsurfa.2021.127706 Kayalvizhi K, Alhaji NMI, Saravanakkumar D, Mohamed SB, Kavi yarasu K, Ayeshamariam A, Al-Mohaimeed AM, AbdelGawwad MR, Elshikh MS (2022) Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads A kinetic and thermody namic study. Environ Res 203:111814. https://doi.org/10.1016/j. envres.2021.111814 Li H, Xiong J, Xiao T, Long J, Wang Q, Li K, Liu X, Zhang G, Zhang H (2019) Biochar derived from watermelon rinds as regenerable adsorbent for efcient removal of thallium(I) from wastewater. Process Saf Environ Prot 257–266. https://doi.org/10.1016/j.psep. 2019.04.031 Li ZY, Azi F, Dong JJ, Liu LZ, Ge ZW, Dong MS (2021) Green and efcient in-situ biosynthesis of antioxidant and antibacterial bac terial cellulose using wine pomace. Int J Biol Macromol. https:// doi.org/10.1016/j.ijbiomac.2021.11.049. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anasto poulos I (2019) A critical review of the estimation of the ther modynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425– 434. https://doi.org/10.1016/j.molliq.2018.10.048 Lütke SF, Igansi AV, Pegoraro L, Dotto GL, Pinto LAA, Cadaval Jr TRS (2019) Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J Environ Chem Eng 7:103396. https://doi.org/10.1016/j.jece:2019.103396 Mulinari DR, Voorwald HJC, Ciof MO, Silva MLCP, Luz SM (2009) Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydr Polym 75:317–321. https://doi.org/10.1016/j.carbpol.2008.07.028 Netto MS, Rossato DL, Jahn SL, Mallmann ES, Dotto GL, Foletto EL 2019 Preparation of a novel magnetic geopolymer/zero–valent iron composite with remarkable adsorption performance towards aqueous Acid Red 97. Chem Eng Commun 1048-1061. https:// doi.org/10.1080/00986445.2019.1635467 Oncel MS, Muhcu A, Demirbas E, Kobya M (2013) A comparative study of chemical precipitation and electrocoagulation for treat ment of coal acid drainage wastewater. J Environ Chem Eng 1:989–995. https://doi.org/10.1016/j.jece.2013.08.008 Peng L, Bartzas G 2021 Heavy metals and metalloids: a serious threat to environment and human health. Curr Opin Environ Sci Health Editorial overview, 23, Article 100287. https://doi.org/10.1016/j. coesh.2021.100287 Peres EC, Cunha JM, Dortzbacher GF, Pavan FA, Lima EC, Foletto EL, Dotto GL (2018) Treatment of leachates containing cobalt by adsorption on Spirulina sp. and activated charcoal. J Environ Chem Eng 6:677–685. https://doi.org/10.1016/j.jece.2017.12.060 Piccin JS, Cadaval Jr., TRS, Pinto LAA, Dotto GL 2017 Adsorption isotherms in liquid phase: experimental, modeling, and interpreta tions, Chapter 2, in: A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila (Eds.), Adsorption processes for water treat ment and purifcation, Springer International Publishing. Adsorp tion. https://doi.org/10.1007/978-3-319-58136-1_2 Pigatto RS, Franco DSP, Netto MS, Carissimi É, Oliveira LFS, Jahn SL, Dotto GL 2020 An eco-friendly and low-cost strategy for groundwater defuorination: adsorption of fuoride onto calcinated sludge. J Environ Chem Eng Article 104546. https://doi.org/10. 1016/j.jece.2020.104546 Rathi BS, Kumar PS 2021 Application of adsorption process for efec tive removal of emerging contaminants from water and wastewa ter. Environ Pollut 280, Article 116995. https://doi.org/10.1016/j. envpol.2021.116995 Rosa SMC, Nossol ABS, Nossol E, Zarbin AJG, Zamora PGP 2017 Non-synergistic UV-A photocatalytic degradation of estrogens by nano-TiO2 supported on activated carbon. J Braz Chem Soc 28.https://doi.org/10.5935/0103-5053.20160201 Rossato DL, Netto MS, Jahn SL, Mallman ES, Dotto GL, Foletto EL (2020) Highly efcient adsorption performance of a novel mag netic geopolymer/Fe3O4 composite towards removal of aqueous acid green 16 dye. J Environ Chem Eng 8:103804. https://doi.org/ 10.1016/j.jece.2020.103804 Roy A, Bharadvaja N (2021) Efcient removal of heavy metals from artifcial wastewater using biochar. Environ Nanotechnol Monit Manag. https://doi.org/10.1016/j.enmm.2021.100602 Santos DCD, Adebayo MA, Lima EC, Pereira SFP, Cataluña R, Saucier C, Thue PS, Machado FM (2015) Application of carbon com posite adsorbents prepared from cofee waste and clay for the removal of reactive dyes from aqueous solutions. J Braz Chem Soc 26:924–938. https://doi.org/10.5935/0103-5053.20150053 Sardella F, Gimenez M, Navas C, Morandi C, Deiana C, Sapang K (2015) Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium. J Environ Chem Eng 3:253–260. https://doi.org/10.1016/j.jece.2014.06.026 Shao L, Ren Z, Zhang G, Chen L (2012) Facile synthesis, charac terization of a MnFe 2O 4/activated carbon magnetic composite and its efectiveness in tetracycline removal. Mater Chem Phys 135:16–24. https://doi.org/10.1016/j.matchemphys.2012.03.035 Silva NF, Netto MS, Silva LFO, Mallmann ES, Lima EC, Ferrari V, Dotto GL (2021) Composite carbon materials from winery com posted waste for the treatment of efuents contaminated with keto profen and 2-nitrophenol. J Environ Chem Eng 9:105421. https:// doi.org/10.1016/j.jece.2021.105421 Sing KSW, Everett DH, Haul RAW, Moscou L, Pieroti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/ solid systems with special reference to the determination of sur face area and porosity. Pure Appl Chem 57:603–619. https://doi. org/10.1351/pac198557040603 Streit AFM, Collazzo GC, Druzian SP, Verdi RS, Foletto EL, Oliveira LFS, Dotto GL (2021) Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from efuent treatment plant sludge of the beverage industry. Chemosphere 262:128322. https://doi.org/10.1016/j.chemosphere.2020.128322 Tang SH, Ahmad Zaini MA (2020) Development of activated car bon pellets using a facile low-cost binder for efective malachite green dye removal. J Cleaner Prod 253:119970. https://doi.org/ 10.1016/j.jclepro.2020.119970 Tareq R, Akter N, Azam MDS 2019 Biochars and biochar composites: low-cost adsorbents for environmental remediation. Biochar Bio mass Waste 169-209. https://doi.org/10.1016/B978-0-12-811729- 3.00010-8 Vilvanathan S, Shanthakumar S 2015 Biosorption of Co(II) ions from aqueous solution using Chrysanthemum indicum: kinet ics, equilibrium and thermodynamics, Process Saf Environ Prot 98-110. https://doi.org/10.1016/j.psep.2015.05.001 Yang Q, Meng X, Zhao H, Cao C, Liu Y, Huisingh D (2021) Sustain able operations-oriented painting process optimisation in automo bile maintenance service. J Clean Prod 324:129191. https://doi. org/10.1016/j.jclepro.2021.129191 Zhou G, Liu C, Chu L, Tang Y, Luo S (2016) Rapid and efcient treat ment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process. Bioresour Tech nol 219:451–457. https://doi.org/10.1016/j.biortech.2016.07.038 |
dc.relation.citationendpage.spa.fl_str_mv |
11 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
11 Páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Science + Business Media |
dc.publisher.place.spa.fl_str_mv |
Germany |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/article/10.1007/s11356-022-20488-4?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/6ab6e30f-ebb2-4a1c-8951-f96363b550f6/download https://repositorio.cuc.edu.co/bitstreams/a9ba60a9-647a-40b0-8a45-d4b4321f2305/download https://repositorio.cuc.edu.co/bitstreams/59caec7a-0ef3-4af9-9ba4-3b391ba49cef/download https://repositorio.cuc.edu.co/bitstreams/b4a8a8cd-ab8c-4d4d-ba71-992e186480e9/download |
bitstream.checksum.fl_str_mv |
e30e9215131d99561d40d6b0abbe9bad fda62f53ca885b8c2d4672f84b1ad2b2 00336db0e098933625a26b56213f184e df1b2d53c537d58ff8336abfbda4ce55 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760840888549376 |
spelling |
Carvalho, Fernando L.Pinto, DianaSchio, Rejiane R.dos Santos, Jaqueline P.Ketzer, FelipeSilva, Luis F.O.Dotto, Guilherme Luiz2022-07-07T13:41:58Z2023-05-022022-07-07T13:41:58Z2022-05-020944-1344https://hdl.handle.net/11323/9344https://doi.org/10.1007/s11356-022-20488-410.1007/s11356-022-20488-41614-7499Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A real industrial efuent from the pre-treatment and painting processes was polished through adsorption using alternative biochar derived from grape pomace wastes. The biochar was produced in a pilot-scale plant from composted grape pomace. Biochar showed an equilibrium between acidic and basic groups on the surface. The presence of irregular cavities in the structure and mesopores was confrmed by analyzing N2 physisorption and SEM. Concerning the efuent, Ni and Zn were the main problematic elements. The adsorption isotherms and kinetics of Ni and Zn from the efuent using the biochar could be represented by the Henry, pseudo-frst-order, and pseudo-second-order models, respectively. Adsorption equilibrium was reached within 60 min for Ni and Zn present in the real efuent. Besides, the adsorption process was endothermic, favorable, and spontaneous. These results demonstrate that Zn and Ni metals were successfully removed from the industrial efuent, presenting fnal concentration values within the limit of legislation for efuent disposal in agricultural soil.11 Páginasapplication/pdfengSpringer Science + Business MediaGermanyAtribución 4.0 Internacional (CC BY 4.0)© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfPolishing of painting process effluents through adsorption with biochar from winemaking residuesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://link.springer.com/article/10.1007/s11356-022-20488-4?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilotEnvironmental Science and Pollution ResearchAhmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, Ok YS (2012) Efects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544. https://doi.org/10.1016/j. biortech.2012.05.042Al-Lagtah NMA, Al-Muhtaseb AH, Ahmad MNM, Salameh Y (2016) Chemical and physical characteristics of optimal synthesized acti vated carbons from grass-derived sulfonated lignin versus com mercial activated carbon. Micropor Mesopor Mat 225:504–514. https://doi.org/10.1016/j.micromeso.2016.01.043Anirudhan TS, Sreekumari SS (2011) Adsorptive removal of heavy metal ions from industrial efuents using activated carbon derived from waste coconut buttons. J Environ Sci (china) 23:1989–1998. https://doi.org/10.1016/S1001-0742(10)60515-3Bilal M, Shah JA, Ashfaq T, Gardazi SMH, Tahir AA, Pervez A, Haroon H, Mahmood Q (2013) Waste biomass adsorbents for cop per removal from industrial wastewater—a review. J Hazard Mater 263:322–333. https://doi.org/10.1016/j.jhazmat.2013.07.071Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran Valle, C.J. 2019. 1 ed. Adsorption in water treatment. Reference module in chemistry, molecular sciences and chemical engineer ing 1 Elsevier, Amsterdam, pp. 1–21. https://doi.org/10.1016/ B978-0-12-409547-2.14390-2Brezoiu AM, Matei C, Deaconu M, Stanciuc AM, Trifan A, Pin tiliescu AG, Berger D (2019) Polyphenols extract from grape pomace. Characterization and valorisation through encapsula tion into mesoporous silica-type matrices. Food Chem Toxicol 133:110787. https://doi.org/10.1016/j.fct.2019.110787Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228. https://doi.org/10.1016/j.biortech.2010.02.052Cao X, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immo bilization of lead and atrazine in contaminated soils using dairy manure biochar. Environ Sci Technol 45:4884–4889. https://doi. org/10.1021/es103752uCasazza AA, Aliakbarian B, Lagazzo A, Garbarino G, Carnasciali MM, Perego P, Busca G (2016) Pyrolysis of grape marc before and after the recovery of polyphenol fraction. Fuel Process Tech nol 153:121–128. https://doi.org/10.1016/j.fuproc.2016.07.014Dil EA, Ghaedi M, Asfaram A, Mehrabi F, Sadeghfar F (2019) Ef cient adsorption of azure B onto CNTs/Zn:ZnO@Ni2P-NCs from aqueous solution in the presence of ultrasound wave based on multivariate optimization. J Ind Eng Chem 74:55–62. https://doi. org/10.1016/j.jiec.2018.12.050Dotto GL, McKay G (2020) Current scenario and challenges in adsorp tion for water treatment. J Environ Chem Eng 8:103988. https:// doi.org/10.1016/j.jece.2020.103988Dotto, G.L., Salau, N.P.G., Piccin, J.S., Cadaval Jr., T.R.S., Pinto, L.A.A. 2017. Adsorption kinetics in liquid phase: modeling for discontinuous and continuous systems, Chapter 3, In: A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila (Eds.), Adsorption processes for water treatment and purifca tion, Springer International Publishing. https://doi.org/10.1007/ 978-3-319-58136-1_3Dotto GL, Vieira MLG, Gonçalves JO, Pinto LAA (2011) Removal of acid blue 9, food yellow 3 and fd&c yellow n° 5 dyes from aqueous solutions using activated carbon, activated earth, diato maceous earth, chitin and chitosan: equilibrium studies and ther modynamic. Quím Nova 34:1193–1199. https://doi.org/10.1590/ s0100-40422011000700017Fan X, Gao Y, He W, Hu H, Tian M, Wang K, Pan S (2016) Produc tion of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Car bohydr Polym 151:1068–1072. https://doi.org/10.1016/j.carbpol. 2016.06.062Ferrari V, Tafarel SR, Espinosa-Fuentes E, Oliveira MLS, Saikia BK, Silva LFO (2019) Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. J Clean Prod 208:297–306. https://doi.org/10.1016/j.jclepro.2018.10.032Georgin J, de Salomón YIO, Franco DSP, Netto MS, Piccilli DGA, Perondi D, Silva LFO, Foletto EL, Dotto GL (2021) Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen. J Environ Chem Eng 9:105676. https://doi.org/10.1016/j.jece. 2021.105676González-García P (2018) Activated carbon from lignocellulosics pre cursors: a review of the synthesis methods, characterization tech niques and applications. Renew Sust Energ Rev 82:1393–1414. https://doi.org/10.1016/j.rser.2017.04.117Gope, M., Saha, R. 2021. Removal of heavy metals from industrial efuents by using biochar, Intelligent Environmental Data Moni toring for Pollution Management, p. 25–48. https://doi.org/10. 1016/B978-0-12-819671-7.00002-6Jiang K, Liu K, Peng Q, Zhou M (2021) Adsorption of Pb(II) and Zn(II) ions on humus-like substances modifed montmorillonite. Colloids Surf, A Physicochem Eng Asp 631:127706. https://doi. org/10.1016/j.colsurfa.2021.127706Kayalvizhi K, Alhaji NMI, Saravanakkumar D, Mohamed SB, Kavi yarasu K, Ayeshamariam A, Al-Mohaimeed AM, AbdelGawwad MR, Elshikh MS (2022) Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads A kinetic and thermody namic study. Environ Res 203:111814. https://doi.org/10.1016/j. envres.2021.111814Li H, Xiong J, Xiao T, Long J, Wang Q, Li K, Liu X, Zhang G, Zhang H (2019) Biochar derived from watermelon rinds as regenerable adsorbent for efcient removal of thallium(I) from wastewater. Process Saf Environ Prot 257–266. https://doi.org/10.1016/j.psep. 2019.04.031Li ZY, Azi F, Dong JJ, Liu LZ, Ge ZW, Dong MS (2021) Green and efcient in-situ biosynthesis of antioxidant and antibacterial bac terial cellulose using wine pomace. Int J Biol Macromol. https:// doi.org/10.1016/j.ijbiomac.2021.11.049.Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anasto poulos I (2019) A critical review of the estimation of the ther modynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425– 434. https://doi.org/10.1016/j.molliq.2018.10.048Lütke SF, Igansi AV, Pegoraro L, Dotto GL, Pinto LAA, Cadaval Jr TRS (2019) Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J Environ Chem Eng 7:103396. https://doi.org/10.1016/j.jece:2019.103396Mulinari DR, Voorwald HJC, Ciof MO, Silva MLCP, Luz SM (2009) Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydr Polym 75:317–321. https://doi.org/10.1016/j.carbpol.2008.07.028Netto MS, Rossato DL, Jahn SL, Mallmann ES, Dotto GL, Foletto EL 2019 Preparation of a novel magnetic geopolymer/zero–valent iron composite with remarkable adsorption performance towards aqueous Acid Red 97. Chem Eng Commun 1048-1061. https:// doi.org/10.1080/00986445.2019.1635467Oncel MS, Muhcu A, Demirbas E, Kobya M (2013) A comparative study of chemical precipitation and electrocoagulation for treat ment of coal acid drainage wastewater. J Environ Chem Eng 1:989–995. https://doi.org/10.1016/j.jece.2013.08.008Peng L, Bartzas G 2021 Heavy metals and metalloids: a serious threat to environment and human health. Curr Opin Environ Sci Health Editorial overview, 23, Article 100287. https://doi.org/10.1016/j. coesh.2021.100287Peres EC, Cunha JM, Dortzbacher GF, Pavan FA, Lima EC, Foletto EL, Dotto GL (2018) Treatment of leachates containing cobalt by adsorption on Spirulina sp. and activated charcoal. J Environ Chem Eng 6:677–685. https://doi.org/10.1016/j.jece.2017.12.060Piccin JS, Cadaval Jr., TRS, Pinto LAA, Dotto GL 2017 Adsorption isotherms in liquid phase: experimental, modeling, and interpreta tions, Chapter 2, in: A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila (Eds.), Adsorption processes for water treat ment and purifcation, Springer International Publishing. Adsorp tion. https://doi.org/10.1007/978-3-319-58136-1_2Pigatto RS, Franco DSP, Netto MS, Carissimi É, Oliveira LFS, Jahn SL, Dotto GL 2020 An eco-friendly and low-cost strategy for groundwater defuorination: adsorption of fuoride onto calcinated sludge. J Environ Chem Eng Article 104546. https://doi.org/10. 1016/j.jece.2020.104546Rathi BS, Kumar PS 2021 Application of adsorption process for efec tive removal of emerging contaminants from water and wastewa ter. Environ Pollut 280, Article 116995. https://doi.org/10.1016/j. envpol.2021.116995Rosa SMC, Nossol ABS, Nossol E, Zarbin AJG, Zamora PGP 2017 Non-synergistic UV-A photocatalytic degradation of estrogens by nano-TiO2 supported on activated carbon. J Braz Chem Soc 28.https://doi.org/10.5935/0103-5053.20160201Rossato DL, Netto MS, Jahn SL, Mallman ES, Dotto GL, Foletto EL (2020) Highly efcient adsorption performance of a novel mag netic geopolymer/Fe3O4 composite towards removal of aqueous acid green 16 dye. J Environ Chem Eng 8:103804. https://doi.org/ 10.1016/j.jece.2020.103804Roy A, Bharadvaja N (2021) Efcient removal of heavy metals from artifcial wastewater using biochar. Environ Nanotechnol Monit Manag. https://doi.org/10.1016/j.enmm.2021.100602Santos DCD, Adebayo MA, Lima EC, Pereira SFP, Cataluña R, Saucier C, Thue PS, Machado FM (2015) Application of carbon com posite adsorbents prepared from cofee waste and clay for the removal of reactive dyes from aqueous solutions. J Braz Chem Soc 26:924–938. https://doi.org/10.5935/0103-5053.20150053Sardella F, Gimenez M, Navas C, Morandi C, Deiana C, Sapang K (2015) Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium. J Environ Chem Eng 3:253–260. https://doi.org/10.1016/j.jece.2014.06.026Shao L, Ren Z, Zhang G, Chen L (2012) Facile synthesis, charac terization of a MnFe 2O 4/activated carbon magnetic composite and its efectiveness in tetracycline removal. Mater Chem Phys 135:16–24. https://doi.org/10.1016/j.matchemphys.2012.03.035Silva NF, Netto MS, Silva LFO, Mallmann ES, Lima EC, Ferrari V, Dotto GL (2021) Composite carbon materials from winery com posted waste for the treatment of efuents contaminated with keto profen and 2-nitrophenol. J Environ Chem Eng 9:105421. https:// doi.org/10.1016/j.jece.2021.105421Sing KSW, Everett DH, Haul RAW, Moscou L, Pieroti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/ solid systems with special reference to the determination of sur face area and porosity. Pure Appl Chem 57:603–619. https://doi. org/10.1351/pac198557040603Streit AFM, Collazzo GC, Druzian SP, Verdi RS, Foletto EL, Oliveira LFS, Dotto GL (2021) Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from efuent treatment plant sludge of the beverage industry. Chemosphere 262:128322. https://doi.org/10.1016/j.chemosphere.2020.128322Tang SH, Ahmad Zaini MA (2020) Development of activated car bon pellets using a facile low-cost binder for efective malachite green dye removal. J Cleaner Prod 253:119970. https://doi.org/ 10.1016/j.jclepro.2020.119970Tareq R, Akter N, Azam MDS 2019 Biochars and biochar composites: low-cost adsorbents for environmental remediation. Biochar Bio mass Waste 169-209. https://doi.org/10.1016/B978-0-12-811729- 3.00010-8Vilvanathan S, Shanthakumar S 2015 Biosorption of Co(II) ions from aqueous solution using Chrysanthemum indicum: kinet ics, equilibrium and thermodynamics, Process Saf Environ Prot 98-110. https://doi.org/10.1016/j.psep.2015.05.001Yang Q, Meng X, Zhao H, Cao C, Liu Y, Huisingh D (2021) Sustain able operations-oriented painting process optimisation in automo bile maintenance service. J Clean Prod 324:129191. https://doi. org/10.1016/j.jclepro.2021.129191Zhou G, Liu C, Chu L, Tang Y, Luo S (2016) Rapid and efcient treat ment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process. Bioresour Tech nol 219:451–457. https://doi.org/10.1016/j.biortech.2016.07.038111Grape pomace biocharEfuentMetal removalAdsorptionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/6ab6e30f-ebb2-4a1c-8951-f96363b550f6/downloade30e9215131d99561d40d6b0abbe9badMD52ORIGINALPolishing of painting process efuents through adsorption.pdfPolishing of painting process efuents through adsorption.pdfapplication/pdf1323577https://repositorio.cuc.edu.co/bitstreams/a9ba60a9-647a-40b0-8a45-d4b4321f2305/downloadfda62f53ca885b8c2d4672f84b1ad2b2MD51TEXTPolishing of painting process efuents through adsorption.pdf.txtPolishing of painting process efuents through adsorption.pdf.txttext/plain41296https://repositorio.cuc.edu.co/bitstreams/59caec7a-0ef3-4af9-9ba4-3b391ba49cef/download00336db0e098933625a26b56213f184eMD53THUMBNAILPolishing of painting process efuents through adsorption.pdf.jpgPolishing of painting process efuents through adsorption.pdf.jpgimage/jpeg15137https://repositorio.cuc.edu.co/bitstreams/b4a8a8cd-ab8c-4d4d-ba71-992e186480e9/downloaddf1b2d53c537d58ff8336abfbda4ce55MD5411323/9344oai:repositorio.cuc.edu.co:11323/93442024-09-17 14:08:56.238https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |