Neural networks for tea leaf classification

The process of classification of the raw material, is one of the most important procedures in any tea dryer, being responsible for ensuring a good quality of the final product. Currently, this process in most tea processing companies is usually handled by an expert, who performs the work manually an...

Full description

Autores:
Silva, Jesús
H, H
Niebles Núñez, William
Ruiz-Lazaro, Alex
Varela, Noel
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6236
Acceso en línea:
https://hdl.handle.net/11323/6236
https://repositorio.cuc.edu.co/
Palabra clave:
Raw material
Intelligence techniques (IA)
Neural networks
Tea leaf
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_209aefab9d2cee07ebe9dda22a1f82cc
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6236
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Neural networks for tea leaf classification
title Neural networks for tea leaf classification
spellingShingle Neural networks for tea leaf classification
Raw material
Intelligence techniques (IA)
Neural networks
Tea leaf
title_short Neural networks for tea leaf classification
title_full Neural networks for tea leaf classification
title_fullStr Neural networks for tea leaf classification
title_full_unstemmed Neural networks for tea leaf classification
title_sort Neural networks for tea leaf classification
dc.creator.fl_str_mv Silva, Jesús
H, H
Niebles Núñez, William
Ruiz-Lazaro, Alex
Varela, Noel
dc.contributor.author.spa.fl_str_mv Silva, Jesús
H, H
Niebles Núñez, William
Ruiz-Lazaro, Alex
Varela, Noel
dc.subject.spa.fl_str_mv Raw material
Intelligence techniques (IA)
Neural networks
Tea leaf
topic Raw material
Intelligence techniques (IA)
Neural networks
Tea leaf
description The process of classification of the raw material, is one of the most important procedures in any tea dryer, being responsible for ensuring a good quality of the final product. Currently, this process in most tea processing companies is usually handled by an expert, who performs the work manually and at his own discretion, which has a number of associated drawbacks. In this work, a solution is proposed that includes the planting, design, development and testing of a prototype that is able to correctly classify photographs corresponding to samples of raw material arrived at a dryer, using intelligence techniques (IA) type supervised for Classification by Artificial Neural Networks and not supervised with K-means Grouping for class preparation. The prototype performed well and is a reliable tool for classifying the raw material slammed into tea dryers.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-23T16:31:38Z
dc.date.available.none.fl_str_mv 2020-04-23T16:31:38Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1742-6588
1742-6596
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6236
dc.identifier.doi.spa.fl_str_mv doi:10.1088/1742-6596/1432/1/01207
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1742-6588
1742-6596
doi:10.1088/1742-6596/1432/1/01207
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6236
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Ministerio de Ciencia, Tecnología e Innovación Productiva, Profecyt, Agencia de promoción Científica y Tecnológica, Unión Industrial Argentina. Té en Misiones: Debilidades y Desafíos tecnológicos del sector productivo. Buenos Aires, Argentina (2012).
[2] Zamora, K., Castro, L., Wang, A., Arauz, L. F., & Uribe, L. (2017). Potential use of vermicompost leachates and tea in the control of the American leaf spot of coffee Mycena citricolor. Agronomía Costarricense, 41(1), 33-51.
[3] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24.
[4] Hariri S, and M. Parashar.Tools and Enviroments for Parallel and Distributed Computing. John Wiley & Sons. ISBN 0-471-33288-7, pag 229, 2014.
[5] Viloria, A. "Commercial strategies providers pharmaceutical chains for logistics cost reduction." Indian Journal of Science and Technology 8, no. 1 (2016).
[6] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371.
[7] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009.
[8] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012.
[9] Venugopal K, K.G. Srinivasa and L. M. Patnaik. Soft Computing for Data Mining Applications. Springer Berlin Heidelberg: Springer-Verlag. ISBN 978-3-642-00192-5, pp 354, 2009.
[10] Brdar S., Culibrk D., Marinkovic B., Crnobarac J., Crnojevic V. Support Vector Machines with Features Contribution Analysis for Agricultural Yield Prediction, Second International Workshop on Sensing Technologies in Agriculture, Forestry and Environment, 43-47, 2011
[11] Choudhury, A. and Jones, J. Crop yield prediction using time series models, Journal of Economics and Economic Education Research., 15, 53-68, 2014.
[12] R. Putha, L. Quadrifoglio, and E. Zechman. Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions. Computer‐ Aided Civil and Infrastructure Engineering, 27(1), 14-28, 2012.
[13] D. Teodorović, and M. Dell’Orco. Mitigating traffic congestion: solving the ride-matching problem by bee colony optimization. Transportation Planning and Technology, 31(2), 135-152, 2008.
[14] Amelec, V., & Alexander, P. (2015). Improvements in the automatic distribution process of finished product for pet food category in multinational company. Advanced Science Letters, 21(5), 1419-1421.
[15] Salinas-Piélago, J. (2016). Revisión sobre el uso del mate de hoja de coca en la prevención del mal agudo de montaña. Revista de Neuro-Psiquiatría, 79(3), 166-168.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Physics: Conference Series
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a781cd20-43b9-481a-b0dc-8bc8e6d8e2f6/download
https://repositorio.cuc.edu.co/bitstreams/de820724-52f2-45c4-af27-b7eb84ea508c/download
https://repositorio.cuc.edu.co/bitstreams/75b775a3-0448-4fbf-a981-da5cce8818d8/download
https://repositorio.cuc.edu.co/bitstreams/27cb6b42-33b6-4135-b978-c944d5b181d0/download
https://repositorio.cuc.edu.co/bitstreams/8e202b1b-7bf3-4793-be1d-b8e5882e72b8/download
https://repositorio.cuc.edu.co/bitstreams/1a2df4e9-d95d-4003-a5a8-8446b29261ad/download
https://repositorio.cuc.edu.co/bitstreams/81e68c67-64d9-41de-982a-814073688ad0/download
bitstream.checksum.fl_str_mv cd717fdd8fee921fb801c84198004c4c
f85596aa08ffe206403bf1ee11bcb6f4
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
9e4763f059624c2849610c8b2e4ddcc6
9e4763f059624c2849610c8b2e4ddcc6
98242152d40b642510cf90d57497f461
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760701166845952
spelling Silva, JesúsH, HNiebles Núñez, WilliamRuiz-Lazaro, AlexVarela, Noel2020-04-23T16:31:38Z2020-04-23T16:31:38Z20201742-65881742-6596https://hdl.handle.net/11323/6236doi:10.1088/1742-6596/1432/1/01207Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The process of classification of the raw material, is one of the most important procedures in any tea dryer, being responsible for ensuring a good quality of the final product. Currently, this process in most tea processing companies is usually handled by an expert, who performs the work manually and at his own discretion, which has a number of associated drawbacks. In this work, a solution is proposed that includes the planting, design, development and testing of a prototype that is able to correctly classify photographs corresponding to samples of raw material arrived at a dryer, using intelligence techniques (IA) type supervised for Classification by Artificial Neural Networks and not supervised with K-means Grouping for class preparation. The prototype performed well and is a reliable tool for classifying the raw material slammed into tea dryers.Silva, JesúsHernandez Palma, Hugo Gaspar-will be generated-orcid-0000-0002-3873-0530-600Niebles Núñez, WilliamRuiz-Lazaro, AlexVarela, NoelengJournal of Physics: Conference SeriesCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Raw materialIntelligence techniques (IA)Neural networksTea leafNeural networks for tea leaf classificationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Ministerio de Ciencia, Tecnología e Innovación Productiva, Profecyt, Agencia de promoción Científica y Tecnológica, Unión Industrial Argentina. Té en Misiones: Debilidades y Desafíos tecnológicos del sector productivo. Buenos Aires, Argentina (2012).[2] Zamora, K., Castro, L., Wang, A., Arauz, L. F., & Uribe, L. (2017). Potential use of vermicompost leachates and tea in the control of the American leaf spot of coffee Mycena citricolor. Agronomía Costarricense, 41(1), 33-51.[3] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24.[4] Hariri S, and M. Parashar.Tools and Enviroments for Parallel and Distributed Computing. John Wiley & Sons. ISBN 0-471-33288-7, pag 229, 2014.[5] Viloria, A. "Commercial strategies providers pharmaceutical chains for logistics cost reduction." Indian Journal of Science and Technology 8, no. 1 (2016).[6] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371.[7] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009.[8] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012.[9] Venugopal K, K.G. Srinivasa and L. M. Patnaik. Soft Computing for Data Mining Applications. Springer Berlin Heidelberg: Springer-Verlag. ISBN 978-3-642-00192-5, pp 354, 2009.[10] Brdar S., Culibrk D., Marinkovic B., Crnobarac J., Crnojevic V. Support Vector Machines with Features Contribution Analysis for Agricultural Yield Prediction, Second International Workshop on Sensing Technologies in Agriculture, Forestry and Environment, 43-47, 2011[11] Choudhury, A. and Jones, J. Crop yield prediction using time series models, Journal of Economics and Economic Education Research., 15, 53-68, 2014.[12] R. Putha, L. Quadrifoglio, and E. Zechman. Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions. Computer‐ Aided Civil and Infrastructure Engineering, 27(1), 14-28, 2012.[13] D. Teodorović, and M. Dell’Orco. Mitigating traffic congestion: solving the ride-matching problem by bee colony optimization. Transportation Planning and Technology, 31(2), 135-152, 2008.[14] Amelec, V., & Alexander, P. (2015). Improvements in the automatic distribution process of finished product for pet food category in multinational company. Advanced Science Letters, 21(5), 1419-1421.[15] Salinas-Piélago, J. (2016). Revisión sobre el uso del mate de hoja de coca en la prevención del mal agudo de montaña. Revista de Neuro-Psiquiatría, 79(3), 166-168.PublicationORIGINALNeural Networks for Tea Leaf Classification.pdfNeural Networks for Tea Leaf Classification.pdfapplication/pdf799029https://repositorio.cuc.edu.co/bitstreams/a781cd20-43b9-481a-b0dc-8bc8e6d8e2f6/downloadcd717fdd8fee921fb801c84198004c4cMD51Neural Networks for Tea Leaf Classification.pdfNeural Networks for Tea Leaf Classification.pdfapplication/pdf1523282https://repositorio.cuc.edu.co/bitstreams/de820724-52f2-45c4-af27-b7eb84ea508c/downloadf85596aa08ffe206403bf1ee11bcb6f4MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/75b775a3-0448-4fbf-a981-da5cce8818d8/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/27cb6b42-33b6-4135-b978-c944d5b181d0/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILNeural Networks for Tea Leaf Classification.pdf.jpgNeural Networks for Tea Leaf Classification.pdf.jpgimage/jpeg31132https://repositorio.cuc.edu.co/bitstreams/8e202b1b-7bf3-4793-be1d-b8e5882e72b8/download9e4763f059624c2849610c8b2e4ddcc6MD54THUMBNAILNeural Networks for Tea Leaf Classification.pdf.jpgNeural Networks for Tea Leaf Classification.pdf.jpgimage/jpeg31132https://repositorio.cuc.edu.co/bitstreams/1a2df4e9-d95d-4003-a5a8-8446b29261ad/download9e4763f059624c2849610c8b2e4ddcc6MD54TEXTNeural Networks for Tea Leaf Classification.pdf.txtNeural Networks for Tea Leaf Classification.pdf.txttext/plain24859https://repositorio.cuc.edu.co/bitstreams/81e68c67-64d9-41de-982a-814073688ad0/download98242152d40b642510cf90d57497f461MD5611323/6236oai:repositorio.cuc.edu.co:11323/62362024-09-17 10:17:54.876http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=