Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix

Using groundwater for human consumption is an alternative for places with no nearby surface water resources. Fluoride is commonly found in groundwater, and the consumption of this water for a prolonged time in concentrations that exceed established limits by WHO and Brazilian legislation on water po...

Full description

Autores:
Gasparotto, Juliana M.
Pinto, Diana
de Paula, Natalie
Maraschin, Manoel
Dison S.P., Franco
Carissimi, Elvis
Foletto, Edson
Jahn, Sergio L.
Silva Oliveira, Luis Felipe
Dotto, Guilherme Luiz
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10434
Acceso en línea:
https://hdl.handle.net/11323/10434
https://repositorio.cuc.edu.co/
Palabra clave:
Fe-Al-La/alumina
Adsorption
Fluoride
Isotherm
Kinetics
Experimental design
Rights
embargoedAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_225dd5b37ee51bc3b27503ca2f32de55
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10434
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix
title Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix
spellingShingle Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix
Fe-Al-La/alumina
Adsorption
Fluoride
Isotherm
Kinetics
Experimental design
title_short Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix
title_full Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix
title_fullStr Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix
title_full_unstemmed Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix
title_sort Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix
dc.creator.fl_str_mv Gasparotto, Juliana M.
Pinto, Diana
de Paula, Natalie
Maraschin, Manoel
Dison S.P., Franco
Carissimi, Elvis
Foletto, Edson
Jahn, Sergio L.
Silva Oliveira, Luis Felipe
Dotto, Guilherme Luiz
dc.contributor.author.none.fl_str_mv Gasparotto, Juliana M.
Pinto, Diana
de Paula, Natalie
Maraschin, Manoel
Dison S.P., Franco
Carissimi, Elvis
Foletto, Edson
Jahn, Sergio L.
Silva Oliveira, Luis Felipe
Dotto, Guilherme Luiz
dc.subject.proposal.eng.fl_str_mv Fe-Al-La/alumina
Adsorption
Fluoride
Isotherm
Kinetics
Experimental design
topic Fe-Al-La/alumina
Adsorption
Fluoride
Isotherm
Kinetics
Experimental design
description Using groundwater for human consumption is an alternative for places with no nearby surface water resources. Fluoride is commonly found in groundwater, and the consumption of this water for a prolonged time in concentrations that exceed established limits by WHO and Brazilian legislation on water potability (1.5 mg L−1) can cause harmful problems to human health. For this reason, fluoride removal is an important step before water consumption. In this work, activated alumina was impregnated with Fe-Al-La composite and employed for the first time as an adsorbent for fluoride removal from an aqueous environment. XRD, SEM/EDS, FT-IR, and point of zero charge were used to characterize the prepared adsorbent. The adsorptive performance of adsorbent material was investigated by employing a 23-central composite design (CCD), and the obtained experimental conditions were pH = 6.5 and adsorbent dosage = 3.0 g L−1. A maximum adsorption capacity of 8.17 mg g−1 at 298 K and pH = 6.5 was achieved by Langmuir isotherm to describe the adsorption. The kinetic model that better described experimental data was Avrami, with the kav parameter increasing with the initial concentration from 0.076 to 0.231 (min−1)nav. The nature of adsorption was found to be homogeneous, and it occurs in a monolayer. The fluoride removal performance for the prepared adsorbent was higher than granular activated alumina, showing that supporting Fe-Al-La at the alumina surface increased its fluoride adsorption capacity from 16 to 42% at the same experimental conditions. Finally, the influence of co-existing ions Cl−, SO42−, and NO3− was evaluated in fluoride adsorption, and the material presented great selectivity to fluoride. Thus, Fe-Al-La/AA adsorbent is a promising material for fluoride removal from water.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-31T22:09:32Z
dc.date.available.none.fl_str_mv 2023-08-31T22:09:32Z
2024
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str draft
dc.identifier.citation.spa.fl_str_mv Gasparotto, J.M., Pinto, D., de Paula, N. et al. Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix. Environ Sci Pollut Res 30, 42416–42426 (2023). https://doi.org/10.1007/s11356-023-25231-1
dc.identifier.issn.spa.fl_str_mv 0944-1344
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10434
dc.identifier.doi.none.fl_str_mv 10.1007/s11356-023-25231-1
dc.identifier.eissn.spa.fl_str_mv 1614-7499
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Gasparotto, J.M., Pinto, D., de Paula, N. et al. Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix. Environ Sci Pollut Res 30, 42416–42426 (2023). https://doi.org/10.1007/s11356-023-25231-1
0944-1344
10.1007/s11356-023-25231-1
1614-7499
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10434
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Environmental Science and Pollution Research
dc.relation.references.spa.fl_str_mv Adak MK, Sen A, Mukherjee A et al (2017) Removal of fluoride from drinking water using highly efficient nano-adsorbent, Al(III)-Fe(III)-La(III) trimetallic oxide prepared by chemical route. J Alloys Compd 719:460–469. https://doi.org/10.1016/j.jallcom.2017.05.149
Awual MR, Hossain MA, Shenashen MA, Yaita T, Suzuki S, Jyo A (2012) Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents. Environ Sci Pollut Res 20:421–430 (https://link.springer.com/article/10.1007/2Fs11356-012-0936-7)
Awual MdR, Hossain A, Shenashen MA, Yata T, Suzuki S, Jyo A (2013) Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents. Environ Sci Pollut Res 20:421–430 (https://link.springer.com/article/10.1007/s11356-012-0936-7)
Bansiwal A, Pillewan P, Biniwale RB, Rayalu SS (2010) Copper oxide incorporated mesoporous alumina for defluoridation of drinking water. Micropor Mesopor Mater 129:54–61. https://doi.org/10.1016/j.micromeso.2009.08.032
Chai L, Wang Y, Zhao N et al (2013) Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res 47:4040–4049. https://doi.org/10.1016/j.watres.2013.02.057
Chang MF, Liu JC (2007) Precipitation removal of fluoride from semiconductor wastewater. J Environ Eng 133:419–425. https://doi.org/10.1061/(asce)0733-9372(2007)133:4(419)
Chen T, Yu K, Dong C et al (2022a) Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coord Chem Rev 467:214–615. https://doi.org/10.1016/j.apcatb.2022.121815
Chen T, Lui T, Zhou L et al (2022b) Ternary boron carbon nitrides hollow nanotubes with tunable p-n homojunction for photo-assisted uranium extraction: a combined batch, EXAFS and DFT calculations. Appl Catal B: Environmental 318:121–815. https://doi.org/10.1016/j.ccr.2022.214615
Cheng J, Meng X, Jing C, Hao J (2014) La3+-modified activated alumina for fluoride removal from water. J Hazard Mater 278:343–349. https://doi.org/10.1016/j.jhazmat.2014.06.008
Dayananda D, Sarva VR, Prasad SV, Arunachalam J, Ghosh NN (2014) Preparation of CaO loaded mesoporous Al2O3: efficient adsorbent for fluoride removal from water. Chem Eng J 248:430–439. https://doi.org/10.1016/j.cej.2014.03.064
Dou X, Zhang Y, Wang H et al (2011) Performance of granular zirconium-iron oxide in the removal of fluoride from drinking water. Water Res 45:3571–3578. https://doi.org/10.1016/j.watres.2011.04.002
Freundlich H (1907) Über die Adsorption in Lösungen. Zeitschrift für Phys Chemie 57U. https://doi.org/10.1515/zpch-1907-5723
Gasparotto JM, Roth D, Perilli ALO, Franco DSP, Carissimi E, Foletto EL, Jahn SL, Dotto GL (2021) A novel Fe-Al-La trioxide composite: synthesis, characterization, and application for fluoride ions removal from the water supply. J Environ Chem Eng 9:2213–3437. https://doi.org/10.1016/j.jece.2021.106350
Habuda-Stanić M, Ravančić M, Flanagan A (2014) A review on adsorption of fluoride from aqueous solution. Materials (Basel) 7:6317–6366. https://doi.org/10.3390/ma7096317
He P, Zhang L, Wu L, Chen T et al (2022) Synergistic effect of the sulfur vacancy and schottky heterojunction on photocatalytic uranium immobilization: the thermodynamics and kinetics. Inorg Chem 61:2242–2250. https://doi.org/10.1021/acs.inorgchem.1c03552
Kumar E, Bhatnagar A, Ji M, Jung W, Lee S, Kim SJ, Lee G, Song H, Choi JY, Yang Y, Jeon BH (2009) Defluoridation from aqueous solutions by granular ferric hydroxide (GFH). Water Res 43:490–498. https://doi.org/10.1016/j.watres.2008.10.031
Kumar E, Bhatnagar A, Kumar U, Sillanpää M (2011) Defluoridation from aqueous solutions by nano-alumina: characterization and sorption studies. J Hazard Mater 186:1042–1049. https://doi.org/10.1016/j.jhazmat.2010.11.102
Kumari U, Behera SK, Meikap BC (2019) A novel acid modified alumina adsorbent with enhanced defluoridation property: kinetics, isotherm study and applicability on industrial wastewater. J Hazard Mater 365:868–882. https://doi.org/10.1016/j.jhazmat.2018.11.064
Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004
Li L, Zhu Q, Man K, Xing Z (2017) Fluoride removal from liquid phase by Fe-Al-La trimetal hydroxides adsorbent prepared by iron and aluminum leaching from red mud. J Mol Liq 237:164–172. https://doi.org/10.1016/j.molliq.2017.04.097
Liu J, Zhao P, Xu Y, Jia X (2019) Mg-Al mixed oxide adsorbent synthesized using FCT template for fluoride removal from drinking water. Bioinorg Chem Appl 2019:1–11. https://doi.org/10.1155/2019/5840205
Mendoza-Castillo DI, Reynel-Ávila HE, Bonilla-Petriciolet A, Silvestre-Albero J (2016) Synthesis of denim waste-based adsorbents and their application in water defluoridation. J Mol Liq 221:469–478. https://doi.org/10.1016/j.molliq.2016.06.005
Mohapatra M, Hariprasad D, Mohapatra L et al (2012) Mg-doped nano ferrihydrite - a new adsorbent for fluoride removal from aqueous solutions. Appl Surf Sci 258:4228–4236. https://doi.org/10.1016/j.apsusc.2011.12.047
Netto MS, Silva NF, Mallmann ES, Dotto EL, Foletto EL (2019) Effect of salinity on the adsorption behavior of methylene blue onto comminuted raw avocado residue: CCD-RSM design. Water Air Soil Pollut 230(187):2–17. https://doi.org/10.1007/s11270-019-4230-x
Nur T, Loganathan P, Nguyen TC et al (2014) Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: solution chemistry and modeling. Chem Eng J 247:93–102. https://doi.org/10.1016/j.cej.2014.03.009
Peres MA, Cury JA (2011) Drinking water quality and fluoride concentration. Rev Saúde Pública 45:964–973. https://doi.org/10.1590/S0034-89102011005000046
Pigatto RS, Franco DSP, Netto MS et al (2020) An eco-friendly and low-cost strategy for groundwater defluorination: adsorption of fluoride onto calcinated sludge. J Environ Chem Eng 8:104546. https://doi.org/10.1016/j.jece.2020.104546
Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1026
Rojas-Mayorga CKR, Petriciolet AB, Albero JS, Voillareal IAA (2015) Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation. Appl Surf Sci 355:748–760. https://doi.org/10.1016/j.apsusc.2015.07.163
Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280(1–3):1–13. https://doi.org/10.1016/j.desal.2011.07.019
Samarghandi MR, Khiadani M, Foroughi M, Nasab HZ (2016) Defluoridation of water using activated alumina in presence of natural organic matter via response surface methodology. Environ Sci Pollut Res 23:887–897. https://doi.org/10.1007/s11356-015-5293-x
Singh K, Lataye DH, Wasewar KL, Yoo CK (2013) Removal of fluoride from aqueous solution: status and techniques. Desalin Water Treat 51:3233–3247. https://doi.org/10.1080/19443994.2012.749036
Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495
Thathsara SKT, Cooray PLAT, Mudiyanselage TK et al (2018) A novel Fe-La-Ce tri-metallic composite for the removal of fluoride ions from aqueous media. J Environ Manage 207:387–395. https://doi.org/10.1016/j.jenvman.2017.11.041
Tian Y, Wu M, Liu R, Wang D, Lin X, Liu W, Ma L, Li Y, Huang Y (2011) Modified native cellulose fibers—a novel efficient adsorbent for both fluoride and arsenic. J Hazard Mater 185(1):93–100. https://doi.org/10.1016/j.jhazmat.2010.09.001
Vithanage M, Bhattacharya P (2015) Fluoride in the environment: sources, distribution and defluoridation. Environ Chem Lett 13:131–147. https://doi.org/10.1007/s10311-015-0496-4
Wang Z, Shi M, Li J, Zheng Z (2014) Influence of moderate pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon. J Environ Sci (China) 26:519–528. https://doi.org/10.1016/S1001-0742(13)60440-4
Wang J, Wu L, Li J et al (2018) Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: adsorption kinetics and mechanism. J Alloys Compd 753:422–432. https://doi.org/10.1016/j.jallcom.2018.04.177
Wang R, Li M, Liu T et al (2022) Encapsulating carbon-coated nano zero-valent iron particles with biomass-derived carbon aerogel for efficient uranium extraction from uranium-containing wastewater. J Clean Prod 364:132–654. https://doi.org/10.1016/j.jclepro.2022.132654
Wu X, Zhang Y, Dou X, Yang M (2007) Fluoride removal performance of a novel Fe-Al-Ce trimetal oxide adsorbent. Chemosphere 69:1758–1764. https://doi.org/10.1016/j.chemosphere.2007.05.075
Wu X, Zhang Y, Dou X et al (2013) Fluoride adsorption on an Fe-Al-Ce trimetal hydrous oxide: characterization of adsorption sites and adsorbed fluorine complex species. Chem Eng J 223:364–370. https://doi.org/10.1016/j.cej.2013.03.027
Xiang W, Zhang G, Zhang Y, Tang D, Wang J (2014) Synthesis and characterization of cotton-like Ca–Al–La composite as an adsorbent for fluoride removal. Chem Eng J 250:423–430. https://doi.org/10.1016/j.cej.2014.03.118
Zhang G, He Z, Xu W (2012) A low-cost and high efficient zirconium-modified-Na-attapulgite adsorbent for fluoride removal from aqueous solutions. Chem Eng J 183:315–324. https://doi.org/10.1016/j.cej.2011.12.085
Zhang S, Lu Y, Lin X et al (2014) Removal of fluoride from groundwater by adsorption onto La(III)-Al(III) loaded scoria adsorbent. Appl Surf Sci 303:1–5. https://doi.org/10.1016/j.apsusc.2014.01.169
Zhang J, Brutus TE, Cheng J, Meng X (2017) Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect. J Environ Sci 57:190–195. https://doi.org/10.1016/j.jes.2017.03.015
Zhou J, Zhu W, Yu J et al (2018) Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide. Appl Surf Sci 435:920–927. https://doi.org/10.1016/j.apsusc.2017.11.108
dc.relation.citationendpage.spa.fl_str_mv 42426
dc.relation.citationstartpage.spa.fl_str_mv 42416
dc.relation.citationvolume.spa.fl_str_mv 30
dc.rights.eng.fl_str_mv © 2023 Springer Nature
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2023 Springer Nature
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 1 página
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Science + Business Media
dc.publisher.place.spa.fl_str_mv Germany
dc.source.spa.fl_str_mv https://link.springer.com/article/10.1007/s11356-023-25231-1
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/5c7ee7f7-a8f4-4e01-801c-b081eabee5e5/download
https://repositorio.cuc.edu.co/bitstreams/a69368e8-46a8-457e-8144-6d40e9b6d56c/download
https://repositorio.cuc.edu.co/bitstreams/d7510c84-24c1-4c7d-bc91-48ee9d99c234/download
https://repositorio.cuc.edu.co/bitstreams/67942d61-2608-4388-bd1a-4f51f8dbd2bb/download
bitstream.checksum.fl_str_mv 9fe6156b9ba4aa13a2dc710e7d61a7c5
2f9959eaf5b71fae44bbf9ec84150c7a
d204e33430a7286a059568ecd3d64c5a
705547fe472e7ad399e6294266cbcd6b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166861148127232
spelling Atribución 4.0 Internacional (CC BY 4.0)© 2023 Springer Naturehttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfGasparotto, Juliana M.Pinto, Dianade Paula, NatalieMaraschin, ManoelDison S.P., FrancoCarissimi, ElvisFoletto, EdsonJahn, Sergio L.Silva Oliveira, Luis FelipeDotto, Guilherme Luiz2023-08-31T22:09:32Z20242023-08-31T22:09:32Z2023Gasparotto, J.M., Pinto, D., de Paula, N. et al. Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix. Environ Sci Pollut Res 30, 42416–42426 (2023). https://doi.org/10.1007/s11356-023-25231-10944-1344https://hdl.handle.net/11323/1043410.1007/s11356-023-25231-11614-7499Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Using groundwater for human consumption is an alternative for places with no nearby surface water resources. Fluoride is commonly found in groundwater, and the consumption of this water for a prolonged time in concentrations that exceed established limits by WHO and Brazilian legislation on water potability (1.5 mg L−1) can cause harmful problems to human health. For this reason, fluoride removal is an important step before water consumption. In this work, activated alumina was impregnated with Fe-Al-La composite and employed for the first time as an adsorbent for fluoride removal from an aqueous environment. XRD, SEM/EDS, FT-IR, and point of zero charge were used to characterize the prepared adsorbent. The adsorptive performance of adsorbent material was investigated by employing a 23-central composite design (CCD), and the obtained experimental conditions were pH = 6.5 and adsorbent dosage = 3.0 g L−1. A maximum adsorption capacity of 8.17 mg g−1 at 298 K and pH = 6.5 was achieved by Langmuir isotherm to describe the adsorption. The kinetic model that better described experimental data was Avrami, with the kav parameter increasing with the initial concentration from 0.076 to 0.231 (min−1)nav. The nature of adsorption was found to be homogeneous, and it occurs in a monolayer. The fluoride removal performance for the prepared adsorbent was higher than granular activated alumina, showing that supporting Fe-Al-La at the alumina surface increased its fluoride adsorption capacity from 16 to 42% at the same experimental conditions. Finally, the influence of co-existing ions Cl−, SO42−, and NO3− was evaluated in fluoride adsorption, and the material presented great selectivity to fluoride. Thus, Fe-Al-La/AA adsorbent is a promising material for fluoride removal from water.1 páginaapplication/pdfengSpringer Science + Business MediaGermanyhttps://link.springer.com/article/10.1007/s11356-023-25231-1Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrixArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bcceEnvironmental Science and Pollution ResearchAdak MK, Sen A, Mukherjee A et al (2017) Removal of fluoride from drinking water using highly efficient nano-adsorbent, Al(III)-Fe(III)-La(III) trimetallic oxide prepared by chemical route. J Alloys Compd 719:460–469. https://doi.org/10.1016/j.jallcom.2017.05.149Awual MR, Hossain MA, Shenashen MA, Yaita T, Suzuki S, Jyo A (2012) Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents. Environ Sci Pollut Res 20:421–430 (https://link.springer.com/article/10.1007/2Fs11356-012-0936-7)Awual MdR, Hossain A, Shenashen MA, Yata T, Suzuki S, Jyo A (2013) Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents. Environ Sci Pollut Res 20:421–430 (https://link.springer.com/article/10.1007/s11356-012-0936-7)Bansiwal A, Pillewan P, Biniwale RB, Rayalu SS (2010) Copper oxide incorporated mesoporous alumina for defluoridation of drinking water. Micropor Mesopor Mater 129:54–61. https://doi.org/10.1016/j.micromeso.2009.08.032Chai L, Wang Y, Zhao N et al (2013) Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res 47:4040–4049. https://doi.org/10.1016/j.watres.2013.02.057Chang MF, Liu JC (2007) Precipitation removal of fluoride from semiconductor wastewater. J Environ Eng 133:419–425. https://doi.org/10.1061/(asce)0733-9372(2007)133:4(419)Chen T, Yu K, Dong C et al (2022a) Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coord Chem Rev 467:214–615. https://doi.org/10.1016/j.apcatb.2022.121815Chen T, Lui T, Zhou L et al (2022b) Ternary boron carbon nitrides hollow nanotubes with tunable p-n homojunction for photo-assisted uranium extraction: a combined batch, EXAFS and DFT calculations. Appl Catal B: Environmental 318:121–815. https://doi.org/10.1016/j.ccr.2022.214615Cheng J, Meng X, Jing C, Hao J (2014) La3+-modified activated alumina for fluoride removal from water. J Hazard Mater 278:343–349. https://doi.org/10.1016/j.jhazmat.2014.06.008Dayananda D, Sarva VR, Prasad SV, Arunachalam J, Ghosh NN (2014) Preparation of CaO loaded mesoporous Al2O3: efficient adsorbent for fluoride removal from water. Chem Eng J 248:430–439. https://doi.org/10.1016/j.cej.2014.03.064Dou X, Zhang Y, Wang H et al (2011) Performance of granular zirconium-iron oxide in the removal of fluoride from drinking water. Water Res 45:3571–3578. https://doi.org/10.1016/j.watres.2011.04.002Freundlich H (1907) Über die Adsorption in Lösungen. Zeitschrift für Phys Chemie 57U. https://doi.org/10.1515/zpch-1907-5723Gasparotto JM, Roth D, Perilli ALO, Franco DSP, Carissimi E, Foletto EL, Jahn SL, Dotto GL (2021) A novel Fe-Al-La trioxide composite: synthesis, characterization, and application for fluoride ions removal from the water supply. J Environ Chem Eng 9:2213–3437. https://doi.org/10.1016/j.jece.2021.106350Habuda-Stanić M, Ravančić M, Flanagan A (2014) A review on adsorption of fluoride from aqueous solution. Materials (Basel) 7:6317–6366. https://doi.org/10.3390/ma7096317He P, Zhang L, Wu L, Chen T et al (2022) Synergistic effect of the sulfur vacancy and schottky heterojunction on photocatalytic uranium immobilization: the thermodynamics and kinetics. Inorg Chem 61:2242–2250. https://doi.org/10.1021/acs.inorgchem.1c03552Kumar E, Bhatnagar A, Ji M, Jung W, Lee S, Kim SJ, Lee G, Song H, Choi JY, Yang Y, Jeon BH (2009) Defluoridation from aqueous solutions by granular ferric hydroxide (GFH). Water Res 43:490–498. https://doi.org/10.1016/j.watres.2008.10.031Kumar E, Bhatnagar A, Kumar U, Sillanpää M (2011) Defluoridation from aqueous solutions by nano-alumina: characterization and sorption studies. J Hazard Mater 186:1042–1049. https://doi.org/10.1016/j.jhazmat.2010.11.102Kumari U, Behera SK, Meikap BC (2019) A novel acid modified alumina adsorbent with enhanced defluoridation property: kinetics, isotherm study and applicability on industrial wastewater. J Hazard Mater 365:868–882. https://doi.org/10.1016/j.jhazmat.2018.11.064Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004Li L, Zhu Q, Man K, Xing Z (2017) Fluoride removal from liquid phase by Fe-Al-La trimetal hydroxides adsorbent prepared by iron and aluminum leaching from red mud. J Mol Liq 237:164–172. https://doi.org/10.1016/j.molliq.2017.04.097Liu J, Zhao P, Xu Y, Jia X (2019) Mg-Al mixed oxide adsorbent synthesized using FCT template for fluoride removal from drinking water. Bioinorg Chem Appl 2019:1–11. https://doi.org/10.1155/2019/5840205Mendoza-Castillo DI, Reynel-Ávila HE, Bonilla-Petriciolet A, Silvestre-Albero J (2016) Synthesis of denim waste-based adsorbents and their application in water defluoridation. J Mol Liq 221:469–478. https://doi.org/10.1016/j.molliq.2016.06.005Mohapatra M, Hariprasad D, Mohapatra L et al (2012) Mg-doped nano ferrihydrite - a new adsorbent for fluoride removal from aqueous solutions. Appl Surf Sci 258:4228–4236. https://doi.org/10.1016/j.apsusc.2011.12.047Netto MS, Silva NF, Mallmann ES, Dotto EL, Foletto EL (2019) Effect of salinity on the adsorption behavior of methylene blue onto comminuted raw avocado residue: CCD-RSM design. Water Air Soil Pollut 230(187):2–17. https://doi.org/10.1007/s11270-019-4230-xNur T, Loganathan P, Nguyen TC et al (2014) Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: solution chemistry and modeling. Chem Eng J 247:93–102. https://doi.org/10.1016/j.cej.2014.03.009Peres MA, Cury JA (2011) Drinking water quality and fluoride concentration. Rev Saúde Pública 45:964–973. https://doi.org/10.1590/S0034-89102011005000046Pigatto RS, Franco DSP, Netto MS et al (2020) An eco-friendly and low-cost strategy for groundwater defluorination: adsorption of fluoride onto calcinated sludge. J Environ Chem Eng 8:104546. https://doi.org/10.1016/j.jece.2020.104546Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1026Rojas-Mayorga CKR, Petriciolet AB, Albero JS, Voillareal IAA (2015) Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation. Appl Surf Sci 355:748–760. https://doi.org/10.1016/j.apsusc.2015.07.163Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280(1–3):1–13. https://doi.org/10.1016/j.desal.2011.07.019Samarghandi MR, Khiadani M, Foroughi M, Nasab HZ (2016) Defluoridation of water using activated alumina in presence of natural organic matter via response surface methodology. Environ Sci Pollut Res 23:887–897. https://doi.org/10.1007/s11356-015-5293-xSingh K, Lataye DH, Wasewar KL, Yoo CK (2013) Removal of fluoride from aqueous solution: status and techniques. Desalin Water Treat 51:3233–3247. https://doi.org/10.1080/19443994.2012.749036Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495Thathsara SKT, Cooray PLAT, Mudiyanselage TK et al (2018) A novel Fe-La-Ce tri-metallic composite for the removal of fluoride ions from aqueous media. J Environ Manage 207:387–395. https://doi.org/10.1016/j.jenvman.2017.11.041Tian Y, Wu M, Liu R, Wang D, Lin X, Liu W, Ma L, Li Y, Huang Y (2011) Modified native cellulose fibers—a novel efficient adsorbent for both fluoride and arsenic. J Hazard Mater 185(1):93–100. https://doi.org/10.1016/j.jhazmat.2010.09.001Vithanage M, Bhattacharya P (2015) Fluoride in the environment: sources, distribution and defluoridation. Environ Chem Lett 13:131–147. https://doi.org/10.1007/s10311-015-0496-4Wang Z, Shi M, Li J, Zheng Z (2014) Influence of moderate pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon. J Environ Sci (China) 26:519–528. https://doi.org/10.1016/S1001-0742(13)60440-4Wang J, Wu L, Li J et al (2018) Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: adsorption kinetics and mechanism. J Alloys Compd 753:422–432. https://doi.org/10.1016/j.jallcom.2018.04.177Wang R, Li M, Liu T et al (2022) Encapsulating carbon-coated nano zero-valent iron particles with biomass-derived carbon aerogel for efficient uranium extraction from uranium-containing wastewater. J Clean Prod 364:132–654. https://doi.org/10.1016/j.jclepro.2022.132654Wu X, Zhang Y, Dou X, Yang M (2007) Fluoride removal performance of a novel Fe-Al-Ce trimetal oxide adsorbent. Chemosphere 69:1758–1764. https://doi.org/10.1016/j.chemosphere.2007.05.075Wu X, Zhang Y, Dou X et al (2013) Fluoride adsorption on an Fe-Al-Ce trimetal hydrous oxide: characterization of adsorption sites and adsorbed fluorine complex species. Chem Eng J 223:364–370. https://doi.org/10.1016/j.cej.2013.03.027Xiang W, Zhang G, Zhang Y, Tang D, Wang J (2014) Synthesis and characterization of cotton-like Ca–Al–La composite as an adsorbent for fluoride removal. Chem Eng J 250:423–430. https://doi.org/10.1016/j.cej.2014.03.118Zhang G, He Z, Xu W (2012) A low-cost and high efficient zirconium-modified-Na-attapulgite adsorbent for fluoride removal from aqueous solutions. Chem Eng J 183:315–324. https://doi.org/10.1016/j.cej.2011.12.085Zhang S, Lu Y, Lin X et al (2014) Removal of fluoride from groundwater by adsorption onto La(III)-Al(III) loaded scoria adsorbent. Appl Surf Sci 303:1–5. https://doi.org/10.1016/j.apsusc.2014.01.169Zhang J, Brutus TE, Cheng J, Meng X (2017) Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect. J Environ Sci 57:190–195. https://doi.org/10.1016/j.jes.2017.03.015Zhou J, Zhu W, Yu J et al (2018) Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide. Appl Surf Sci 435:920–927. https://doi.org/10.1016/j.apsusc.2017.11.108424264241630Fe-Al-La/aluminaAdsorptionFluorideIsothermKineticsExperimental designPublicationORIGINALPreparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix.pdfPreparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix.pdfapplication/pdf82962https://repositorio.cuc.edu.co/bitstreams/5c7ee7f7-a8f4-4e01-801c-b081eabee5e5/download9fe6156b9ba4aa13a2dc710e7d61a7c5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/a69368e8-46a8-457e-8144-6d40e9b6d56c/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTPreparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix.pdf.txtPreparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix.pdf.txtExtracted texttext/plain2236https://repositorio.cuc.edu.co/bitstreams/d7510c84-24c1-4c7d-bc91-48ee9d99c234/downloadd204e33430a7286a059568ecd3d64c5aMD53THUMBNAILPreparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix.pdf.jpgPreparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix.pdf.jpgGenerated Thumbnailimage/jpeg15975https://repositorio.cuc.edu.co/bitstreams/67942d61-2608-4388-bd1a-4f51f8dbd2bb/download705547fe472e7ad399e6294266cbcd6bMD5411323/10434oai:repositorio.cuc.edu.co:11323/104342024-09-17 14:19:15.851https://creativecommons.org/licenses/by/4.0/© 2023 Springer Natureopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=