Neural networks for tea leaf classification

The process of classification of the raw material, is one of the most important procedures in any tea dryer, being responsible for ensuring a good quality of the final product. Currently, this process in most tea processing companies is usually handled by an expert, who performs the work manually an...

Full description

Autores:
Silva, Jesús
H, H
Niebles Núñez, William
Ruiz-Lazaro, Alex
Varela, Noel
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6236
Acceso en línea:
https://hdl.handle.net/11323/6236
https://repositorio.cuc.edu.co/
Palabra clave:
Raw material
Intelligence techniques (IA)
Neural networks
Tea leaf
Rights
openAccess
License
CC0 1.0 Universal
Description
Summary:The process of classification of the raw material, is one of the most important procedures in any tea dryer, being responsible for ensuring a good quality of the final product. Currently, this process in most tea processing companies is usually handled by an expert, who performs the work manually and at his own discretion, which has a number of associated drawbacks. In this work, a solution is proposed that includes the planting, design, development and testing of a prototype that is able to correctly classify photographs corresponding to samples of raw material arrived at a dryer, using intelligence techniques (IA) type supervised for Classification by Artificial Neural Networks and not supervised with K-means Grouping for class preparation. The prototype performed well and is a reliable tool for classifying the raw material slammed into tea dryers.