Fault indicators allocation to maximize the performance of a fault locator based on artificial intelligence

Fault location (FL) is one of the main challenges in Advanced Distribution Automation (ADA) of Active Distribution Networks (ADN). One of the commonly used strategies by utilities to deal with this challenge is the use of Fault Indicators (FIs), which indicate to the operator the path taken by the f...

Full description

Autores:
Orozco Henao, C.
Herrera Orozco, A.
Marín Quintero, Juan Guillermo
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13998
Acceso en línea:
https://hdl.handle.net/11323/13998
https://repositorio.cuc.edu.co/
Palabra clave:
Artificial neural networks
Fault indicators
Fault location
Microgrids
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_21bfecb46d214dc3b56399f09167d5f4
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13998
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Fault indicators allocation to maximize the performance of a fault locator based on artificial intelligence
title Fault indicators allocation to maximize the performance of a fault locator based on artificial intelligence
spellingShingle Fault indicators allocation to maximize the performance of a fault locator based on artificial intelligence
Artificial neural networks
Fault indicators
Fault location
Microgrids
title_short Fault indicators allocation to maximize the performance of a fault locator based on artificial intelligence
title_full Fault indicators allocation to maximize the performance of a fault locator based on artificial intelligence
title_fullStr Fault indicators allocation to maximize the performance of a fault locator based on artificial intelligence
title_full_unstemmed Fault indicators allocation to maximize the performance of a fault locator based on artificial intelligence
title_sort Fault indicators allocation to maximize the performance of a fault locator based on artificial intelligence
dc.creator.fl_str_mv Orozco Henao, C.
Herrera Orozco, A.
Marín Quintero, Juan Guillermo
dc.contributor.author.none.fl_str_mv Orozco Henao, C.
Herrera Orozco, A.
Marín Quintero, Juan Guillermo
dc.subject.proposal.none.fl_str_mv Artificial neural networks
Fault indicators
Fault location
Microgrids
topic Artificial neural networks
Fault indicators
Fault location
Microgrids
description Fault location (FL) is one of the main challenges in Advanced Distribution Automation (ADA) of Active Distribution Networks (ADN). One of the commonly used strategies by utilities to deal with this challenge is the use of Fault Indicators (FIs), which indicate to the operator the path taken by the fault current. However, a good performance of this scheme depends on the number of installed devices, a high number of them could cause a high cost for the utility investment planning. In this context, this paper presents an artificial intelligence-based fault location strategy that determines the number and location of FI into ADN to maximize performance in fault section estimation. To achieve this objective, the ADN is divided into sections, and the FL problem is modeled as a classification problem to train an Artificial Neural Network (ANN). To determine the number of FIs to be installed and their location, the strategy uses the three-phase current magnitudes measured by the FI as features for an ANN model. Also, the strategy uses a feature selection and tuning scheme based on a multiverse optimization algorithm (MOA) to identify the features that maximize the accuracy of the ANN model. The strategy was validated on the IEEE123-node test feeder. The results showed accuracy close to 99.4 % with a reduction of 40 % of the number of FIs when compared with other method. The strategy shows its simplicity and promising prospects to apply it in the utility's investment planning.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-09
dc.date.accessioned.none.fl_str_mv 2025-02-27T15:56:19Z
dc.date.available.none.fl_str_mv 2025-02-27T15:56:19Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Marín-Quintero, J., Orozco-Henao, C., Herrera-Orozco, A. Fault indicators allocation to maximize the performance of a fault locator based on artificial intelligence, Marín-Quintero, J., Orozco-Henao, C., Herrera-Orozco, A., Electric Power Systems Research, 234, 110701, 2024, 2024/09/01/, 0378-7796, https://doi.org/10.1016/j.epsr.2024.110701
dc.identifier.issn.none.fl_str_mv 0378-7796
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13998
dc.identifier.doi.none.fl_str_mv 10.1016/j.epsr.2024.110701
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Marín-Quintero, J., Orozco-Henao, C., Herrera-Orozco, A. Fault indicators allocation to maximize the performance of a fault locator based on artificial intelligence, Marín-Quintero, J., Orozco-Henao, C., Herrera-Orozco, A., Electric Power Systems Research, 234, 110701, 2024, 2024/09/01/, 0378-7796, https://doi.org/10.1016/j.epsr.2024.110701
0378-7796
10.1016/j.epsr.2024.110701
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13998
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Electric Power Systems Research
dc.relation.references.none.fl_str_mv International Renewable Energy Agency (IRENA), World Energy Transitions Outlook 2023, 2023 [Online]. Available, https://irena.org/Digital-Report/WorldEnergy-Transitions-Outlook-2022%0Ahttps://irena.org/publications/2021/March /World-Energy-Transitions-Outlook
Cisco Systems, Distribution Automation - Secondary Substation Design Guide, 2019 [Online]. Available, https://www.cisco.com/c/en/us/td/docs/solutions/Vertica ls/Distributed-Automation/Secondary-Substation/DG/DA-SS-DG.pdf.
A.S. Bretas, C. Orozco-Henao, J. Marín-Quintero, O.D. Montoya, W. Gil-Gonz´ alez, N.G. Bretas, Microgrids physics model-based fault location formulation: analyticbased distributed energy resources effect compensation, Electr. Power Syst. Res. 195 (2021), https://doi.org/10.1016/j.epsr.2021.107178. October 2020.
C.G. Arsoniadis, V.C. Nikolaidis, Precise fault location in active distribution systems using unsynchronized source measurements, IEEE Syst. J. 17 (3) (2023) 4114–4125, https://doi.org/10.1109/JSYST.2023.3279232.
D. Lu, Y. Liu, Fault location for general AC/DC transmission lines: multi-phase, non-homogeneous, partially mutually coupled and multi-terminal lines, Electr. Power Syst. Res. 222 (2023) 109484, https://doi.org/10.1016/j. epsr.2023.109484. April.
Y. Xu, C. Zhao, S. Xie, M. Lu, Novel fault location for high permeability active distribution networks based on improved VMD and S-transform, IEEE Access 9 (2021) 17662–17671, https://doi.org/10.1109/ACCESS.2021.3052349.
X. Wang, et al., Fault location based on variable mode decomposition and kurtosis calibration in distribution networks, Int. J. Electr. Power Energy Syst. 154 (2023) 109463, https://doi.org/10.1016/j.ijepes.2023.109463. August.
J. Atencia-De la Ossa, C. Orozco-Henao, J. Marín-Quintero, Master-slave strategy based in artificial intelligence for the fault section estimation in active distribution networks and microgrids, Int. J. Electr. Power Energy Syst. 148 (2023) 108923, https://doi.org/10.1016/j.ijepes.2022.108923. June 2022.
A. Farughian, L. Kumpulainen, K. Kauhaniemi, Review of methodologies for earth fault indication and location in compensated and unearthed MV distribution networks, Electr. Power Syst. Res. 154 (2018) 373–380, https://doi.org/10.1016/j. epsr.2017.09.006.
A. Ghaemi, A. Safari, H. Afsharirad, H. Shayeghi, Accuracy enhance of fault classification and location in a smart distribution network based on stacked ensemble learning, Electr. Power Syst. Res. 205 (2022) 107766, https://doi.org/ 10.1016/j.epsr.2021.107766. December 2021.
Z. Li, et al., Cognitive knowledge graph generation for grid fault handling based on attention mechanism combined with multi-modal factor fusion, Comput. Electr. Eng. 111 (2023) 108855, https://doi.org/10.1016/j.compeleceng.2023.108855. PA.
P. Stefanidou-Voziki, N. Sapountzoglou, B. Raison, J.L. Dominguez-Garcia, A review of fault location and classification methods in distribution grids, Electr. Power Syst. Res. 209 (2022) 108031, https://doi.org/10.1016/j. epsr.2022.108031. April.
R.F.G. Sau, V.P. Dardengo, M.C. de Almeida, Allocation of fault indicators in distribution feeders containing distributed generation, Electr. Power Syst. Res. 179 (2020) 106060, https://doi.org/10.1016/j.epsr.2019.106060. October 2019.
Y. Jiang, Data-driven fault location of electric power distribution systems with distributed generation, IEEE Trans. Smart Grid 11 (1) (2020) 129–137, https://doi. org/10.1109/TSG.2019.2918195.
B. Li, J. Wei, Y. Liang, B. Chen, Optimal placement of fault indicator and sectionalizing switch in distribution networks, IEEE Access 8 (2020) 17619–17631, https://doi.org/10.1109/ACCESS.2020.2968092.
T.T. Ku, C.S. Li, C.H. Lin, C.S. Chen, C.T. Hsu, Faulty line-section identification method for distribution systems based on fault indicators, IEEE Trans. Ind. Appl. 57 (2) (2021) 1335–1343, https://doi.org/10.1109/TIA.2020.3045672.
G.G. Santos, J.C.M. Vieira, Optimal placement of fault indicators to identify fault zones in distribution systems, IEEE Trans. Power Deliv. 36 (5) (2021) 3282–3285, https://doi.org/10.1109/TPWRD.2021.3101671.
Y. Jiang, Outage management of active distribution systems with data fusion from multiple sensors given sensor failures, IEEE Trans. Power Deliv. 38 (3) (2023) 1891–1903, https://doi.org/10.1109/TPWRD.2022.3227184.
M. Gholami, I. Ahmadi, M. Pouriani, Optimal placement of fault indicator and remote-controlled switches for predetermined reliability of selected buses, IET Gener. Transm. Distrib. 17 (12) (2023) 2799–2810, https://doi.org/10.1049/ gtd2.12854
J.-U.S. Myong-Soo Kim, Jae-Guk An, Yun-Sik Oh, Seong-Il Lim, Dong-Hee Kwak, A method for fault section identification of distribution networks based on validation of fault indicators using artificial neural network, Energies 16 (2023) 1–14, 10.3390/en16145397 Academic.
C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), Springer-Verlag, Berlin, Heidelberg, 2006.
E. Correa-Tapasco, J. Mora-Florez, ´ S. Perez-Londono, ˜ Performance analysis of a learning structured fault locator for distribution systems in the case of polluted inputs, Electr. Power Syst. Res. 166 (2019) 1–8, https://doi.org/10.1016/j. epsr.2018.09.016. August 2018.
E. Hosseini, K.Z. Ghafoor, A. Emrouznejad, A.S. Sadiq, D.B. Rawat, Novel metaheuristic based on multiverse theory for optimization problems in emerging systems, Appl. Intell. 51 (6) (Jun. 2021) 3275–3292, https://doi.org/10.1007/ s10489-020-01920-z.
J. Marín-Quintero, C. Orozco-Henao, J.C. Velez, A.S. Bretas, Micro grids decentralized hybrid data-driven cuckoo search based adaptive protection model, Int. J. Electr. Power Energy Syst. 130 (2021) 106960, https://doi.org/10.1016/j. ijepes.2021.106960. February
Y. Bengio. Practical recommendations for gradient-based training of deep architectures. In Neural Networks: Tricks of the Trade: Second Edition pp. 437–478. Berlin, Heidelberg: Springer Berlin Heidelberg. 10.1007/978-3-642-3 5289-8_26.
S. Mirjalili, S.M. Mirjalili, A. Hatamlou, Multi-Verse Optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl. 27 (2) (Feb. 2016) 495–513, https://doi.org/10.1007/s00521-015-1870-7.
K.P. Schneider, et al., Analytic considerations and design basis for the IEEE distribution test feeders, IEEE Trans. Power Syst. 33 (3) (May 2018) 3181–3188, https://doi.org/10.1109/TPWRS.2017.2760011.
W. Kersting, Distribution System Distribution Syste Modeling and Analysis, CRC Press, New Mexico Boca, 2012.
W.H. Kersting, Radial distribution test feeders, Trans. Power Syst. 6 (3) (1991) 975–985 [Online]. Available, http://ewh.ieee.org/soc/pes/dsacom/testfeeders.ht ml.
Y. Gong, A. Guzm´ an, Distribution feeder fault location using IED and FCI information, in: 2011 64th Annu. Conf. Prot. Relay Eng, 2011, pp. 168–177, https://doi.org/10.1109/CPRE.2011.6035617
dc.relation.citationendpage.none.fl_str_mv 8
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationissue.none.fl_str_mv 110701
dc.relation.citationvolume.none.fl_str_mv 234
dc.rights.eng.fl_str_mv © 2024 The Author(s)
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2024 The Author(s)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 8 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.place.none.fl_str_mv Netherlands
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S037877962400587X?pes=vor&utm_source=scopus&getft_integrator=scopus
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/59ad5ea2-ce46-4131-9e7e-d792112b80e2/download
https://repositorio.cuc.edu.co/bitstreams/5e9d2c72-359c-4914-be63-623b8a5d0f99/download
https://repositorio.cuc.edu.co/bitstreams/fe6b1063-5de3-4a8b-8800-6472c5f00944/download
https://repositorio.cuc.edu.co/bitstreams/5ce7a413-590f-40ba-8b71-7574a57ccb6a/download
bitstream.checksum.fl_str_mv a60d199b1d3129a9ee6b41675f2d2d8d
73a5432e0b76442b22b026844140d683
d0a495a462a0f79a48fe672eba8263ae
9d740abad2ea2ae0cc7aec2d67aef5bc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166790475153408
spelling Atribución 4.0 Internacional (CC BY 4.0)© 2024 The Author(s)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Orozco Henao, C.Herrera Orozco, A.Marín Quintero, Juan Guillermovirtual::949-12025-02-27T15:56:19Z2025-02-27T15:56:19Z2024-09Marín-Quintero, J., Orozco-Henao, C., Herrera-Orozco, A. Fault indicators allocation to maximize the performance of a fault locator based on artificial intelligence, Marín-Quintero, J., Orozco-Henao, C., Herrera-Orozco, A., Electric Power Systems Research, 234, 110701, 2024, 2024/09/01/, 0378-7796, https://doi.org/10.1016/j.epsr.2024.1107010378-7796https://hdl.handle.net/11323/1399810.1016/j.epsr.2024.110701Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Fault location (FL) is one of the main challenges in Advanced Distribution Automation (ADA) of Active Distribution Networks (ADN). One of the commonly used strategies by utilities to deal with this challenge is the use of Fault Indicators (FIs), which indicate to the operator the path taken by the fault current. However, a good performance of this scheme depends on the number of installed devices, a high number of them could cause a high cost for the utility investment planning. In this context, this paper presents an artificial intelligence-based fault location strategy that determines the number and location of FI into ADN to maximize performance in fault section estimation. To achieve this objective, the ADN is divided into sections, and the FL problem is modeled as a classification problem to train an Artificial Neural Network (ANN). To determine the number of FIs to be installed and their location, the strategy uses the three-phase current magnitudes measured by the FI as features for an ANN model. Also, the strategy uses a feature selection and tuning scheme based on a multiverse optimization algorithm (MOA) to identify the features that maximize the accuracy of the ANN model. The strategy was validated on the IEEE123-node test feeder. The results showed accuracy close to 99.4 % with a reduction of 40 % of the number of FIs when compared with other method. The strategy shows its simplicity and promising prospects to apply it in the utility's investment planning.8 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S037877962400587X?pes=vor&utm_source=scopus&getft_integrator=scopusFault indicators allocation to maximize the performance of a fault locator based on artificial intelligenceArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Electric Power Systems ResearchInternational Renewable Energy Agency (IRENA), World Energy Transitions Outlook 2023, 2023 [Online]. Available, https://irena.org/Digital-Report/WorldEnergy-Transitions-Outlook-2022%0Ahttps://irena.org/publications/2021/March /World-Energy-Transitions-OutlookCisco Systems, Distribution Automation - Secondary Substation Design Guide, 2019 [Online]. Available, https://www.cisco.com/c/en/us/td/docs/solutions/Vertica ls/Distributed-Automation/Secondary-Substation/DG/DA-SS-DG.pdf.A.S. Bretas, C. Orozco-Henao, J. Marín-Quintero, O.D. Montoya, W. Gil-Gonz´ alez, N.G. Bretas, Microgrids physics model-based fault location formulation: analyticbased distributed energy resources effect compensation, Electr. Power Syst. Res. 195 (2021), https://doi.org/10.1016/j.epsr.2021.107178. October 2020.C.G. Arsoniadis, V.C. Nikolaidis, Precise fault location in active distribution systems using unsynchronized source measurements, IEEE Syst. J. 17 (3) (2023) 4114–4125, https://doi.org/10.1109/JSYST.2023.3279232.D. Lu, Y. Liu, Fault location for general AC/DC transmission lines: multi-phase, non-homogeneous, partially mutually coupled and multi-terminal lines, Electr. Power Syst. Res. 222 (2023) 109484, https://doi.org/10.1016/j. epsr.2023.109484. April.Y. Xu, C. Zhao, S. Xie, M. Lu, Novel fault location for high permeability active distribution networks based on improved VMD and S-transform, IEEE Access 9 (2021) 17662–17671, https://doi.org/10.1109/ACCESS.2021.3052349.X. Wang, et al., Fault location based on variable mode decomposition and kurtosis calibration in distribution networks, Int. J. Electr. Power Energy Syst. 154 (2023) 109463, https://doi.org/10.1016/j.ijepes.2023.109463. August.J. Atencia-De la Ossa, C. Orozco-Henao, J. Marín-Quintero, Master-slave strategy based in artificial intelligence for the fault section estimation in active distribution networks and microgrids, Int. J. Electr. Power Energy Syst. 148 (2023) 108923, https://doi.org/10.1016/j.ijepes.2022.108923. June 2022.A. Farughian, L. Kumpulainen, K. Kauhaniemi, Review of methodologies for earth fault indication and location in compensated and unearthed MV distribution networks, Electr. Power Syst. Res. 154 (2018) 373–380, https://doi.org/10.1016/j. epsr.2017.09.006.A. Ghaemi, A. Safari, H. Afsharirad, H. Shayeghi, Accuracy enhance of fault classification and location in a smart distribution network based on stacked ensemble learning, Electr. Power Syst. Res. 205 (2022) 107766, https://doi.org/ 10.1016/j.epsr.2021.107766. December 2021.Z. Li, et al., Cognitive knowledge graph generation for grid fault handling based on attention mechanism combined with multi-modal factor fusion, Comput. Electr. Eng. 111 (2023) 108855, https://doi.org/10.1016/j.compeleceng.2023.108855. PA.P. Stefanidou-Voziki, N. Sapountzoglou, B. Raison, J.L. Dominguez-Garcia, A review of fault location and classification methods in distribution grids, Electr. Power Syst. Res. 209 (2022) 108031, https://doi.org/10.1016/j. epsr.2022.108031. April.R.F.G. Sau, V.P. Dardengo, M.C. de Almeida, Allocation of fault indicators in distribution feeders containing distributed generation, Electr. Power Syst. Res. 179 (2020) 106060, https://doi.org/10.1016/j.epsr.2019.106060. October 2019.Y. Jiang, Data-driven fault location of electric power distribution systems with distributed generation, IEEE Trans. Smart Grid 11 (1) (2020) 129–137, https://doi. org/10.1109/TSG.2019.2918195.B. Li, J. Wei, Y. Liang, B. Chen, Optimal placement of fault indicator and sectionalizing switch in distribution networks, IEEE Access 8 (2020) 17619–17631, https://doi.org/10.1109/ACCESS.2020.2968092.T.T. Ku, C.S. Li, C.H. Lin, C.S. Chen, C.T. Hsu, Faulty line-section identification method for distribution systems based on fault indicators, IEEE Trans. Ind. Appl. 57 (2) (2021) 1335–1343, https://doi.org/10.1109/TIA.2020.3045672.G.G. Santos, J.C.M. Vieira, Optimal placement of fault indicators to identify fault zones in distribution systems, IEEE Trans. Power Deliv. 36 (5) (2021) 3282–3285, https://doi.org/10.1109/TPWRD.2021.3101671.Y. Jiang, Outage management of active distribution systems with data fusion from multiple sensors given sensor failures, IEEE Trans. Power Deliv. 38 (3) (2023) 1891–1903, https://doi.org/10.1109/TPWRD.2022.3227184.M. Gholami, I. Ahmadi, M. Pouriani, Optimal placement of fault indicator and remote-controlled switches for predetermined reliability of selected buses, IET Gener. Transm. Distrib. 17 (12) (2023) 2799–2810, https://doi.org/10.1049/ gtd2.12854J.-U.S. Myong-Soo Kim, Jae-Guk An, Yun-Sik Oh, Seong-Il Lim, Dong-Hee Kwak, A method for fault section identification of distribution networks based on validation of fault indicators using artificial neural network, Energies 16 (2023) 1–14, 10.3390/en16145397 Academic.C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), Springer-Verlag, Berlin, Heidelberg, 2006.E. Correa-Tapasco, J. Mora-Florez, ´ S. Perez-Londono, ˜ Performance analysis of a learning structured fault locator for distribution systems in the case of polluted inputs, Electr. Power Syst. Res. 166 (2019) 1–8, https://doi.org/10.1016/j. epsr.2018.09.016. August 2018.E. Hosseini, K.Z. Ghafoor, A. Emrouznejad, A.S. Sadiq, D.B. Rawat, Novel metaheuristic based on multiverse theory for optimization problems in emerging systems, Appl. Intell. 51 (6) (Jun. 2021) 3275–3292, https://doi.org/10.1007/ s10489-020-01920-z.J. Marín-Quintero, C. Orozco-Henao, J.C. Velez, A.S. Bretas, Micro grids decentralized hybrid data-driven cuckoo search based adaptive protection model, Int. J. Electr. Power Energy Syst. 130 (2021) 106960, https://doi.org/10.1016/j. ijepes.2021.106960. FebruaryY. Bengio. Practical recommendations for gradient-based training of deep architectures. In Neural Networks: Tricks of the Trade: Second Edition pp. 437–478. Berlin, Heidelberg: Springer Berlin Heidelberg. 10.1007/978-3-642-3 5289-8_26.S. Mirjalili, S.M. Mirjalili, A. Hatamlou, Multi-Verse Optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl. 27 (2) (Feb. 2016) 495–513, https://doi.org/10.1007/s00521-015-1870-7.K.P. Schneider, et al., Analytic considerations and design basis for the IEEE distribution test feeders, IEEE Trans. Power Syst. 33 (3) (May 2018) 3181–3188, https://doi.org/10.1109/TPWRS.2017.2760011.W. Kersting, Distribution System Distribution Syste Modeling and Analysis, CRC Press, New Mexico Boca, 2012.W.H. Kersting, Radial distribution test feeders, Trans. Power Syst. 6 (3) (1991) 975–985 [Online]. Available, http://ewh.ieee.org/soc/pes/dsacom/testfeeders.ht ml.Y. Gong, A. Guzm´ an, Distribution feeder fault location using IED and FCI information, in: 2011 64th Annu. Conf. Prot. Relay Eng, 2011, pp. 168–177, https://doi.org/10.1109/CPRE.2011.603561781110701234Artificial neural networksFault indicatorsFault locationMicrogridsPublication7d591bf6-cbc3-46ff-8937-50220a3b1ad7virtual::949-17d591bf6-cbc3-46ff-8937-50220a3b1ad7virtual::949-1https://scholar.google.com.co/citations?user=6uHcEpEAAAAJ&hl=esvirtual::949-10000-0002-9848-0094virtual::949-1ORIGINALFault indicators allocation to maximize the performance of a fault locator based on artificial intelligence.pdfFault indicators allocation to maximize the performance of a fault locator based on artificial intelligence.pdfapplication/pdf3040663https://repositorio.cuc.edu.co/bitstreams/59ad5ea2-ce46-4131-9e7e-d792112b80e2/downloada60d199b1d3129a9ee6b41675f2d2d8dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/5e9d2c72-359c-4914-be63-623b8a5d0f99/download73a5432e0b76442b22b026844140d683MD52TEXTFault indicators allocation to maximize the performance of a fault locator based on artificial intelligence.pdf.txtFault indicators allocation to maximize the performance of a fault locator based on artificial intelligence.pdf.txtExtracted texttext/plain43239https://repositorio.cuc.edu.co/bitstreams/fe6b1063-5de3-4a8b-8800-6472c5f00944/downloadd0a495a462a0f79a48fe672eba8263aeMD53THUMBNAILFault indicators allocation to maximize the performance of a fault locator based on artificial intelligence.pdf.jpgFault indicators allocation to maximize the performance of a fault locator based on artificial intelligence.pdf.jpgGenerated Thumbnailimage/jpeg14806https://repositorio.cuc.edu.co/bitstreams/5ce7a413-590f-40ba-8b71-7574a57ccb6a/download9d740abad2ea2ae0cc7aec2d67aef5bcMD5411323/13998oai:repositorio.cuc.edu.co:11323/139982025-02-28 04:02:03.624https://creativecommons.org/licenses/by/4.0/© 2024 The Author(s)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K