Construction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting: a comparison

The paper presents a comparison of the concentration methods conventional jig, air jig, and sensor-based sorting to treat construction and demolition waste. All tests were made with concrete, brick, and gypsum particles and the tests aim to separate these materials into different size ranges, depend...

Full description

Autores:
Hoffmann Sampaio, Carlos
Ambrós, Weslei
CAZACLIU, Bogdan
Oliva, Josep
Veras, Moacir
Miltzarek, Gérson Luis
Silva Oliveira, Luis Felipe
Salvador Kuerten, Ariane
Liendo, Maria Alejandra
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8995
Acceso en línea:
https://hdl.handle.net/11323/8995
https://doi.org/10.3390/min11080904
https://repositorio.cuc.edu.co/
Palabra clave:
Construction and demolition waste
Sensor-based sorting
Wet jig
Air
Jig
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_2074d0185fd41aa18247ae949e7abfbf
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8995
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Construction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting: a comparison
title Construction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting: a comparison
spellingShingle Construction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting: a comparison
Construction and demolition waste
Sensor-based sorting
Wet jig
Air
Jig
title_short Construction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting: a comparison
title_full Construction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting: a comparison
title_fullStr Construction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting: a comparison
title_full_unstemmed Construction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting: a comparison
title_sort Construction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting: a comparison
dc.creator.fl_str_mv Hoffmann Sampaio, Carlos
Ambrós, Weslei
CAZACLIU, Bogdan
Oliva, Josep
Veras, Moacir
Miltzarek, Gérson Luis
Silva Oliveira, Luis Felipe
Salvador Kuerten, Ariane
Liendo, Maria Alejandra
dc.contributor.author.spa.fl_str_mv Hoffmann Sampaio, Carlos
Ambrós, Weslei
CAZACLIU, Bogdan
Oliva, Josep
Veras, Moacir
Miltzarek, Gérson Luis
Silva Oliveira, Luis Felipe
Salvador Kuerten, Ariane
Liendo, Maria Alejandra
dc.subject.spa.fl_str_mv Construction and demolition waste
Sensor-based sorting
Wet jig
Air
Jig
topic Construction and demolition waste
Sensor-based sorting
Wet jig
Air
Jig
description The paper presents a comparison of the concentration methods conventional jig, air jig, and sensor-based sorting to treat construction and demolition waste. All tests were made with concrete, brick, and gypsum particles and the tests aim to separate these materials into different size ranges, depending on the method. The equipment tested, conventional jig, air jig, and sensor-based sorting present good results to concentrate construction and demolition waste particles, with different concentrations and mass recoveries. The results show particularly good mass recoveries and particle concentration for conventional jig, especially for concrete and gypsum particles. Sensor-based sorting should preferably use concentration circuits for best results.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-08-21
dc.date.accessioned.none.fl_str_mv 2022-01-22T21:48:04Z
dc.date.available.none.fl_str_mv 2022-01-22T21:48:04Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2075-163X
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8995
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.3390/min11080904
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2075-163X
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8995
https://doi.org/10.3390/min11080904
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Müller, A.; Sokolova, S.N.; Vereshagin, V.I. Characteristics of lightweight aggregates from primary and recycled raw materials. Constr. Build. Mater. 2008, 22, 703–712. [CrossRef]
2. Müller, A.; Angulo, S.C. Determination of construction and demolition recycled aggregates composition, in considering their heterogeneity. Mater. Struct. 2009, 42, 739–748.
3. Landmann, M.; Müller, A.; Palzer, U.; Leydolph, B. Limitations of Liberation Techniques for Mineral Construction and Demolition Wastes. In Proceedings of the EURASIA 2014, Waste Management Symposium, Istambul, Turkey, 28–30 April 2014.
4. Sampaio, C.H.; Cazacliu, B.; Miltzarek, G.L.; Huchet, F.; Guen, C.O.P.L.; Petter, C.O.; Paranhos, R.; Ambrós, W.M.; Oliveira, M.L.S. Stratification in air jigs of concrete/brick/gypsum particles. Constr. Build. Mater. 2016, 109, 63–72. [CrossRef]
5. Coelho, A.; Brito, J. Economic viability analysis of a construction and demolition waste recycling plant in Portugal—Part I: Location, materials, technology and economic analysis. J. Clean. Prod. 2013, 39, 338–352. [CrossRef]
6. Medina, C.; Banfill, P.F.G.; de Rojas, M.I.S.; Frías, M. Rheological and calorimetric behavior of cements blended with containing ceramic sanitary ware and construction/demolition waste. Constr. Build. Mater. 2013, 40, 822–831. [CrossRef]
7. Rodrigues, F.; Carvalho, M.T.; Evangelista, L.; Brito, J. Physicalechemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 2013, 52, 438–445. [CrossRef]
8. Mendis, D.; Hewage, K.N.; Wrzesniewski, J. Reduction of construction wastes by improving construction contract management: A multinational evaluation. Waste Manag. Res. 2013, 31, 1062–1069. [CrossRef]
9. Sabai, M.M.; Cox, M.G.D.M.; Mato, R.R.; Egmond, E.L.C.; Lichtenberg, J.J.N. Concrete block production from construction and demolition waste in Tanzania. Resour. Conserv. Recycl. 2013, 72, 9–19. [CrossRef]
10. Yuan, H. A SWOT analysis of successful construction waste management. J. Clean. Prod. 2013, 39, 1–8. [CrossRef]
11. Medina, C.; Zhu, W.; Howind, T.; Rojas, M.I.S.; Frías, M. Influence of mixed recycled aggregate on the physical e mechanical properties of recycled concrete. J. Clean. Prod. 2014, 68, 216–225. [CrossRef]
12. Ferreira, S.B.; Domingues, P.C.; Soares, S.M.; Camarini, G. Recycled Plaster and Red Ceramic Waste Based Mortars. IACSIT Int. J. Eng. Technol. 2015, 7, 209. [CrossRef]
13. Nasrullah, M.; Vainikka, P.; Hannula, J.; Hurme, M.; Kärki, J. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste. Waste Manag. 2014, 34, 2163–2170. [CrossRef]
14. Tam, V.W.Y. Economic comparison of concrete recycling: A case study approach. Resour. Conserv. Recycl. 2008, 52, 821–828. [CrossRef]
15. Oikonomou, N.D. Recycled concrete aggregates. Cem. Concr. Compos. 2005, 27, 315–318. [CrossRef]
16. Kou, S.C.; Zhan, B.J.; Poon, C.S. Properties of partition wall blocks prepared with fresh concrete wastes. Constr. Build. Mater. 2012, 36, 566–571. [CrossRef]
17. Richardson, A. Concrete with crushed, graded and washed recycled construction demolition waste as a coarse aggregate replacement. Struct. Surv. 2010, 28, 142–148. [CrossRef]
18. Behera, M.; Bhattacharyya, S.; Minocha, A.; Deoliya, R.; Maiti, S. Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 2014, 68, 501–516.
19. Silva, R.; Brito, J.; Dhir, R. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 2014, 65, 201–217. [CrossRef]
20. Reis, G.S.D.; Quattrone, M.; Ambrós, W.M.; Cazacliu, B.G. Current Applications of Recycled Aggregates from Construction and Demolition: A Review. Materials 2021, 14, 1700. [CrossRef]
21. Meng, Y.; Ling, T.-C.; Mo, K. Recycling of wastes for value-added applications in concrete blocks: An overview. Resour. Conserv. Recycl. 2018, 138, 298–312. [CrossRef]
22. Ulubeyli, S.; Kazaz, A.; Arslan, V. Construction and Demolition Waste Recycling Plants Revisited: Management Issues. Procedia Eng. 2017, 172, 1190–1197. [CrossRef]
23. Yuan, H.; Lu, W.; Hao, J. The evolution of construction waste sorting on-site. Renew. Sustain. Energy Rev. 2013, 20, 483–490. [CrossRef]
24. Tischer, A.; Besiou, M.; Graubner, C.A. Efficient waste management in construction logistics: A refurbishment case study. Logist. Res. 2013, 6, 159–171. [CrossRef]
25. Saez, P.V.; Merino, M.R.; González, A.S.A.; Amores, C.P. Best practice measures assessment for construction and demolition waste management. Build. Constr. Resour. Conserv. Recycl. 2013, 75, 52–62. [CrossRef]
26. Poon, C.S.; Yu, A.T.W.; Ng, L.H. On-site sorting of construction and demolition waste in Hong Kong. Resour. Conserv. Recycl. 2001, 32, 157–172. [CrossRef]
27. Coelho, A.; Brito, J. Environmental analysis of a construction and demolition waste recycling plant in Portugal—Part I: Energy consumption and CO2 emissions. Waste Manag. 2013, 33, 1258–1267. [CrossRef] [PubMed]
28. Coelho, A.; de Brito, J. Preparation of concrete aggregates from construction and demolition waste (CDW). In Handbook of Recycled Concrete and Demolition Waste; Elsevier: Amsterdam, The Netherlands, 2013; pp. 210–245.
29. Weimann, K.; Giese, L.B.; Mellmann, G.; Simon, F.G. Building materials from waste. Mater. Trans. 2003, 44, 1255–1258. [CrossRef]
30. Ulsen, C.; Kahn, H.; Hawlitschek, G.; Masini, E.; Angulo, S. Separability studies of construction and demolition waste recycled sand. Waste Manag. 2013, 33, 656–662. [CrossRef] [PubMed]
31. Müller, A.; Wienke, L. Measurements and Models for the Gravity Concentration of C&D Waste Through Jigging. In Proceedings of the International RILEM Conference on the Use of Recycled Materials in Building and Structures, Barcelona, Spain, 8–11 November 2004.
32. Angulo, S.C.; John, V.M.; Ulsen, C.K.H.; Müller, A. Separação óptica do material cerâmico dos agregados mistos de resíduos de construção e demolição. Ambiente Construído Porto Alegre 2013, 13, 61–73. [CrossRef]
33. Schnellert, T.; Kehr, K.; Müller, A. Development of a separation process for gypsum-contaminated concrete aggregates. In Proceedings of the 2nd International RILEM Conference on Progress of Recycling in the Built Environment, Rio de Janeiro, Brazil, 2011.
34. Hendriks, C.F.; Xing, W. Quality Improvement of Granular Wastes by Separation Techniques. In Proceedings of the International RILEM Conference on the Use of Recycled Materials in Building and Structures, Barcelona, Spain, 8–11 November 2004.
35. Cazacliu, B.; Sampaio, C.H.; Petter, C.O.; Miltzarek, G.L.; Guen, L.L.; Paranhos, R.S.; Huchet, F.; Kirchheim, A.P. The potential of using air jigging to sort recycled aggregates. J. Clean. Prod. 2014, 66, 46–53. [CrossRef]
36. Müller, A. Bauschutt ohne Gips. Steinbruch und Sandgrube 2012, 11, 40–45.
37. Müller, A. Gips im Griff. Miner. Process. 2010, 51, 34–43.
38. Müller, A. Gips reduziert. Miner. Process. 2010, 51, 54–69.
39. Woollacott, L. The impact of size segregation on packing density in jig beds: An X-ray tomographic study. Miner. Eng. 2019, 131, 98–110. [CrossRef]
40. Waskow, R.P.; Dos Santos, V.L.; Ambrós, W.M.; Sampaio, C.H.; Passuello, A.; Tubino, R.M. Optimization and dust emissions analysis of the air jigging technology applied to the recycling of construction and demolition waste. J. Environ. Manag. 2020, 266, 11. [CrossRef]
41. Ambros, W.; Sampaio, C.H.; Cazacliu, B.G.; Conceiçao, P.; Reis, G.S.d. Some observations on the influence of particle size and size distribution on stratification in pneumatic jigs. Powder Technol. 2019, 342, 594–606. [CrossRef]
42. Favaretto, P.; Hidalgo, G.; Sampaio, C.; Silva, R.; Lermen, R. Characterization and Use of Construction and Demolition Waste from South of Brazil in the Production of Foamed Concrete Blocks. Appl. Sci. 2017, 7, 1090. [CrossRef]
43. Hu, K.; Chen, Y.; Naz, F.; Zeng, C.; Cao, S. Separation studies of concrete and brick from construction and demolition waste. Waste Manag. 2019, 85, 396–404. [CrossRef]
44. Tabelin, C.B.; Park, I.; Phengsaart, T.; Jeon, S.; Villacorte-Tabelin, M.; Alonzo, D.; Yoo, K.; Ito, M.; Hiroyoshi, N. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 2021, 170, 105610. [CrossRef]
45. Jeon, S.; Ito, M.; Tabelin, C.B.; Pongsumrankul, R.; Tanaka, S.; Kitajima, N.; Saito, A.; Park, I.; Hiroyoshi, N. A physical separation scheme to improve ammonium thiosulfate leaching of gold by separation of base metals in crushed mobile phones. Miner. Eng. 2019, 138, 168–177. [CrossRef]
46. Phengsaart, T.; Ito, M.; Hamaya, N.; Tabelin, C.B.; Hiroyoshi, N. Improvement of jig efficiency by shape separation, and a novel method to estimate the separation efficiency of metal wires in crushed electronic wastes using bending behavior and entanglement factor. Miner. Eng. 2018, 129, 54–62. [CrossRef]
47. Jeon, S.; Ito, M.; Tabelin, C.B.; Pongsumrankul, R.; Kitajima, N.; Park, I.; Hiroyoshi, N. Gold recovery from shredder light fraction of E-waste recycling plant by flotation-ammonium thiosulfate leaching. Waste Manag. 2018, 77, 195–202. [CrossRef] [PubMed]
48. Phengsaart, T.; Ito, M.; Kimura, S.; Azuma, A.; Hori, K.; Tanno, H.; Jeon, S.; Park, I.; Tabelin, C.B.; Hiroyoshi, N. Development of a restraining wall and screw-extractor discharge system for continuous jig separation of mixed plastics. Miner. Eng. 2021, 168, 106918. [CrossRef]
49. Ito, M.; Saito, A.; Murase, N.; Phengsaart, T.; Kimura, S.; Kitajima, N.; Takeuchi, M.; Tabelin, C.B.; Hiroyoshi, N. Estimation of hybrid jig separation efficiency using a modified concentration criterion based on apparent densities of plastic particles with attached bubbles. J. Mater. Cycles Waste Manag. 2020, 22, 2071–2080. [CrossRef]
50. Veras, M.; Young, A.; Sampaio, C.H.; Petter, C. A mining breakthrough; Preconcentration by sensor-based sorting. Min. Eng. 2016, 68, 38–42.
51. Veras, M.M.; Young, A.S.; Born, C.R.; Szewczuk, A.; Neto, A.C.B.; Petter, C.O.; Sampaio, C.H. Affinity of dual energy X-ray transmission sensors on minerals bearing heavy rare earth elements. Miner. Eng. 2020, 147, 106151. [CrossRef]
52. Neubert, K.; Wotruba, H. Investigations on the detectability of rare-earth minerals using dual-energy X-ray transmission sorting. J. Sustain. Metall. 2017, 3, 3–12. [CrossRef]
53. Robben, C.; Wotruba, W. Sensor-Based Ore Sorting Technology in Mining—Past, Present and Future. Minerals 2019, 9, 523. [CrossRef]
54. Vegas, I.; Broos, K.; Nielsen, P.; Lambertz, O.; Lisbona, A. Upgrading the quality of mixed recycled aggregates from construction and demolition waste by using near-infrared sorting technology. Constr. Build. Mater. 2015, 75, 121–128. [CrossRef]
55. Lessard, J.; Sweetser, W.; Bartram, K.; Figuero, J.; McHugh, L. Bridging the gap: Understanding the economic impact of ore sorting on a mineral processing circuit. Miner. Eng. 2016, 91, 92–99. [CrossRef]
56. Knapp, H.; Neubert, K.; Schropp, C.; Wotruba, H. Viable Applications of Sensor-Based Sorting for the Processing of Mineral Resources. ChemBioEng Rev. 2014, 1, 86–95. [CrossRef]
57. Maier, G.; Pfaff, F.; Pieper, C.; Gruna, R.; Noack, B.; Kruggel-Emden, H.; Längle, T.; Hanebeck, U.D.; Wirtz, S.; Scherer, V.; et al. Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking. IEEE Trans. Ind. Electron. 2021, 68, 1548–1559. [CrossRef]
58. Lyman, G.J. Review of jigging principles and control. Coal Prep. 1992, 11, 145–165. [CrossRef]
59. Agricola, G. De Re Metallica; Hoover, H.C., Hoover, L.H., Eds.; Dover Publications: Mineola, NY, USA, 1950; p. 1556.
60. Mayer, F. Fundamentals of Potential Theory of the Jigging Process. In Proceedings of the 7th International Mineral Processing Congress, New York, NY, USA, 1964; pp. 75–86.
61. Mayer, F.W. Neue Erkenntnisse über den Setzvorgang auf Grung der Potential-Theorie. Glückauf 1960, 96, 1297–1301.
62. Sampaio, C.H.; Tavares, L.M.M. Beneficiamento Gravimétrico: Uma Introdução aos Processos de Concentração Mineral e Reciclagem de Materiais por Densidade; UFRGS: Porto Alegre, Brazil, 2005.
63. Dalm, M.; Buxton, M.W.N.; van Ruitenbeek, F.J.A.; Voncken, J.H.L. Application of near-infrared spectroscopy to sensor based sorting of a porphyry copper ore. Miner. Eng. 2014, 58, 7–16. [CrossRef]
64. Robben, C.; de Korte, J.; Wotruba, H.; Robben, M. Experiences in Dry Coarse Coal Separation Using X-Ray-Transmission-Based Sorting. Int. J. Coal Prep. Util. 2014, 34, 210–219. [CrossRef]
65. Cutmore, N.; Eberhardt, J. The Future of Ore Sorting in Mineral Processing. In Proceedings of the International Conference on the Sustainable Processing of Minerals, Cairns, Australia, 29–31 May 2002; pp. 287–289.
66. Berwanger, M.; Gaastra, M. Technical and physical principles of sensor technologies applied in the raw materials industry. In Sensor Technologies: Impulses for the Raw Materials Industry; RWTH: Aachen, Germany, 2014.
67. Wotruba, H.; Knapp, H.; Neubert, K.; Schropp, C. Anwendung der sensorgestützten Sortierung für die Aufbereitung mineralischer Rohstoffe. Chemie Inginieur Technik 2014, 86, 773–783. [CrossRef]
68. Paranhos, R.S.; Cazacliu, B.G.; Sampaio, C.H.; Petter, C.O.; Neto, R.O.; Huchet, F. A sorting method to value recycled concrete. J. Clean. Prod. 2016, 112, 2249–2258. [CrossRef]
69. Ambrós, W.M. Jigging: A Review of Fundamentals and Future Directions. Minerals 2020, 10, 998. [CrossRef]
70. Sampaio, C.H.; Cazacliu, B.G.; Ambrós, W.M.; Kronbauer, M.A.; Tubino, R.M.; Molin, D.C.D.; Oliva, J.; Miltzarek, G.L.; Waskow, R.P.; Santos, V.L.D. Demolished concretes recycling by the use of pneumatic jigs. Waste Manag. Res. 2020, 1, 0734242X2090283.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Minerals
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.mdpi.com/2075-163X/11/8/904
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/ae9bfc8f-7882-45c6-a7c0-a8632ea51ffc/download
https://repositorio.cuc.edu.co/bitstreams/d8e2bc8d-689d-483f-8bd3-e961b3fa4c96/download
https://repositorio.cuc.edu.co/bitstreams/56081aaf-3147-4f88-bf2b-6b50276aa4d5/download
https://repositorio.cuc.edu.co/bitstreams/e30c21ea-465b-4eaf-9621-fd126fff4004/download
https://repositorio.cuc.edu.co/bitstreams/2b9fb2c7-aeb0-4525-a220-dae6a22c0aef/download
https://repositorio.cuc.edu.co/bitstreams/ee5c19db-a829-4c19-898e-6b17302ccb64/download
bitstream.checksum.fl_str_mv 793487f3180ceaa8b6b16ad6c997629f
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
edd96515a975aa2cf2d80869b7ae30bf
edd96515a975aa2cf2d80869b7ae30bf
d4c1cdc65b8d59723ac0e090451d6243
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166838514614272
spelling Hoffmann Sampaio, CarlosAmbrós, WesleiCAZACLIU, BogdanOliva, JosepVeras, MoacirMiltzarek, Gérson LuisSilva Oliveira, Luis FelipeSalvador Kuerten, ArianeLiendo, Maria Alejandra2022-01-22T21:48:04Z2022-01-22T21:48:04Z2021-08-212075-163Xhttps://hdl.handle.net/11323/8995https://doi.org/10.3390/min11080904Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The paper presents a comparison of the concentration methods conventional jig, air jig, and sensor-based sorting to treat construction and demolition waste. All tests were made with concrete, brick, and gypsum particles and the tests aim to separate these materials into different size ranges, depending on the method. The equipment tested, conventional jig, air jig, and sensor-based sorting present good results to concentrate construction and demolition waste particles, with different concentrations and mass recoveries. The results show particularly good mass recoveries and particle concentration for conventional jig, especially for concrete and gypsum particles. Sensor-based sorting should preferably use concentration circuits for best results.Hoffmann Sampaio, Carlos-will be generated-orcid-0000-0001-5840-1614-600Ambrós, Weslei-will be generated-orcid-0000-0001-9718-2389-600CAZACLIU, Bogdan-will be generated-orcid-0000-0003-1191-5145-600Oliva, Josep-will be generated-orcid-0000-0001-6214-5713-600Veras, Moacir-will be generated-orcid-0000-0001-7346-0225-600Miltzarek, Gérson LuisSilva Oliveira, Luis FelipeSalvador Kuerten, ArianeLiendo, Maria Alejandraapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mineralshttps://www.mdpi.com/2075-163X/11/8/904Construction and demolition wasteSensor-based sortingWet jigAirJigConstruction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting: a comparisonArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Müller, A.; Sokolova, S.N.; Vereshagin, V.I. Characteristics of lightweight aggregates from primary and recycled raw materials. Constr. Build. Mater. 2008, 22, 703–712. [CrossRef]2. Müller, A.; Angulo, S.C. Determination of construction and demolition recycled aggregates composition, in considering their heterogeneity. Mater. Struct. 2009, 42, 739–748.3. Landmann, M.; Müller, A.; Palzer, U.; Leydolph, B. Limitations of Liberation Techniques for Mineral Construction and Demolition Wastes. In Proceedings of the EURASIA 2014, Waste Management Symposium, Istambul, Turkey, 28–30 April 2014.4. Sampaio, C.H.; Cazacliu, B.; Miltzarek, G.L.; Huchet, F.; Guen, C.O.P.L.; Petter, C.O.; Paranhos, R.; Ambrós, W.M.; Oliveira, M.L.S. Stratification in air jigs of concrete/brick/gypsum particles. Constr. Build. Mater. 2016, 109, 63–72. [CrossRef]5. Coelho, A.; Brito, J. Economic viability analysis of a construction and demolition waste recycling plant in Portugal—Part I: Location, materials, technology and economic analysis. J. Clean. Prod. 2013, 39, 338–352. [CrossRef]6. Medina, C.; Banfill, P.F.G.; de Rojas, M.I.S.; Frías, M. Rheological and calorimetric behavior of cements blended with containing ceramic sanitary ware and construction/demolition waste. Constr. Build. Mater. 2013, 40, 822–831. [CrossRef]7. Rodrigues, F.; Carvalho, M.T.; Evangelista, L.; Brito, J. Physicalechemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 2013, 52, 438–445. [CrossRef]8. Mendis, D.; Hewage, K.N.; Wrzesniewski, J. Reduction of construction wastes by improving construction contract management: A multinational evaluation. Waste Manag. Res. 2013, 31, 1062–1069. [CrossRef]9. Sabai, M.M.; Cox, M.G.D.M.; Mato, R.R.; Egmond, E.L.C.; Lichtenberg, J.J.N. Concrete block production from construction and demolition waste in Tanzania. Resour. Conserv. Recycl. 2013, 72, 9–19. [CrossRef]10. Yuan, H. A SWOT analysis of successful construction waste management. J. Clean. Prod. 2013, 39, 1–8. [CrossRef]11. Medina, C.; Zhu, W.; Howind, T.; Rojas, M.I.S.; Frías, M. Influence of mixed recycled aggregate on the physical e mechanical properties of recycled concrete. J. Clean. Prod. 2014, 68, 216–225. [CrossRef]12. Ferreira, S.B.; Domingues, P.C.; Soares, S.M.; Camarini, G. Recycled Plaster and Red Ceramic Waste Based Mortars. IACSIT Int. J. Eng. Technol. 2015, 7, 209. [CrossRef]13. Nasrullah, M.; Vainikka, P.; Hannula, J.; Hurme, M.; Kärki, J. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste. Waste Manag. 2014, 34, 2163–2170. [CrossRef]14. Tam, V.W.Y. Economic comparison of concrete recycling: A case study approach. Resour. Conserv. Recycl. 2008, 52, 821–828. [CrossRef]15. Oikonomou, N.D. Recycled concrete aggregates. Cem. Concr. Compos. 2005, 27, 315–318. [CrossRef]16. Kou, S.C.; Zhan, B.J.; Poon, C.S. Properties of partition wall blocks prepared with fresh concrete wastes. Constr. Build. Mater. 2012, 36, 566–571. [CrossRef]17. Richardson, A. Concrete with crushed, graded and washed recycled construction demolition waste as a coarse aggregate replacement. Struct. Surv. 2010, 28, 142–148. [CrossRef]18. Behera, M.; Bhattacharyya, S.; Minocha, A.; Deoliya, R.; Maiti, S. Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 2014, 68, 501–516.19. Silva, R.; Brito, J.; Dhir, R. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 2014, 65, 201–217. [CrossRef]20. Reis, G.S.D.; Quattrone, M.; Ambrós, W.M.; Cazacliu, B.G. Current Applications of Recycled Aggregates from Construction and Demolition: A Review. Materials 2021, 14, 1700. [CrossRef]21. Meng, Y.; Ling, T.-C.; Mo, K. Recycling of wastes for value-added applications in concrete blocks: An overview. Resour. Conserv. Recycl. 2018, 138, 298–312. [CrossRef]22. Ulubeyli, S.; Kazaz, A.; Arslan, V. Construction and Demolition Waste Recycling Plants Revisited: Management Issues. Procedia Eng. 2017, 172, 1190–1197. [CrossRef]23. Yuan, H.; Lu, W.; Hao, J. The evolution of construction waste sorting on-site. Renew. Sustain. Energy Rev. 2013, 20, 483–490. [CrossRef]24. Tischer, A.; Besiou, M.; Graubner, C.A. Efficient waste management in construction logistics: A refurbishment case study. Logist. Res. 2013, 6, 159–171. [CrossRef]25. Saez, P.V.; Merino, M.R.; González, A.S.A.; Amores, C.P. Best practice measures assessment for construction and demolition waste management. Build. Constr. Resour. Conserv. Recycl. 2013, 75, 52–62. [CrossRef]26. Poon, C.S.; Yu, A.T.W.; Ng, L.H. On-site sorting of construction and demolition waste in Hong Kong. Resour. Conserv. Recycl. 2001, 32, 157–172. [CrossRef]27. Coelho, A.; Brito, J. Environmental analysis of a construction and demolition waste recycling plant in Portugal—Part I: Energy consumption and CO2 emissions. Waste Manag. 2013, 33, 1258–1267. [CrossRef] [PubMed]28. Coelho, A.; de Brito, J. Preparation of concrete aggregates from construction and demolition waste (CDW). In Handbook of Recycled Concrete and Demolition Waste; Elsevier: Amsterdam, The Netherlands, 2013; pp. 210–245.29. Weimann, K.; Giese, L.B.; Mellmann, G.; Simon, F.G. Building materials from waste. Mater. Trans. 2003, 44, 1255–1258. [CrossRef]30. Ulsen, C.; Kahn, H.; Hawlitschek, G.; Masini, E.; Angulo, S. Separability studies of construction and demolition waste recycled sand. Waste Manag. 2013, 33, 656–662. [CrossRef] [PubMed]31. Müller, A.; Wienke, L. Measurements and Models for the Gravity Concentration of C&D Waste Through Jigging. In Proceedings of the International RILEM Conference on the Use of Recycled Materials in Building and Structures, Barcelona, Spain, 8–11 November 2004.32. Angulo, S.C.; John, V.M.; Ulsen, C.K.H.; Müller, A. Separação óptica do material cerâmico dos agregados mistos de resíduos de construção e demolição. Ambiente Construído Porto Alegre 2013, 13, 61–73. [CrossRef]33. Schnellert, T.; Kehr, K.; Müller, A. Development of a separation process for gypsum-contaminated concrete aggregates. In Proceedings of the 2nd International RILEM Conference on Progress of Recycling in the Built Environment, Rio de Janeiro, Brazil, 2011.34. Hendriks, C.F.; Xing, W. Quality Improvement of Granular Wastes by Separation Techniques. In Proceedings of the International RILEM Conference on the Use of Recycled Materials in Building and Structures, Barcelona, Spain, 8–11 November 2004.35. Cazacliu, B.; Sampaio, C.H.; Petter, C.O.; Miltzarek, G.L.; Guen, L.L.; Paranhos, R.S.; Huchet, F.; Kirchheim, A.P. The potential of using air jigging to sort recycled aggregates. J. Clean. Prod. 2014, 66, 46–53. [CrossRef]36. Müller, A. Bauschutt ohne Gips. Steinbruch und Sandgrube 2012, 11, 40–45.37. Müller, A. Gips im Griff. Miner. Process. 2010, 51, 34–43.38. Müller, A. Gips reduziert. Miner. Process. 2010, 51, 54–69.39. Woollacott, L. The impact of size segregation on packing density in jig beds: An X-ray tomographic study. Miner. Eng. 2019, 131, 98–110. [CrossRef]40. Waskow, R.P.; Dos Santos, V.L.; Ambrós, W.M.; Sampaio, C.H.; Passuello, A.; Tubino, R.M. Optimization and dust emissions analysis of the air jigging technology applied to the recycling of construction and demolition waste. J. Environ. Manag. 2020, 266, 11. [CrossRef]41. Ambros, W.; Sampaio, C.H.; Cazacliu, B.G.; Conceiçao, P.; Reis, G.S.d. Some observations on the influence of particle size and size distribution on stratification in pneumatic jigs. Powder Technol. 2019, 342, 594–606. [CrossRef]42. Favaretto, P.; Hidalgo, G.; Sampaio, C.; Silva, R.; Lermen, R. Characterization and Use of Construction and Demolition Waste from South of Brazil in the Production of Foamed Concrete Blocks. Appl. Sci. 2017, 7, 1090. [CrossRef]43. Hu, K.; Chen, Y.; Naz, F.; Zeng, C.; Cao, S. Separation studies of concrete and brick from construction and demolition waste. Waste Manag. 2019, 85, 396–404. [CrossRef]44. Tabelin, C.B.; Park, I.; Phengsaart, T.; Jeon, S.; Villacorte-Tabelin, M.; Alonzo, D.; Yoo, K.; Ito, M.; Hiroyoshi, N. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 2021, 170, 105610. [CrossRef]45. Jeon, S.; Ito, M.; Tabelin, C.B.; Pongsumrankul, R.; Tanaka, S.; Kitajima, N.; Saito, A.; Park, I.; Hiroyoshi, N. A physical separation scheme to improve ammonium thiosulfate leaching of gold by separation of base metals in crushed mobile phones. Miner. Eng. 2019, 138, 168–177. [CrossRef]46. Phengsaart, T.; Ito, M.; Hamaya, N.; Tabelin, C.B.; Hiroyoshi, N. Improvement of jig efficiency by shape separation, and a novel method to estimate the separation efficiency of metal wires in crushed electronic wastes using bending behavior and entanglement factor. Miner. Eng. 2018, 129, 54–62. [CrossRef]47. Jeon, S.; Ito, M.; Tabelin, C.B.; Pongsumrankul, R.; Kitajima, N.; Park, I.; Hiroyoshi, N. Gold recovery from shredder light fraction of E-waste recycling plant by flotation-ammonium thiosulfate leaching. Waste Manag. 2018, 77, 195–202. [CrossRef] [PubMed]48. Phengsaart, T.; Ito, M.; Kimura, S.; Azuma, A.; Hori, K.; Tanno, H.; Jeon, S.; Park, I.; Tabelin, C.B.; Hiroyoshi, N. Development of a restraining wall and screw-extractor discharge system for continuous jig separation of mixed plastics. Miner. Eng. 2021, 168, 106918. [CrossRef]49. Ito, M.; Saito, A.; Murase, N.; Phengsaart, T.; Kimura, S.; Kitajima, N.; Takeuchi, M.; Tabelin, C.B.; Hiroyoshi, N. Estimation of hybrid jig separation efficiency using a modified concentration criterion based on apparent densities of plastic particles with attached bubbles. J. Mater. Cycles Waste Manag. 2020, 22, 2071–2080. [CrossRef]50. Veras, M.; Young, A.; Sampaio, C.H.; Petter, C. A mining breakthrough; Preconcentration by sensor-based sorting. Min. Eng. 2016, 68, 38–42.51. Veras, M.M.; Young, A.S.; Born, C.R.; Szewczuk, A.; Neto, A.C.B.; Petter, C.O.; Sampaio, C.H. Affinity of dual energy X-ray transmission sensors on minerals bearing heavy rare earth elements. Miner. Eng. 2020, 147, 106151. [CrossRef]52. Neubert, K.; Wotruba, H. Investigations on the detectability of rare-earth minerals using dual-energy X-ray transmission sorting. J. Sustain. Metall. 2017, 3, 3–12. [CrossRef]53. Robben, C.; Wotruba, W. Sensor-Based Ore Sorting Technology in Mining—Past, Present and Future. Minerals 2019, 9, 523. [CrossRef]54. Vegas, I.; Broos, K.; Nielsen, P.; Lambertz, O.; Lisbona, A. Upgrading the quality of mixed recycled aggregates from construction and demolition waste by using near-infrared sorting technology. Constr. Build. Mater. 2015, 75, 121–128. [CrossRef]55. Lessard, J.; Sweetser, W.; Bartram, K.; Figuero, J.; McHugh, L. Bridging the gap: Understanding the economic impact of ore sorting on a mineral processing circuit. Miner. Eng. 2016, 91, 92–99. [CrossRef]56. Knapp, H.; Neubert, K.; Schropp, C.; Wotruba, H. Viable Applications of Sensor-Based Sorting for the Processing of Mineral Resources. ChemBioEng Rev. 2014, 1, 86–95. [CrossRef]57. Maier, G.; Pfaff, F.; Pieper, C.; Gruna, R.; Noack, B.; Kruggel-Emden, H.; Längle, T.; Hanebeck, U.D.; Wirtz, S.; Scherer, V.; et al. Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking. IEEE Trans. Ind. Electron. 2021, 68, 1548–1559. [CrossRef]58. Lyman, G.J. Review of jigging principles and control. Coal Prep. 1992, 11, 145–165. [CrossRef]59. Agricola, G. De Re Metallica; Hoover, H.C., Hoover, L.H., Eds.; Dover Publications: Mineola, NY, USA, 1950; p. 1556.60. Mayer, F. Fundamentals of Potential Theory of the Jigging Process. In Proceedings of the 7th International Mineral Processing Congress, New York, NY, USA, 1964; pp. 75–86.61. Mayer, F.W. Neue Erkenntnisse über den Setzvorgang auf Grung der Potential-Theorie. Glückauf 1960, 96, 1297–1301.62. Sampaio, C.H.; Tavares, L.M.M. Beneficiamento Gravimétrico: Uma Introdução aos Processos de Concentração Mineral e Reciclagem de Materiais por Densidade; UFRGS: Porto Alegre, Brazil, 2005.63. Dalm, M.; Buxton, M.W.N.; van Ruitenbeek, F.J.A.; Voncken, J.H.L. Application of near-infrared spectroscopy to sensor based sorting of a porphyry copper ore. Miner. Eng. 2014, 58, 7–16. [CrossRef]64. Robben, C.; de Korte, J.; Wotruba, H.; Robben, M. Experiences in Dry Coarse Coal Separation Using X-Ray-Transmission-Based Sorting. Int. J. Coal Prep. Util. 2014, 34, 210–219. [CrossRef]65. Cutmore, N.; Eberhardt, J. The Future of Ore Sorting in Mineral Processing. In Proceedings of the International Conference on the Sustainable Processing of Minerals, Cairns, Australia, 29–31 May 2002; pp. 287–289.66. Berwanger, M.; Gaastra, M. Technical and physical principles of sensor technologies applied in the raw materials industry. In Sensor Technologies: Impulses for the Raw Materials Industry; RWTH: Aachen, Germany, 2014.67. Wotruba, H.; Knapp, H.; Neubert, K.; Schropp, C. Anwendung der sensorgestützten Sortierung für die Aufbereitung mineralischer Rohstoffe. Chemie Inginieur Technik 2014, 86, 773–783. [CrossRef]68. Paranhos, R.S.; Cazacliu, B.G.; Sampaio, C.H.; Petter, C.O.; Neto, R.O.; Huchet, F. A sorting method to value recycled concrete. J. Clean. Prod. 2016, 112, 2249–2258. [CrossRef]69. Ambrós, W.M. Jigging: A Review of Fundamentals and Future Directions. Minerals 2020, 10, 998. [CrossRef]70. Sampaio, C.H.; Cazacliu, B.G.; Ambrós, W.M.; Kronbauer, M.A.; Tubino, R.M.; Molin, D.C.D.; Oliva, J.; Miltzarek, G.L.; Waskow, R.P.; Santos, V.L.D. Demolished concretes recycling by the use of pneumatic jigs. Waste Manag. Res. 2020, 1, 0734242X2090283.PublicationORIGINALConstruction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting. a comparison.pdfConstruction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting. a comparison.pdfapplication/pdf2028731https://repositorio.cuc.edu.co/bitstreams/ae9bfc8f-7882-45c6-a7c0-a8632ea51ffc/download793487f3180ceaa8b6b16ad6c997629fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/d8e2bc8d-689d-483f-8bd3-e961b3fa4c96/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/56081aaf-3147-4f88-bf2b-6b50276aa4d5/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILConstruction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting. a comparison.pdf.jpgConstruction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting. a comparison.pdf.jpgimage/jpeg75692https://repositorio.cuc.edu.co/bitstreams/e30c21ea-465b-4eaf-9621-fd126fff4004/downloadedd96515a975aa2cf2d80869b7ae30bfMD54THUMBNAILConstruction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting. a comparison.pdf.jpgConstruction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting. a comparison.pdf.jpgimage/jpeg75692https://repositorio.cuc.edu.co/bitstreams/2b9fb2c7-aeb0-4525-a220-dae6a22c0aef/downloadedd96515a975aa2cf2d80869b7ae30bfMD54TEXTConstruction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting. a comparison.pdf.txtConstruction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting. a comparison.pdf.txttext/plain65708https://repositorio.cuc.edu.co/bitstreams/ee5c19db-a829-4c19-898e-6b17302ccb64/downloadd4c1cdc65b8d59723ac0e090451d6243MD5511323/8995oai:repositorio.cuc.edu.co:11323/89952024-09-17 14:16:27.673http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==