Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia

Maritime safety has become a relevant aspect in logistics processes using rivers. In Colombia, specifically in the Caribbean Region, there is the Magdalena River, a body of water that broadly borders the Colombian territory and is a tributary of various economic and public health activities. At its...

Full description

Autores:
Paola Patricia, Ariza-Colpas
Ayala-Mantilla, Cristian Eduardo
Piñeres-Melo, Marlon-Alberto
Villate-Daza, Diego
Morales-Ortega, Roberto Cesa
De-la-Hoz Franco, Emiro
Sanchez-Moreno, Hernando
Butt Aziz, Shariq
Collazos Morales, Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8806
Acceso en línea:
https://hdl.handle.net/11323/8806
https://doi.org/10.1007/978-3-030-84340-3_19
https://repositorio.cuc.edu.co/
Palabra clave:
IOT systems
Machine learning
Salt wedge
Aquifers
Magdalena river estuary
Multilayer Preceptron
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_2070d5f4dc889ddc537586d259df4374
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8806
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia
title Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia
spellingShingle Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia
IOT systems
Machine learning
Salt wedge
Aquifers
Magdalena river estuary
Multilayer Preceptron
title_short Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia
title_full Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia
title_fullStr Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia
title_full_unstemmed Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia
title_sort Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia
dc.creator.fl_str_mv Paola Patricia, Ariza-Colpas
Ayala-Mantilla, Cristian Eduardo
Piñeres-Melo, Marlon-Alberto
Villate-Daza, Diego
Morales-Ortega, Roberto Cesa
De-la-Hoz Franco, Emiro
Sanchez-Moreno, Hernando
Butt Aziz, Shariq
Collazos Morales, Carlos
dc.contributor.author.spa.fl_str_mv Paola Patricia, Ariza-Colpas
Ayala-Mantilla, Cristian Eduardo
Piñeres-Melo, Marlon-Alberto
Villate-Daza, Diego
Morales-Ortega, Roberto Cesa
De-la-Hoz Franco, Emiro
Sanchez-Moreno, Hernando
Butt Aziz, Shariq
Collazos Morales, Carlos
dc.subject.spa.fl_str_mv IOT systems
Machine learning
Salt wedge
Aquifers
Magdalena river estuary
Multilayer Preceptron
topic IOT systems
Machine learning
Salt wedge
Aquifers
Magdalena river estuary
Multilayer Preceptron
description Maritime safety has become a relevant aspect in logistics processes using rivers. In Colombia, specifically in the Caribbean Region, there is the Magdalena River, a body of water that broadly borders the Colombian territory and is a tributary of various economic and public health activities. At its mouth, this river interacts with the sea directly, which generates a phenomenon called saline wedge, which is directly related to the sediments that must be continuously extracted and which threatens the proper functioning of the port from the city of Barranquilla, Colombia. Through this research, a network of sensors located in strategic places at the mouth of this river was generated, which allows predicting the behavior of the salt wedge. Using artificial neural networks, more specifically, the Multilayer Perceptron algorithm, it was possible to analyze the results of the implementation in light of the indicators or quality metrics, generating a highly reliable scenario that can be replicated in other sections of the river and in other aquifers.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-26T19:45:50Z
dc.date.available.none.fl_str_mv 2021-10-26T19:45:50Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8806
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-3-030-84340-3_19
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/8806
https://doi.org/10.1007/978-3-030-84340-3_19
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Kellog, J.: Cenozoic tectonic history of the Sierra de Perijá, Venezuela-Colombia, and adjacent basins. Geol. Soc. Am. Mem. 162, 239–261 (1984)
Restrepo, J.D., Kjerfve, B.: Magdalena river: interannual variability (1975–1995) and revised water discharge and sediment load estimates. J. Hydrol. 235, 137–149 (2000)
Restrepo, J.D., Kjerfve, B.: The pacific and Caribbean rivers of Colombia: water discharge, sediment transport and dissolved loads. In: Lacerda, L., Santelli, R., Duursma, E., Abrao, J. (eds.) Environmental Geochemistry in Tropical and Subtropical Environments, pp. 169–187. Springer, Berlín (2004). https://doi.org/10.1007/978-3-662-07060-4_14
Restrepo, J.D.: Applicability of LOICZ catchment-coast continuum in a major Caribbean basin: the Magdalena River, Colombia. Estuar. Coast. Shelf Sci. 77, 214–229 (2008)
Restrepo, J.C., Otero, L., Lopez, S.: Clima de oleaje en el Pacifico sur de Colombia, delta del Río de Mira: Comparaciones Estadísticas y Aplicación a procesos Costeros. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 128(33), 339–357 (2009)
Bhattacharya, B., Price, R.K., Solomatine, D.P.: Machine learning approach to modeling sediment transport. J. Hydraul. Eng. 133(4), 440–450 (2007)
Fisher, L.H.: Sediment dynamics in the Magdalena river basin, Colombia: implications for understanding tropical river processes and hydropower development (2020)
Alizamir, M., et al.: Advanced machine learning model for better prediction accuracy of soil temperature at different depths. PLoS ONE 15(4), e0231055 (2020)
Li, Y., Wang, X., Zhao, Z., Han, S., Liu, Z.: Lagoon water quality monitoring based on digital image analysis and machine learning estimators. Water Res. 172, 115471 (2020)
Alfonso, L., Tefferi, M.: Effects of uncertain control in transport of water in a river-wetland system of the Low Magdalena River, Colombia. In: Ocampo-Martinez, C., Negenborn, R.R. (eds.) Transport of water versus transport over water, pp. 131–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16133-4_8
Ren, J., et al.: Multi-objective optimization of wave break forest design through machine learning. J. Hydroinf. 21(2), 295–307 (2019)
Anfuso, G., Rangel-Buitrago, N., Arango, I.D.C.: Evolution of sandspits along the Caribbean coast of Colombia: natural and human influences. In: Randazzo, G., Jackson, D.W.T., Andrew, J., Cooper, G. (eds.) Sand and Gravel Spits, pp. 1–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13716-2_1
Phillips, A.: Modelling riverine dissolved silica on different spatial and ttemporal scales using statistical and machine learning methods. Doctoral dissertation (2020)
Adab, H., Morbidelli, R., Saltalippi, C., Moradian, M., Ghalhari, G.A.F.: Machine learning to estimate surface soil moisture from remote sensing data. Water 12(11), 3223 (2020)
Björk, K.-M., Eirola, E., Miche, Y., Lendasse, A.: A new application of machine learning in health care, pp. 1–4 (2016). https://doi.org/10.1145/2910674.2935861
Ariza Colpas, P., Vicario, E., De-La-Hoz-Franco, E., Pineres-Melo, M., Oviedo-Carrascal, A., Patara, F.: Unsupervised human activity recognition using the clustering approach: a review. Sensors 20(9), 2702 (2020)
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
Amiribesheli, M., Benmansour, A., Bouchachia, A.: A review of smart homes in healthcare. J. Ambient. Intell. Humaniz. Comput. 6(4), 495–517 (2015). https://doi.org/10.1007/s12652-015-0270-2
Fleury, A., Vacher, M., Noury, N.: SVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE Trans. Inf Technol. Biomed. 14(2), 274–283 (2010). https://doi.org/10.1109/TITB.2009.203731
McCallum, A., Nigam, K.: A comparison of event models for Naive Bayes text classification. In: AAAI-98 Workshop on Learning for Text Categorization, vol. 752, no. 1, pp. 41–48, July 1998
Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755–763 (1998). https://academic.oup.com/bioinformatics/article-abstract/14/9/755/259550. Envejecimiento y salud (5 February 2018). https://www.who.int/es/news-room/fact-sheets/detail/envejecimiento-y-salud
Murata, N., Yoshizawa, S., Amari, S.: Network information criterion-determining the number of hidden units for an artificial neural network model. IEEE Trans. Neural Networks 5(6), 865–872 (1994). https://doi.org/10.1109/72.329683
Du, W.S., Hu, B.Q.: Approximate distribution reducts in inconsistent interval-valued ordered decision tables. Inf. Sci. 271, 93–114 (2014). https://doi.org/10.1016/j.ins.2014.02.070
Chen, W., et al.: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 151, 147–160 (2017). https://doi.org/10.1016/j.catena.2016.11.032
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.source.spa.fl_str_mv Computer Information Systems and Industrial Management
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-030-84340-3_19
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/8806/1/Multilayer%20Perceptron%20Applied%20to%20the%20IOT%20Systems%20for%20Identification%20of%20Saline%20Wedge%20in%20the%20Magdalena%20Estuary.pdf
https://repositorio.cuc.edu.co/bitstream/11323/8806/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/8806/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/8806/4/Multilayer%20Perceptron%20Applied%20to%20the%20IOT%20Systems%20for%20Identification%20of%20Saline%20Wedge%20in%20the%20Magdalena%20Estuary.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/8806/5/Multilayer%20Perceptron%20Applied%20to%20the%20IOT%20Systems%20for%20Identification%20of%20Saline%20Wedge%20in%20the%20Magdalena%20Estuary.pdf.txt
bitstream.checksum.fl_str_mv 8ea0a45c757505a5468188e4aa761ece
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
b7be19b46d3dd0a553a9d82d8bb066d2
330076158816d7e0be6900698251ba66
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400017712480256
spelling Paola Patricia, Ariza-Colpasa7593362a774733952c2510ae7b77a9eAyala-Mantilla, Cristian Eduardo9381aab7cc8e553c6d8c049992054c0dPiñeres-Melo, Marlon-Alberto0febd5074ccb5b49f377823656890b98Villate-Daza, Diegoc76b3a355bfdc5f676af50b2c9598c5aMorales-Ortega, Roberto Cesaee64fb9d402e9e4a63a8dfcd89594805De-la-Hoz Franco, Emiro75431518e27dd26782033b46cdbe9890Sanchez-Moreno, Hernando6b022aa066c93c544e1c935fc1e91f30Butt Aziz, Shariq1a48cf644150ce84b766d508c57411d8Collazos Morales, Carlos6e0f738bb70df186b6e9c7414fbb526c2021-10-26T19:45:50Z2021-10-26T19:45:50Z2021https://hdl.handle.net/11323/8806https://doi.org/10.1007/978-3-030-84340-3_19Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Maritime safety has become a relevant aspect in logistics processes using rivers. In Colombia, specifically in the Caribbean Region, there is the Magdalena River, a body of water that broadly borders the Colombian territory and is a tributary of various economic and public health activities. At its mouth, this river interacts with the sea directly, which generates a phenomenon called saline wedge, which is directly related to the sediments that must be continuously extracted and which threatens the proper functioning of the port from the city of Barranquilla, Colombia. Through this research, a network of sensors located in strategic places at the mouth of this river was generated, which allows predicting the behavior of the salt wedge. Using artificial neural networks, more specifically, the Multilayer Perceptron algorithm, it was possible to analyze the results of the implementation in light of the indicators or quality metrics, generating a highly reliable scenario that can be replicated in other sections of the river and in other aquifers.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Computer Information Systems and Industrial Managementhttps://link.springer.com/chapter/10.1007/978-3-030-84340-3_19IOT systemsMachine learningSalt wedgeAquifersMagdalena river estuaryMultilayer PreceptronMultilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionKellog, J.: Cenozoic tectonic history of the Sierra de Perijá, Venezuela-Colombia, and adjacent basins. Geol. Soc. Am. Mem. 162, 239–261 (1984)Restrepo, J.D., Kjerfve, B.: Magdalena river: interannual variability (1975–1995) and revised water discharge and sediment load estimates. J. Hydrol. 235, 137–149 (2000)Restrepo, J.D., Kjerfve, B.: The pacific and Caribbean rivers of Colombia: water discharge, sediment transport and dissolved loads. In: Lacerda, L., Santelli, R., Duursma, E., Abrao, J. (eds.) Environmental Geochemistry in Tropical and Subtropical Environments, pp. 169–187. Springer, Berlín (2004). https://doi.org/10.1007/978-3-662-07060-4_14Restrepo, J.D.: Applicability of LOICZ catchment-coast continuum in a major Caribbean basin: the Magdalena River, Colombia. Estuar. Coast. Shelf Sci. 77, 214–229 (2008)Restrepo, J.C., Otero, L., Lopez, S.: Clima de oleaje en el Pacifico sur de Colombia, delta del Río de Mira: Comparaciones Estadísticas y Aplicación a procesos Costeros. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 128(33), 339–357 (2009)Bhattacharya, B., Price, R.K., Solomatine, D.P.: Machine learning approach to modeling sediment transport. J. Hydraul. Eng. 133(4), 440–450 (2007)Fisher, L.H.: Sediment dynamics in the Magdalena river basin, Colombia: implications for understanding tropical river processes and hydropower development (2020)Alizamir, M., et al.: Advanced machine learning model for better prediction accuracy of soil temperature at different depths. PLoS ONE 15(4), e0231055 (2020)Li, Y., Wang, X., Zhao, Z., Han, S., Liu, Z.: Lagoon water quality monitoring based on digital image analysis and machine learning estimators. Water Res. 172, 115471 (2020)Alfonso, L., Tefferi, M.: Effects of uncertain control in transport of water in a river-wetland system of the Low Magdalena River, Colombia. In: Ocampo-Martinez, C., Negenborn, R.R. (eds.) Transport of water versus transport over water, pp. 131–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16133-4_8Ren, J., et al.: Multi-objective optimization of wave break forest design through machine learning. J. Hydroinf. 21(2), 295–307 (2019)Anfuso, G., Rangel-Buitrago, N., Arango, I.D.C.: Evolution of sandspits along the Caribbean coast of Colombia: natural and human influences. In: Randazzo, G., Jackson, D.W.T., Andrew, J., Cooper, G. (eds.) Sand and Gravel Spits, pp. 1–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13716-2_1Phillips, A.: Modelling riverine dissolved silica on different spatial and ttemporal scales using statistical and machine learning methods. Doctoral dissertation (2020)Adab, H., Morbidelli, R., Saltalippi, C., Moradian, M., Ghalhari, G.A.F.: Machine learning to estimate surface soil moisture from remote sensing data. Water 12(11), 3223 (2020)Björk, K.-M., Eirola, E., Miche, Y., Lendasse, A.: A new application of machine learning in health care, pp. 1–4 (2016). https://doi.org/10.1145/2910674.2935861Ariza Colpas, P., Vicario, E., De-La-Hoz-Franco, E., Pineres-Melo, M., Oviedo-Carrascal, A., Patara, F.: Unsupervised human activity recognition using the clustering approach: a review. Sensors 20(9), 2702 (2020)Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)Amiribesheli, M., Benmansour, A., Bouchachia, A.: A review of smart homes in healthcare. J. Ambient. Intell. Humaniz. Comput. 6(4), 495–517 (2015). https://doi.org/10.1007/s12652-015-0270-2Fleury, A., Vacher, M., Noury, N.: SVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE Trans. Inf Technol. Biomed. 14(2), 274–283 (2010). https://doi.org/10.1109/TITB.2009.203731McCallum, A., Nigam, K.: A comparison of event models for Naive Bayes text classification. In: AAAI-98 Workshop on Learning for Text Categorization, vol. 752, no. 1, pp. 41–48, July 1998Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755–763 (1998). https://academic.oup.com/bioinformatics/article-abstract/14/9/755/259550. Envejecimiento y salud (5 February 2018). https://www.who.int/es/news-room/fact-sheets/detail/envejecimiento-y-saludMurata, N., Yoshizawa, S., Amari, S.: Network information criterion-determining the number of hidden units for an artificial neural network model. IEEE Trans. Neural Networks 5(6), 865–872 (1994). https://doi.org/10.1109/72.329683Du, W.S., Hu, B.Q.: Approximate distribution reducts in inconsistent interval-valued ordered decision tables. Inf. Sci. 271, 93–114 (2014). https://doi.org/10.1016/j.ins.2014.02.070Chen, W., et al.: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 151, 147–160 (2017). https://doi.org/10.1016/j.catena.2016.11.032ORIGINALMultilayer Perceptron Applied to the IOT Systems for Identification of Saline Wedge in the Magdalena Estuary.pdfMultilayer Perceptron Applied to the IOT Systems for Identification of Saline Wedge in the Magdalena Estuary.pdfapplication/pdf90238https://repositorio.cuc.edu.co/bitstream/11323/8806/1/Multilayer%20Perceptron%20Applied%20to%20the%20IOT%20Systems%20for%20Identification%20of%20Saline%20Wedge%20in%20the%20Magdalena%20Estuary.pdf8ea0a45c757505a5468188e4aa761eceMD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstream/11323/8806/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/8806/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILMultilayer Perceptron Applied to the IOT Systems for Identification of Saline Wedge in the Magdalena Estuary.pdf.jpgMultilayer Perceptron Applied to the IOT Systems for Identification of Saline Wedge in the Magdalena Estuary.pdf.jpgimage/jpeg45602https://repositorio.cuc.edu.co/bitstream/11323/8806/4/Multilayer%20Perceptron%20Applied%20to%20the%20IOT%20Systems%20for%20Identification%20of%20Saline%20Wedge%20in%20the%20Magdalena%20Estuary.pdf.jpgb7be19b46d3dd0a553a9d82d8bb066d2MD54open accessTEXTMultilayer Perceptron Applied to the IOT Systems for Identification of Saline Wedge in the Magdalena Estuary.pdf.txtMultilayer Perceptron Applied to the IOT Systems for Identification of Saline Wedge in the Magdalena Estuary.pdf.txttext/plain1567https://repositorio.cuc.edu.co/bitstream/11323/8806/5/Multilayer%20Perceptron%20Applied%20to%20the%20IOT%20Systems%20for%20Identification%20of%20Saline%20Wedge%20in%20the%20Magdalena%20Estuary.pdf.txt330076158816d7e0be6900698251ba66MD55open access11323/8806oai:repositorio.cuc.edu.co:11323/88062023-12-14 11:36:44.375Attribution-NonCommercial-NoDerivatives 4.0 International|||http://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==