A new class of degenerate Apostol-type Hermite polynomials and applications
In this article, a new class of the degenerate Apostol–type Hermite polynomials is introduced. Certain algebraic and differential properties of there polynomials are derived. Most of the results are proved by using generating function methods.
- Autores:
-
Cesarano, Clemente
Ramírez, William
Khan, Subuhi
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9425
- Acceso en línea:
- https://hdl.handle.net/11323/9425
https://repositorio.cuc.edu.co/
- Palabra clave:
- Function methods.
Results
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_2147e5c37d72cf93761fa6aa3b804a6c |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9425 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A new class of degenerate Apostol-type Hermite polynomials and applications |
title |
A new class of degenerate Apostol-type Hermite polynomials and applications |
spellingShingle |
A new class of degenerate Apostol-type Hermite polynomials and applications Function methods. Results |
title_short |
A new class of degenerate Apostol-type Hermite polynomials and applications |
title_full |
A new class of degenerate Apostol-type Hermite polynomials and applications |
title_fullStr |
A new class of degenerate Apostol-type Hermite polynomials and applications |
title_full_unstemmed |
A new class of degenerate Apostol-type Hermite polynomials and applications |
title_sort |
A new class of degenerate Apostol-type Hermite polynomials and applications |
dc.creator.fl_str_mv |
Cesarano, Clemente Ramírez, William Khan, Subuhi |
dc.contributor.author.spa.fl_str_mv |
Cesarano, Clemente Ramírez, William Khan, Subuhi |
dc.subject.proposal.eng.fl_str_mv |
Function methods. Results |
topic |
Function methods. Results |
description |
In this article, a new class of the degenerate Apostol–type Hermite polynomials is introduced. Certain algebraic and differential properties of there polynomials are derived. Most of the results are proved by using generating function methods. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-02T19:06:01Z |
dc.date.available.none.fl_str_mv |
2022-08-02T19:06:01Z |
dc.date.issued.none.fl_str_mv |
2022-04 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.spa.fl_str_mv |
2035-6803 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9425 |
dc.identifier.doi.spa.fl_str_mv |
DOI - 10.3390/sym10110652 JO |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2035-6803 DOI - 10.3390/sym10110652 JO Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9425 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Dolomites Research Notes on Approximation |
dc.relation.references.spa.fl_str_mv |
[1] L. Andrews, Special functions for Engineers and Applied Mathematicians,Macmillan USA, 1985. [2] P. Appell, J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques Polynomes d0Hermite, Paris, Gautier Villars, 1926. [3] T. Apostol, On the Lerch Zeta-function, Pacific J. Math., 1:161-167, 1951. [4] D. Bedoya, M. Ortega, W. Ramírez, A. Urieles, New biparametric families of Apostol-Frobenius-Euler polynomials of level m, Mat. Stud., 55:10–23, 2021. [5] K. Burak, Explicit relations for the modified degenerate Apostol-type polynomials, BAUN Fen Bil. Enst. Dergisi, 20:401-412, 2018. [6] L. Carlitz, A degenerate Staudt–Clausen theorem, Arch. Math., (Basel), 7:28–33, 1956. [7] C. Cesarano, A note on Generalized Hermite polynomial, Inter. Journal of Appl. Math. and Inf., 8:1-6, 2014. [8] C. Cesarano, G.M. Cennamo, L. Placidi, Operational methods for Hermite polynomials with applications, WSEAS Trans. on Math., 13:925-931, 2014. [9] G. Dattoli,C. Cesarano, On a new family of Hermite polynomials associated to parabolic cylinder functions, Appl. Math. and Comp., 141(1):143–149, 2003. [10] G.Dattoli, C. Cesarano, D. Sacchetti, A note on Chebyshev polynomials, Ann. Univ. Ferrara, 7(47):107–115, 2001. [11] D. Lim, Some identities of degenerate Genocchi polynomials, Bull. Korean Math. Soc., 53:569-579, 2016. [12] H. Liu, W. Wang, Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums, Discr. Math., 309(3):346-3363, 2009. [13] Y. Quintana, W. Ramírez, A. Urieles, Generalized Apostol-type polynomial matrix and its algebraic properties, Math. Repor., 21(2):249–264, 2019. [14] Y. Quintana, W. Ramírez, A. Urieles, On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo, 53:1–30, 2018. [15] W. Ramírez, L. Castilla, A. Urieles, An extended generalized q-extensions for the Apostol-type polynomials, Abs. and Appl. An., 1–13, 2018. [16] E. Rainville, Special Functions, Reprint of 1960, 1st Edition. Chelsea Publishig Co., Bronx, New York,1971. [17] H.M. Srivastava, J. Choi, Series associated with the Zeta and related functions, Springer, Dordrecht, Netherlands, 2001. [18] H.M. Srivastava, J. Choi, Zeta and q-Zeta functions and associated series and integrals, Elsevier, London, 2012. [19] K. Subuhi, N. Tabinda,R. Mumtaz, On degenerate Apostol-type polynomials and applications, Bol. de la Soc. Mat. Mex., 509–528, 2018. [20] K. Waseem, A note on degenerate Hermite poly–Bernoulli numbers and polynomials, Journal of Classical Analysis, 8:65–76, 2016. [21] K. Waseem, Degenerate Hermite–Bernoulli Numbers and Polynomials of the second kind, Presp. J., 7:1200–1208, 2016. [22] K. Waseem, A new class of degenerate Frobenius Euler–Hermite polynomials, Ad. St. in Cont. Math., 28:567–576, 2018. |
dc.relation.citationstartpage.spa.fl_str_mv |
10 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
15 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2009 - 2014. Universita degli Studi di Padova - Padova University Press |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2009 - 2014. Universita degli Studi di Padova - Padova University Press https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
University of Verona |
dc.publisher.place.spa.fl_str_mv |
Italy |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.emis.de/journals/DRNA/1-2.html |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/acfd653f-2e49-407c-b2be-1c7a48fd6416/download https://repositorio.cuc.edu.co/bitstreams/d81600ae-0827-4c83-9923-afe0f17fe1d7/download https://repositorio.cuc.edu.co/bitstreams/ff9da6a2-5721-42ce-bab7-fee4bca65ea4/download https://repositorio.cuc.edu.co/bitstreams/73b5b217-d0b8-4870-9762-5be6c1e5a8c1/download |
bitstream.checksum.fl_str_mv |
e7f4debebe3f5ce09b737b6fa12527cf e30e9215131d99561d40d6b0abbe9bad c590e13f2041c40f4e1f50c03a31a56a e037c947905d0355da51f0725120494a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166836308410368 |
spelling |
Cesarano, ClementeRamírez, WilliamKhan, Subuhi2022-08-02T19:06:01Z2022-08-02T19:06:01Z2022-042035-6803https://hdl.handle.net/11323/9425DOI - 10.3390/sym10110652 JOCorporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this article, a new class of the degenerate Apostol–type Hermite polynomials is introduced. Certain algebraic and differential properties of there polynomials are derived. Most of the results are proved by using generating function methods.10 páginasapplication/pdfengUniversity of VeronaItalyAtribución 4.0 Internacional (CC BY 4.0)© 2009 - 2014. Universita degli Studi di Padova - Padova University Presshttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A new class of degenerate Apostol-type Hermite polynomials and applicationsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.emis.de/journals/DRNA/1-2.htmlDolomites Research Notes on Approximation[1] L. Andrews, Special functions for Engineers and Applied Mathematicians,Macmillan USA, 1985.[2] P. Appell, J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques Polynomes d0Hermite, Paris, Gautier Villars, 1926.[3] T. Apostol, On the Lerch Zeta-function, Pacific J. Math., 1:161-167, 1951.[4] D. Bedoya, M. Ortega, W. Ramírez, A. Urieles, New biparametric families of Apostol-Frobenius-Euler polynomials of level m, Mat. Stud., 55:10–23, 2021.[5] K. Burak, Explicit relations for the modified degenerate Apostol-type polynomials, BAUN Fen Bil. Enst. Dergisi, 20:401-412, 2018.[6] L. Carlitz, A degenerate Staudt–Clausen theorem, Arch. Math., (Basel), 7:28–33, 1956.[7] C. Cesarano, A note on Generalized Hermite polynomial, Inter. Journal of Appl. Math. and Inf., 8:1-6, 2014.[8] C. Cesarano, G.M. Cennamo, L. Placidi, Operational methods for Hermite polynomials with applications, WSEAS Trans. on Math., 13:925-931, 2014.[9] G. Dattoli,C. Cesarano, On a new family of Hermite polynomials associated to parabolic cylinder functions, Appl. Math. and Comp., 141(1):143–149, 2003.[10] G.Dattoli, C. Cesarano, D. Sacchetti, A note on Chebyshev polynomials, Ann. Univ. Ferrara, 7(47):107–115, 2001.[11] D. Lim, Some identities of degenerate Genocchi polynomials, Bull. Korean Math. Soc., 53:569-579, 2016.[12] H. Liu, W. Wang, Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums, Discr. Math., 309(3):346-3363, 2009.[13] Y. Quintana, W. Ramírez, A. Urieles, Generalized Apostol-type polynomial matrix and its algebraic properties, Math. Repor., 21(2):249–264, 2019.[14] Y. Quintana, W. Ramírez, A. Urieles, On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo, 53:1–30, 2018.[15] W. Ramírez, L. Castilla, A. Urieles, An extended generalized q-extensions for the Apostol-type polynomials, Abs. and Appl. An., 1–13, 2018.[16] E. Rainville, Special Functions, Reprint of 1960, 1st Edition. Chelsea Publishig Co., Bronx, New York,1971.[17] H.M. Srivastava, J. Choi, Series associated with the Zeta and related functions, Springer, Dordrecht, Netherlands, 2001.[18] H.M. Srivastava, J. Choi, Zeta and q-Zeta functions and associated series and integrals, Elsevier, London, 2012.[19] K. Subuhi, N. Tabinda,R. Mumtaz, On degenerate Apostol-type polynomials and applications, Bol. de la Soc. Mat. Mex., 509–528, 2018.[20] K. Waseem, A note on degenerate Hermite poly–Bernoulli numbers and polynomials, Journal of Classical Analysis, 8:65–76, 2016.[21] K. Waseem, Degenerate Hermite–Bernoulli Numbers and Polynomials of the second kind, Presp. J., 7:1200–1208, 2016.[22] K. Waseem, A new class of degenerate Frobenius Euler–Hermite polynomials, Ad. St. in Cont. Math., 28:567–576, 2018.10115Function methods.ResultsPublicationORIGINALA new class of degenerate Apostol.pdfA new class of degenerate Apostol.pdfapplication/pdf231351https://repositorio.cuc.edu.co/bitstreams/acfd653f-2e49-407c-b2be-1c7a48fd6416/downloade7f4debebe3f5ce09b737b6fa12527cfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/d81600ae-0827-4c83-9923-afe0f17fe1d7/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTA new class of degenerate Apostol.pdf.txtA new class of degenerate Apostol.pdf.txttext/plain22640https://repositorio.cuc.edu.co/bitstreams/ff9da6a2-5721-42ce-bab7-fee4bca65ea4/downloadc590e13f2041c40f4e1f50c03a31a56aMD53THUMBNAILA new class of degenerate Apostol.pdf.jpgA new class of degenerate Apostol.pdf.jpgimage/jpeg11822https://repositorio.cuc.edu.co/bitstreams/73b5b217-d0b8-4870-9762-5be6c1e5a8c1/downloade037c947905d0355da51f0725120494aMD5411323/9425oai:repositorio.cuc.edu.co:11323/94252024-09-17 14:16:07.263https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |