Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix
Using groundwater for human consumption is an alternative for places with no nearby surface water resources. Fluoride is commonly found in groundwater, and the consumption of this water for a prolonged time in concentrations that exceed established limits by WHO and Brazilian legislation on water po...
- Autores:
-
Gasparotto, Juliana M.
Pinto, Diana
de Paula, Natalie
Maraschin, Manoel
Dison S.P., Franco
Carissimi, Elvis
Foletto, Edson
Jahn, Sergio L.
Silva Oliveira, Luis Felipe
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10434
- Acceso en línea:
- https://hdl.handle.net/11323/10434
https://repositorio.cuc.edu.co/
- Palabra clave:
- Fe-Al-La/alumina
Adsorption
Fluoride
Isotherm
Kinetics
Experimental design
- Rights
- embargoedAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_225dd5b37ee51bc3b27503ca2f32de55 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10434 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix |
title |
Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix |
spellingShingle |
Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix Fe-Al-La/alumina Adsorption Fluoride Isotherm Kinetics Experimental design |
title_short |
Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix |
title_full |
Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix |
title_fullStr |
Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix |
title_full_unstemmed |
Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix |
title_sort |
Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix |
dc.creator.fl_str_mv |
Gasparotto, Juliana M. Pinto, Diana de Paula, Natalie Maraschin, Manoel Dison S.P., Franco Carissimi, Elvis Foletto, Edson Jahn, Sergio L. Silva Oliveira, Luis Felipe Dotto, Guilherme Luiz |
dc.contributor.author.none.fl_str_mv |
Gasparotto, Juliana M. Pinto, Diana de Paula, Natalie Maraschin, Manoel Dison S.P., Franco Carissimi, Elvis Foletto, Edson Jahn, Sergio L. Silva Oliveira, Luis Felipe Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Fe-Al-La/alumina Adsorption Fluoride Isotherm Kinetics Experimental design |
topic |
Fe-Al-La/alumina Adsorption Fluoride Isotherm Kinetics Experimental design |
description |
Using groundwater for human consumption is an alternative for places with no nearby surface water resources. Fluoride is commonly found in groundwater, and the consumption of this water for a prolonged time in concentrations that exceed established limits by WHO and Brazilian legislation on water potability (1.5 mg L−1) can cause harmful problems to human health. For this reason, fluoride removal is an important step before water consumption. In this work, activated alumina was impregnated with Fe-Al-La composite and employed for the first time as an adsorbent for fluoride removal from an aqueous environment. XRD, SEM/EDS, FT-IR, and point of zero charge were used to characterize the prepared adsorbent. The adsorptive performance of adsorbent material was investigated by employing a 23-central composite design (CCD), and the obtained experimental conditions were pH = 6.5 and adsorbent dosage = 3.0 g L−1. A maximum adsorption capacity of 8.17 mg g−1 at 298 K and pH = 6.5 was achieved by Langmuir isotherm to describe the adsorption. The kinetic model that better described experimental data was Avrami, with the kav parameter increasing with the initial concentration from 0.076 to 0.231 (min−1)nav. The nature of adsorption was found to be homogeneous, and it occurs in a monolayer. The fluoride removal performance for the prepared adsorbent was higher than granular activated alumina, showing that supporting Fe-Al-La at the alumina surface increased its fluoride adsorption capacity from 16 to 42% at the same experimental conditions. Finally, the influence of co-existing ions Cl−, SO42−, and NO3− was evaluated in fluoride adsorption, and the material presented great selectivity to fluoride. Thus, Fe-Al-La/AA adsorbent is a promising material for fluoride removal from water. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-31T22:09:32Z |
dc.date.available.none.fl_str_mv |
2023-08-31T22:09:32Z 2024 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Gasparotto, J.M., Pinto, D., de Paula, N. et al. Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix. Environ Sci Pollut Res 30, 42416–42426 (2023). https://doi.org/10.1007/s11356-023-25231-1 |
dc.identifier.issn.spa.fl_str_mv |
0944-1344 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10434 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s11356-023-25231-1 |
dc.identifier.eissn.spa.fl_str_mv |
1614-7499 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Gasparotto, J.M., Pinto, D., de Paula, N. et al. Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix. Environ Sci Pollut Res 30, 42416–42426 (2023). https://doi.org/10.1007/s11356-023-25231-1 0944-1344 10.1007/s11356-023-25231-1 1614-7499 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/10434 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Environmental Science and Pollution Research |
dc.relation.references.spa.fl_str_mv |
Adak MK, Sen A, Mukherjee A et al (2017) Removal of fluoride from drinking water using highly efficient nano-adsorbent, Al(III)-Fe(III)-La(III) trimetallic oxide prepared by chemical route. J Alloys Compd 719:460–469. https://doi.org/10.1016/j.jallcom.2017.05.149 Awual MR, Hossain MA, Shenashen MA, Yaita T, Suzuki S, Jyo A (2012) Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents. Environ Sci Pollut Res 20:421–430 (https://link.springer.com/article/10.1007/2Fs11356-012-0936-7) Awual MdR, Hossain A, Shenashen MA, Yata T, Suzuki S, Jyo A (2013) Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents. Environ Sci Pollut Res 20:421–430 (https://link.springer.com/article/10.1007/s11356-012-0936-7) Bansiwal A, Pillewan P, Biniwale RB, Rayalu SS (2010) Copper oxide incorporated mesoporous alumina for defluoridation of drinking water. Micropor Mesopor Mater 129:54–61. https://doi.org/10.1016/j.micromeso.2009.08.032 Chai L, Wang Y, Zhao N et al (2013) Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res 47:4040–4049. https://doi.org/10.1016/j.watres.2013.02.057 Chang MF, Liu JC (2007) Precipitation removal of fluoride from semiconductor wastewater. J Environ Eng 133:419–425. https://doi.org/10.1061/(asce)0733-9372(2007)133:4(419) Chen T, Yu K, Dong C et al (2022a) Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coord Chem Rev 467:214–615. https://doi.org/10.1016/j.apcatb.2022.121815 Chen T, Lui T, Zhou L et al (2022b) Ternary boron carbon nitrides hollow nanotubes with tunable p-n homojunction for photo-assisted uranium extraction: a combined batch, EXAFS and DFT calculations. Appl Catal B: Environmental 318:121–815. https://doi.org/10.1016/j.ccr.2022.214615 Cheng J, Meng X, Jing C, Hao J (2014) La3+-modified activated alumina for fluoride removal from water. J Hazard Mater 278:343–349. https://doi.org/10.1016/j.jhazmat.2014.06.008 Dayananda D, Sarva VR, Prasad SV, Arunachalam J, Ghosh NN (2014) Preparation of CaO loaded mesoporous Al2O3: efficient adsorbent for fluoride removal from water. Chem Eng J 248:430–439. https://doi.org/10.1016/j.cej.2014.03.064 Dou X, Zhang Y, Wang H et al (2011) Performance of granular zirconium-iron oxide in the removal of fluoride from drinking water. Water Res 45:3571–3578. https://doi.org/10.1016/j.watres.2011.04.002 Freundlich H (1907) Über die Adsorption in Lösungen. Zeitschrift für Phys Chemie 57U. https://doi.org/10.1515/zpch-1907-5723 Gasparotto JM, Roth D, Perilli ALO, Franco DSP, Carissimi E, Foletto EL, Jahn SL, Dotto GL (2021) A novel Fe-Al-La trioxide composite: synthesis, characterization, and application for fluoride ions removal from the water supply. J Environ Chem Eng 9:2213–3437. https://doi.org/10.1016/j.jece.2021.106350 Habuda-Stanić M, Ravančić M, Flanagan A (2014) A review on adsorption of fluoride from aqueous solution. Materials (Basel) 7:6317–6366. https://doi.org/10.3390/ma7096317 He P, Zhang L, Wu L, Chen T et al (2022) Synergistic effect of the sulfur vacancy and schottky heterojunction on photocatalytic uranium immobilization: the thermodynamics and kinetics. Inorg Chem 61:2242–2250. https://doi.org/10.1021/acs.inorgchem.1c03552 Kumar E, Bhatnagar A, Ji M, Jung W, Lee S, Kim SJ, Lee G, Song H, Choi JY, Yang Y, Jeon BH (2009) Defluoridation from aqueous solutions by granular ferric hydroxide (GFH). Water Res 43:490–498. https://doi.org/10.1016/j.watres.2008.10.031 Kumar E, Bhatnagar A, Kumar U, Sillanpää M (2011) Defluoridation from aqueous solutions by nano-alumina: characterization and sorption studies. J Hazard Mater 186:1042–1049. https://doi.org/10.1016/j.jhazmat.2010.11.102 Kumari U, Behera SK, Meikap BC (2019) A novel acid modified alumina adsorbent with enhanced defluoridation property: kinetics, isotherm study and applicability on industrial wastewater. J Hazard Mater 365:868–882. https://doi.org/10.1016/j.jhazmat.2018.11.064 Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004 Li L, Zhu Q, Man K, Xing Z (2017) Fluoride removal from liquid phase by Fe-Al-La trimetal hydroxides adsorbent prepared by iron and aluminum leaching from red mud. J Mol Liq 237:164–172. https://doi.org/10.1016/j.molliq.2017.04.097 Liu J, Zhao P, Xu Y, Jia X (2019) Mg-Al mixed oxide adsorbent synthesized using FCT template for fluoride removal from drinking water. Bioinorg Chem Appl 2019:1–11. https://doi.org/10.1155/2019/5840205 Mendoza-Castillo DI, Reynel-Ávila HE, Bonilla-Petriciolet A, Silvestre-Albero J (2016) Synthesis of denim waste-based adsorbents and their application in water defluoridation. J Mol Liq 221:469–478. https://doi.org/10.1016/j.molliq.2016.06.005 Mohapatra M, Hariprasad D, Mohapatra L et al (2012) Mg-doped nano ferrihydrite - a new adsorbent for fluoride removal from aqueous solutions. Appl Surf Sci 258:4228–4236. https://doi.org/10.1016/j.apsusc.2011.12.047 Netto MS, Silva NF, Mallmann ES, Dotto EL, Foletto EL (2019) Effect of salinity on the adsorption behavior of methylene blue onto comminuted raw avocado residue: CCD-RSM design. Water Air Soil Pollut 230(187):2–17. https://doi.org/10.1007/s11270-019-4230-x Nur T, Loganathan P, Nguyen TC et al (2014) Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: solution chemistry and modeling. Chem Eng J 247:93–102. https://doi.org/10.1016/j.cej.2014.03.009 Peres MA, Cury JA (2011) Drinking water quality and fluoride concentration. Rev Saúde Pública 45:964–973. https://doi.org/10.1590/S0034-89102011005000046 Pigatto RS, Franco DSP, Netto MS et al (2020) An eco-friendly and low-cost strategy for groundwater defluorination: adsorption of fluoride onto calcinated sludge. J Environ Chem Eng 8:104546. https://doi.org/10.1016/j.jece.2020.104546 Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1026 Rojas-Mayorga CKR, Petriciolet AB, Albero JS, Voillareal IAA (2015) Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation. Appl Surf Sci 355:748–760. https://doi.org/10.1016/j.apsusc.2015.07.163 Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280(1–3):1–13. https://doi.org/10.1016/j.desal.2011.07.019 Samarghandi MR, Khiadani M, Foroughi M, Nasab HZ (2016) Defluoridation of water using activated alumina in presence of natural organic matter via response surface methodology. Environ Sci Pollut Res 23:887–897. https://doi.org/10.1007/s11356-015-5293-x Singh K, Lataye DH, Wasewar KL, Yoo CK (2013) Removal of fluoride from aqueous solution: status and techniques. Desalin Water Treat 51:3233–3247. https://doi.org/10.1080/19443994.2012.749036 Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495 Thathsara SKT, Cooray PLAT, Mudiyanselage TK et al (2018) A novel Fe-La-Ce tri-metallic composite for the removal of fluoride ions from aqueous media. J Environ Manage 207:387–395. https://doi.org/10.1016/j.jenvman.2017.11.041 Tian Y, Wu M, Liu R, Wang D, Lin X, Liu W, Ma L, Li Y, Huang Y (2011) Modified native cellulose fibers—a novel efficient adsorbent for both fluoride and arsenic. J Hazard Mater 185(1):93–100. https://doi.org/10.1016/j.jhazmat.2010.09.001 Vithanage M, Bhattacharya P (2015) Fluoride in the environment: sources, distribution and defluoridation. Environ Chem Lett 13:131–147. https://doi.org/10.1007/s10311-015-0496-4 Wang Z, Shi M, Li J, Zheng Z (2014) Influence of moderate pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon. J Environ Sci (China) 26:519–528. https://doi.org/10.1016/S1001-0742(13)60440-4 Wang J, Wu L, Li J et al (2018) Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: adsorption kinetics and mechanism. J Alloys Compd 753:422–432. https://doi.org/10.1016/j.jallcom.2018.04.177 Wang R, Li M, Liu T et al (2022) Encapsulating carbon-coated nano zero-valent iron particles with biomass-derived carbon aerogel for efficient uranium extraction from uranium-containing wastewater. J Clean Prod 364:132–654. https://doi.org/10.1016/j.jclepro.2022.132654 Wu X, Zhang Y, Dou X, Yang M (2007) Fluoride removal performance of a novel Fe-Al-Ce trimetal oxide adsorbent. Chemosphere 69:1758–1764. https://doi.org/10.1016/j.chemosphere.2007.05.075 Wu X, Zhang Y, Dou X et al (2013) Fluoride adsorption on an Fe-Al-Ce trimetal hydrous oxide: characterization of adsorption sites and adsorbed fluorine complex species. Chem Eng J 223:364–370. https://doi.org/10.1016/j.cej.2013.03.027 Xiang W, Zhang G, Zhang Y, Tang D, Wang J (2014) Synthesis and characterization of cotton-like Ca–Al–La composite as an adsorbent for fluoride removal. Chem Eng J 250:423–430. https://doi.org/10.1016/j.cej.2014.03.118 Zhang G, He Z, Xu W (2012) A low-cost and high efficient zirconium-modified-Na-attapulgite adsorbent for fluoride removal from aqueous solutions. Chem Eng J 183:315–324. https://doi.org/10.1016/j.cej.2011.12.085 Zhang S, Lu Y, Lin X et al (2014) Removal of fluoride from groundwater by adsorption onto La(III)-Al(III) loaded scoria adsorbent. Appl Surf Sci 303:1–5. https://doi.org/10.1016/j.apsusc.2014.01.169 Zhang J, Brutus TE, Cheng J, Meng X (2017) Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect. J Environ Sci 57:190–195. https://doi.org/10.1016/j.jes.2017.03.015 Zhou J, Zhu W, Yu J et al (2018) Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide. Appl Surf Sci 435:920–927. https://doi.org/10.1016/j.apsusc.2017.11.108 |
dc.relation.citationendpage.spa.fl_str_mv |
42426 |
dc.relation.citationstartpage.spa.fl_str_mv |
42416 |
dc.relation.citationvolume.spa.fl_str_mv |
30 |
dc.rights.eng.fl_str_mv |
© 2023 Springer Nature |
dc.rights.license.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2023 Springer Nature https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
1 página |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Science + Business Media |
dc.publisher.place.spa.fl_str_mv |
Germany |
dc.source.spa.fl_str_mv |
https://link.springer.com/article/10.1007/s11356-023-25231-1 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/5c7ee7f7-a8f4-4e01-801c-b081eabee5e5/download https://repositorio.cuc.edu.co/bitstreams/a69368e8-46a8-457e-8144-6d40e9b6d56c/download https://repositorio.cuc.edu.co/bitstreams/d7510c84-24c1-4c7d-bc91-48ee9d99c234/download https://repositorio.cuc.edu.co/bitstreams/67942d61-2608-4388-bd1a-4f51f8dbd2bb/download |
bitstream.checksum.fl_str_mv |
9fe6156b9ba4aa13a2dc710e7d61a7c5 2f9959eaf5b71fae44bbf9ec84150c7a d204e33430a7286a059568ecd3d64c5a 705547fe472e7ad399e6294266cbcd6b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166861148127232 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© 2023 Springer Naturehttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfGasparotto, Juliana M.Pinto, Dianade Paula, NatalieMaraschin, ManoelDison S.P., FrancoCarissimi, ElvisFoletto, EdsonJahn, Sergio L.Silva Oliveira, Luis FelipeDotto, Guilherme Luiz2023-08-31T22:09:32Z20242023-08-31T22:09:32Z2023Gasparotto, J.M., Pinto, D., de Paula, N. et al. Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix. Environ Sci Pollut Res 30, 42416–42426 (2023). https://doi.org/10.1007/s11356-023-25231-10944-1344https://hdl.handle.net/11323/1043410.1007/s11356-023-25231-11614-7499Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Using groundwater for human consumption is an alternative for places with no nearby surface water resources. Fluoride is commonly found in groundwater, and the consumption of this water for a prolonged time in concentrations that exceed established limits by WHO and Brazilian legislation on water potability (1.5 mg L−1) can cause harmful problems to human health. For this reason, fluoride removal is an important step before water consumption. In this work, activated alumina was impregnated with Fe-Al-La composite and employed for the first time as an adsorbent for fluoride removal from an aqueous environment. XRD, SEM/EDS, FT-IR, and point of zero charge were used to characterize the prepared adsorbent. The adsorptive performance of adsorbent material was investigated by employing a 23-central composite design (CCD), and the obtained experimental conditions were pH = 6.5 and adsorbent dosage = 3.0 g L−1. A maximum adsorption capacity of 8.17 mg g−1 at 298 K and pH = 6.5 was achieved by Langmuir isotherm to describe the adsorption. The kinetic model that better described experimental data was Avrami, with the kav parameter increasing with the initial concentration from 0.076 to 0.231 (min−1)nav. The nature of adsorption was found to be homogeneous, and it occurs in a monolayer. The fluoride removal performance for the prepared adsorbent was higher than granular activated alumina, showing that supporting Fe-Al-La at the alumina surface increased its fluoride adsorption capacity from 16 to 42% at the same experimental conditions. Finally, the influence of co-existing ions Cl−, SO42−, and NO3− was evaluated in fluoride adsorption, and the material presented great selectivity to fluoride. Thus, Fe-Al-La/AA adsorbent is a promising material for fluoride removal from water.1 páginaapplication/pdfengSpringer Science + Business MediaGermanyhttps://link.springer.com/article/10.1007/s11356-023-25231-1Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrixArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bcceEnvironmental Science and Pollution ResearchAdak MK, Sen A, Mukherjee A et al (2017) Removal of fluoride from drinking water using highly efficient nano-adsorbent, Al(III)-Fe(III)-La(III) trimetallic oxide prepared by chemical route. J Alloys Compd 719:460–469. https://doi.org/10.1016/j.jallcom.2017.05.149Awual MR, Hossain MA, Shenashen MA, Yaita T, Suzuki S, Jyo A (2012) Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents. Environ Sci Pollut Res 20:421–430 (https://link.springer.com/article/10.1007/2Fs11356-012-0936-7)Awual MdR, Hossain A, Shenashen MA, Yata T, Suzuki S, Jyo A (2013) Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents. Environ Sci Pollut Res 20:421–430 (https://link.springer.com/article/10.1007/s11356-012-0936-7)Bansiwal A, Pillewan P, Biniwale RB, Rayalu SS (2010) Copper oxide incorporated mesoporous alumina for defluoridation of drinking water. Micropor Mesopor Mater 129:54–61. https://doi.org/10.1016/j.micromeso.2009.08.032Chai L, Wang Y, Zhao N et al (2013) Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res 47:4040–4049. https://doi.org/10.1016/j.watres.2013.02.057Chang MF, Liu JC (2007) Precipitation removal of fluoride from semiconductor wastewater. J Environ Eng 133:419–425. https://doi.org/10.1061/(asce)0733-9372(2007)133:4(419)Chen T, Yu K, Dong C et al (2022a) Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coord Chem Rev 467:214–615. https://doi.org/10.1016/j.apcatb.2022.121815Chen T, Lui T, Zhou L et al (2022b) Ternary boron carbon nitrides hollow nanotubes with tunable p-n homojunction for photo-assisted uranium extraction: a combined batch, EXAFS and DFT calculations. Appl Catal B: Environmental 318:121–815. https://doi.org/10.1016/j.ccr.2022.214615Cheng J, Meng X, Jing C, Hao J (2014) La3+-modified activated alumina for fluoride removal from water. J Hazard Mater 278:343–349. https://doi.org/10.1016/j.jhazmat.2014.06.008Dayananda D, Sarva VR, Prasad SV, Arunachalam J, Ghosh NN (2014) Preparation of CaO loaded mesoporous Al2O3: efficient adsorbent for fluoride removal from water. Chem Eng J 248:430–439. https://doi.org/10.1016/j.cej.2014.03.064Dou X, Zhang Y, Wang H et al (2011) Performance of granular zirconium-iron oxide in the removal of fluoride from drinking water. Water Res 45:3571–3578. https://doi.org/10.1016/j.watres.2011.04.002Freundlich H (1907) Über die Adsorption in Lösungen. Zeitschrift für Phys Chemie 57U. https://doi.org/10.1515/zpch-1907-5723Gasparotto JM, Roth D, Perilli ALO, Franco DSP, Carissimi E, Foletto EL, Jahn SL, Dotto GL (2021) A novel Fe-Al-La trioxide composite: synthesis, characterization, and application for fluoride ions removal from the water supply. J Environ Chem Eng 9:2213–3437. https://doi.org/10.1016/j.jece.2021.106350Habuda-Stanić M, Ravančić M, Flanagan A (2014) A review on adsorption of fluoride from aqueous solution. Materials (Basel) 7:6317–6366. https://doi.org/10.3390/ma7096317He P, Zhang L, Wu L, Chen T et al (2022) Synergistic effect of the sulfur vacancy and schottky heterojunction on photocatalytic uranium immobilization: the thermodynamics and kinetics. Inorg Chem 61:2242–2250. https://doi.org/10.1021/acs.inorgchem.1c03552Kumar E, Bhatnagar A, Ji M, Jung W, Lee S, Kim SJ, Lee G, Song H, Choi JY, Yang Y, Jeon BH (2009) Defluoridation from aqueous solutions by granular ferric hydroxide (GFH). Water Res 43:490–498. https://doi.org/10.1016/j.watres.2008.10.031Kumar E, Bhatnagar A, Kumar U, Sillanpää M (2011) Defluoridation from aqueous solutions by nano-alumina: characterization and sorption studies. J Hazard Mater 186:1042–1049. https://doi.org/10.1016/j.jhazmat.2010.11.102Kumari U, Behera SK, Meikap BC (2019) A novel acid modified alumina adsorbent with enhanced defluoridation property: kinetics, isotherm study and applicability on industrial wastewater. J Hazard Mater 365:868–882. https://doi.org/10.1016/j.jhazmat.2018.11.064Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004Li L, Zhu Q, Man K, Xing Z (2017) Fluoride removal from liquid phase by Fe-Al-La trimetal hydroxides adsorbent prepared by iron and aluminum leaching from red mud. J Mol Liq 237:164–172. https://doi.org/10.1016/j.molliq.2017.04.097Liu J, Zhao P, Xu Y, Jia X (2019) Mg-Al mixed oxide adsorbent synthesized using FCT template for fluoride removal from drinking water. Bioinorg Chem Appl 2019:1–11. https://doi.org/10.1155/2019/5840205Mendoza-Castillo DI, Reynel-Ávila HE, Bonilla-Petriciolet A, Silvestre-Albero J (2016) Synthesis of denim waste-based adsorbents and their application in water defluoridation. J Mol Liq 221:469–478. https://doi.org/10.1016/j.molliq.2016.06.005Mohapatra M, Hariprasad D, Mohapatra L et al (2012) Mg-doped nano ferrihydrite - a new adsorbent for fluoride removal from aqueous solutions. Appl Surf Sci 258:4228–4236. https://doi.org/10.1016/j.apsusc.2011.12.047Netto MS, Silva NF, Mallmann ES, Dotto EL, Foletto EL (2019) Effect of salinity on the adsorption behavior of methylene blue onto comminuted raw avocado residue: CCD-RSM design. Water Air Soil Pollut 230(187):2–17. https://doi.org/10.1007/s11270-019-4230-xNur T, Loganathan P, Nguyen TC et al (2014) Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: solution chemistry and modeling. Chem Eng J 247:93–102. https://doi.org/10.1016/j.cej.2014.03.009Peres MA, Cury JA (2011) Drinking water quality and fluoride concentration. Rev Saúde Pública 45:964–973. https://doi.org/10.1590/S0034-89102011005000046Pigatto RS, Franco DSP, Netto MS et al (2020) An eco-friendly and low-cost strategy for groundwater defluorination: adsorption of fluoride onto calcinated sludge. J Environ Chem Eng 8:104546. https://doi.org/10.1016/j.jece.2020.104546Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1026Rojas-Mayorga CKR, Petriciolet AB, Albero JS, Voillareal IAA (2015) Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation. Appl Surf Sci 355:748–760. https://doi.org/10.1016/j.apsusc.2015.07.163Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280(1–3):1–13. https://doi.org/10.1016/j.desal.2011.07.019Samarghandi MR, Khiadani M, Foroughi M, Nasab HZ (2016) Defluoridation of water using activated alumina in presence of natural organic matter via response surface methodology. Environ Sci Pollut Res 23:887–897. https://doi.org/10.1007/s11356-015-5293-xSingh K, Lataye DH, Wasewar KL, Yoo CK (2013) Removal of fluoride from aqueous solution: status and techniques. Desalin Water Treat 51:3233–3247. https://doi.org/10.1080/19443994.2012.749036Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495Thathsara SKT, Cooray PLAT, Mudiyanselage TK et al (2018) A novel Fe-La-Ce tri-metallic composite for the removal of fluoride ions from aqueous media. J Environ Manage 207:387–395. https://doi.org/10.1016/j.jenvman.2017.11.041Tian Y, Wu M, Liu R, Wang D, Lin X, Liu W, Ma L, Li Y, Huang Y (2011) Modified native cellulose fibers—a novel efficient adsorbent for both fluoride and arsenic. J Hazard Mater 185(1):93–100. https://doi.org/10.1016/j.jhazmat.2010.09.001Vithanage M, Bhattacharya P (2015) Fluoride in the environment: sources, distribution and defluoridation. Environ Chem Lett 13:131–147. https://doi.org/10.1007/s10311-015-0496-4Wang Z, Shi M, Li J, Zheng Z (2014) Influence of moderate pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon. J Environ Sci (China) 26:519–528. https://doi.org/10.1016/S1001-0742(13)60440-4Wang J, Wu L, Li J et al (2018) Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: adsorption kinetics and mechanism. J Alloys Compd 753:422–432. https://doi.org/10.1016/j.jallcom.2018.04.177Wang R, Li M, Liu T et al (2022) Encapsulating carbon-coated nano zero-valent iron particles with biomass-derived carbon aerogel for efficient uranium extraction from uranium-containing wastewater. J Clean Prod 364:132–654. https://doi.org/10.1016/j.jclepro.2022.132654Wu X, Zhang Y, Dou X, Yang M (2007) Fluoride removal performance of a novel Fe-Al-Ce trimetal oxide adsorbent. Chemosphere 69:1758–1764. https://doi.org/10.1016/j.chemosphere.2007.05.075Wu X, Zhang Y, Dou X et al (2013) Fluoride adsorption on an Fe-Al-Ce trimetal hydrous oxide: characterization of adsorption sites and adsorbed fluorine complex species. Chem Eng J 223:364–370. https://doi.org/10.1016/j.cej.2013.03.027Xiang W, Zhang G, Zhang Y, Tang D, Wang J (2014) Synthesis and characterization of cotton-like Ca–Al–La composite as an adsorbent for fluoride removal. Chem Eng J 250:423–430. https://doi.org/10.1016/j.cej.2014.03.118Zhang G, He Z, Xu W (2012) A low-cost and high efficient zirconium-modified-Na-attapulgite adsorbent for fluoride removal from aqueous solutions. Chem Eng J 183:315–324. https://doi.org/10.1016/j.cej.2011.12.085Zhang S, Lu Y, Lin X et al (2014) Removal of fluoride from groundwater by adsorption onto La(III)-Al(III) loaded scoria adsorbent. Appl Surf Sci 303:1–5. https://doi.org/10.1016/j.apsusc.2014.01.169Zhang J, Brutus TE, Cheng J, Meng X (2017) Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect. J Environ Sci 57:190–195. https://doi.org/10.1016/j.jes.2017.03.015Zhou J, Zhu W, Yu J et al (2018) Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide. Appl Surf Sci 435:920–927. https://doi.org/10.1016/j.apsusc.2017.11.108424264241630Fe-Al-La/aluminaAdsorptionFluorideIsothermKineticsExperimental designPublicationORIGINALPreparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix.pdfPreparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix.pdfapplication/pdf82962https://repositorio.cuc.edu.co/bitstreams/5c7ee7f7-a8f4-4e01-801c-b081eabee5e5/download9fe6156b9ba4aa13a2dc710e7d61a7c5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/a69368e8-46a8-457e-8144-6d40e9b6d56c/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTPreparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix.pdf.txtPreparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix.pdf.txtExtracted texttext/plain2236https://repositorio.cuc.edu.co/bitstreams/d7510c84-24c1-4c7d-bc91-48ee9d99c234/downloadd204e33430a7286a059568ecd3d64c5aMD53THUMBNAILPreparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix.pdf.jpgPreparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix.pdf.jpgGenerated Thumbnailimage/jpeg15975https://repositorio.cuc.edu.co/bitstreams/67942d61-2608-4388-bd1a-4f51f8dbd2bb/download705547fe472e7ad399e6294266cbcd6bMD5411323/10434oai:repositorio.cuc.edu.co:11323/104342024-09-17 14:19:15.851https://creativecommons.org/licenses/by/4.0/© 2023 Springer Natureopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |