Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia
Maritime safety has become a relevant aspect in logistics processes using rivers. In Colombia, specifically in the Caribbean Region, there is the Magdalena River, a body of water that broadly borders the Colombian territory and is a tributary of various economic and public health activities. At its...
- Autores:
-
Paola Patricia, Ariza-Colpas
Ayala-Mantilla, Cristian Eduardo
Piñeres-Melo, Marlon-Alberto
Villate-Daza, Diego
Morales-Ortega, Roberto Cesa
De-la-Hoz Franco, Emiro
Sanchez-Moreno, Hernando
Butt Aziz, Shariq
Collazos Morales, Carlos
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8806
- Acceso en línea:
- https://hdl.handle.net/11323/8806
https://doi.org/10.1007/978-3-030-84340-3_19
https://repositorio.cuc.edu.co/
- Palabra clave:
- IOT systems
Machine learning
Salt wedge
Aquifers
Magdalena river estuary
Multilayer Preceptron
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_2070d5f4dc889ddc537586d259df4374 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8806 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia |
title |
Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia |
spellingShingle |
Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia IOT systems Machine learning Salt wedge Aquifers Magdalena river estuary Multilayer Preceptron |
title_short |
Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia |
title_full |
Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia |
title_fullStr |
Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia |
title_full_unstemmed |
Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia |
title_sort |
Multilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - Colombia |
dc.creator.fl_str_mv |
Paola Patricia, Ariza-Colpas Ayala-Mantilla, Cristian Eduardo Piñeres-Melo, Marlon-Alberto Villate-Daza, Diego Morales-Ortega, Roberto Cesa De-la-Hoz Franco, Emiro Sanchez-Moreno, Hernando Butt Aziz, Shariq Collazos Morales, Carlos |
dc.contributor.author.spa.fl_str_mv |
Paola Patricia, Ariza-Colpas Ayala-Mantilla, Cristian Eduardo Piñeres-Melo, Marlon-Alberto Villate-Daza, Diego Morales-Ortega, Roberto Cesa De-la-Hoz Franco, Emiro Sanchez-Moreno, Hernando Butt Aziz, Shariq Collazos Morales, Carlos |
dc.subject.spa.fl_str_mv |
IOT systems Machine learning Salt wedge Aquifers Magdalena river estuary Multilayer Preceptron |
topic |
IOT systems Machine learning Salt wedge Aquifers Magdalena river estuary Multilayer Preceptron |
description |
Maritime safety has become a relevant aspect in logistics processes using rivers. In Colombia, specifically in the Caribbean Region, there is the Magdalena River, a body of water that broadly borders the Colombian territory and is a tributary of various economic and public health activities. At its mouth, this river interacts with the sea directly, which generates a phenomenon called saline wedge, which is directly related to the sediments that must be continuously extracted and which threatens the proper functioning of the port from the city of Barranquilla, Colombia. Through this research, a network of sensors located in strategic places at the mouth of this river was generated, which allows predicting the behavior of the salt wedge. Using artificial neural networks, more specifically, the Multilayer Perceptron algorithm, it was possible to analyze the results of the implementation in light of the indicators or quality metrics, generating a highly reliable scenario that can be replicated in other sections of the river and in other aquifers. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-26T19:45:50Z |
dc.date.available.none.fl_str_mv |
2021-10-26T19:45:50Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8806 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/978-3-030-84340-3_19 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/8806 https://doi.org/10.1007/978-3-030-84340-3_19 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Kellog, J.: Cenozoic tectonic history of the Sierra de Perijá, Venezuela-Colombia, and adjacent basins. Geol. Soc. Am. Mem. 162, 239–261 (1984) Restrepo, J.D., Kjerfve, B.: Magdalena river: interannual variability (1975–1995) and revised water discharge and sediment load estimates. J. Hydrol. 235, 137–149 (2000) Restrepo, J.D., Kjerfve, B.: The pacific and Caribbean rivers of Colombia: water discharge, sediment transport and dissolved loads. In: Lacerda, L., Santelli, R., Duursma, E., Abrao, J. (eds.) Environmental Geochemistry in Tropical and Subtropical Environments, pp. 169–187. Springer, Berlín (2004). https://doi.org/10.1007/978-3-662-07060-4_14 Restrepo, J.D.: Applicability of LOICZ catchment-coast continuum in a major Caribbean basin: the Magdalena River, Colombia. Estuar. Coast. Shelf Sci. 77, 214–229 (2008) Restrepo, J.C., Otero, L., Lopez, S.: Clima de oleaje en el Pacifico sur de Colombia, delta del Río de Mira: Comparaciones Estadísticas y Aplicación a procesos Costeros. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 128(33), 339–357 (2009) Bhattacharya, B., Price, R.K., Solomatine, D.P.: Machine learning approach to modeling sediment transport. J. Hydraul. Eng. 133(4), 440–450 (2007) Fisher, L.H.: Sediment dynamics in the Magdalena river basin, Colombia: implications for understanding tropical river processes and hydropower development (2020) Alizamir, M., et al.: Advanced machine learning model for better prediction accuracy of soil temperature at different depths. PLoS ONE 15(4), e0231055 (2020) Li, Y., Wang, X., Zhao, Z., Han, S., Liu, Z.: Lagoon water quality monitoring based on digital image analysis and machine learning estimators. Water Res. 172, 115471 (2020) Alfonso, L., Tefferi, M.: Effects of uncertain control in transport of water in a river-wetland system of the Low Magdalena River, Colombia. In: Ocampo-Martinez, C., Negenborn, R.R. (eds.) Transport of water versus transport over water, pp. 131–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16133-4_8 Ren, J., et al.: Multi-objective optimization of wave break forest design through machine learning. J. Hydroinf. 21(2), 295–307 (2019) Anfuso, G., Rangel-Buitrago, N., Arango, I.D.C.: Evolution of sandspits along the Caribbean coast of Colombia: natural and human influences. In: Randazzo, G., Jackson, D.W.T., Andrew, J., Cooper, G. (eds.) Sand and Gravel Spits, pp. 1–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13716-2_1 Phillips, A.: Modelling riverine dissolved silica on different spatial and ttemporal scales using statistical and machine learning methods. Doctoral dissertation (2020) Adab, H., Morbidelli, R., Saltalippi, C., Moradian, M., Ghalhari, G.A.F.: Machine learning to estimate surface soil moisture from remote sensing data. Water 12(11), 3223 (2020) Björk, K.-M., Eirola, E., Miche, Y., Lendasse, A.: A new application of machine learning in health care, pp. 1–4 (2016). https://doi.org/10.1145/2910674.2935861 Ariza Colpas, P., Vicario, E., De-La-Hoz-Franco, E., Pineres-Melo, M., Oviedo-Carrascal, A., Patara, F.: Unsupervised human activity recognition using the clustering approach: a review. Sensors 20(9), 2702 (2020) Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015) Amiribesheli, M., Benmansour, A., Bouchachia, A.: A review of smart homes in healthcare. J. Ambient. Intell. Humaniz. Comput. 6(4), 495–517 (2015). https://doi.org/10.1007/s12652-015-0270-2 Fleury, A., Vacher, M., Noury, N.: SVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE Trans. Inf Technol. Biomed. 14(2), 274–283 (2010). https://doi.org/10.1109/TITB.2009.203731 McCallum, A., Nigam, K.: A comparison of event models for Naive Bayes text classification. In: AAAI-98 Workshop on Learning for Text Categorization, vol. 752, no. 1, pp. 41–48, July 1998 Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755–763 (1998). https://academic.oup.com/bioinformatics/article-abstract/14/9/755/259550. Envejecimiento y salud (5 February 2018). https://www.who.int/es/news-room/fact-sheets/detail/envejecimiento-y-salud Murata, N., Yoshizawa, S., Amari, S.: Network information criterion-determining the number of hidden units for an artificial neural network model. IEEE Trans. Neural Networks 5(6), 865–872 (1994). https://doi.org/10.1109/72.329683 Du, W.S., Hu, B.Q.: Approximate distribution reducts in inconsistent interval-valued ordered decision tables. Inf. Sci. 271, 93–114 (2014). https://doi.org/10.1016/j.ins.2014.02.070 Chen, W., et al.: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 151, 147–160 (2017). https://doi.org/10.1016/j.catena.2016.11.032 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.source.spa.fl_str_mv |
Computer Information Systems and Industrial Management |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-3-030-84340-3_19 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/89750cf1-e61d-4253-a717-b88448da2eb4/download https://repositorio.cuc.edu.co/bitstreams/e4a6495c-12dd-4bc0-b68b-f31ffdde5713/download https://repositorio.cuc.edu.co/bitstreams/eaff70a4-fd96-4288-8bc7-2c92959f103b/download https://repositorio.cuc.edu.co/bitstreams/13ec86cc-0e49-46c4-a6de-4289e1bc91a0/download https://repositorio.cuc.edu.co/bitstreams/d3de2c76-9269-41f2-b694-083c93550730/download |
bitstream.checksum.fl_str_mv |
8ea0a45c757505a5468188e4aa761ece 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad b7be19b46d3dd0a553a9d82d8bb066d2 330076158816d7e0be6900698251ba66 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760672667598848 |
spelling |
Paola Patricia, Ariza-ColpasAyala-Mantilla, Cristian EduardoPiñeres-Melo, Marlon-AlbertoVillate-Daza, DiegoMorales-Ortega, Roberto CesaDe-la-Hoz Franco, EmiroSanchez-Moreno, HernandoButt Aziz, ShariqCollazos Morales, Carlos2021-10-26T19:45:50Z2021-10-26T19:45:50Z2021https://hdl.handle.net/11323/8806https://doi.org/10.1007/978-3-030-84340-3_19Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Maritime safety has become a relevant aspect in logistics processes using rivers. In Colombia, specifically in the Caribbean Region, there is the Magdalena River, a body of water that broadly borders the Colombian territory and is a tributary of various economic and public health activities. At its mouth, this river interacts with the sea directly, which generates a phenomenon called saline wedge, which is directly related to the sediments that must be continuously extracted and which threatens the proper functioning of the port from the city of Barranquilla, Colombia. Through this research, a network of sensors located in strategic places at the mouth of this river was generated, which allows predicting the behavior of the salt wedge. Using artificial neural networks, more specifically, the Multilayer Perceptron algorithm, it was possible to analyze the results of the implementation in light of the indicators or quality metrics, generating a highly reliable scenario that can be replicated in other sections of the river and in other aquifers.Paola Patricia, Ariza-ColpasAyala-Mantilla, Cristian EduardoPiñeres-Melo, Marlon-AlbertoVillate-Daza, DiegoMorales-Ortega, Roberto CesaDe-la-Hoz Franco, EmiroSanchez-Moreno, HernandoButt Aziz, ShariqCollazos Morales, Carlosapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Computer Information Systems and Industrial Managementhttps://link.springer.com/chapter/10.1007/978-3-030-84340-3_19IOT systemsMachine learningSalt wedgeAquifersMagdalena river estuaryMultilayer PreceptronMultilayer Perceptron applied to the IOT systems for identification of saline wedge in the Magdalena estuary - ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionKellog, J.: Cenozoic tectonic history of the Sierra de Perijá, Venezuela-Colombia, and adjacent basins. Geol. Soc. Am. Mem. 162, 239–261 (1984)Restrepo, J.D., Kjerfve, B.: Magdalena river: interannual variability (1975–1995) and revised water discharge and sediment load estimates. J. Hydrol. 235, 137–149 (2000)Restrepo, J.D., Kjerfve, B.: The pacific and Caribbean rivers of Colombia: water discharge, sediment transport and dissolved loads. In: Lacerda, L., Santelli, R., Duursma, E., Abrao, J. (eds.) Environmental Geochemistry in Tropical and Subtropical Environments, pp. 169–187. Springer, Berlín (2004). https://doi.org/10.1007/978-3-662-07060-4_14Restrepo, J.D.: Applicability of LOICZ catchment-coast continuum in a major Caribbean basin: the Magdalena River, Colombia. Estuar. Coast. Shelf Sci. 77, 214–229 (2008)Restrepo, J.C., Otero, L., Lopez, S.: Clima de oleaje en el Pacifico sur de Colombia, delta del Río de Mira: Comparaciones Estadísticas y Aplicación a procesos Costeros. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 128(33), 339–357 (2009)Bhattacharya, B., Price, R.K., Solomatine, D.P.: Machine learning approach to modeling sediment transport. J. Hydraul. Eng. 133(4), 440–450 (2007)Fisher, L.H.: Sediment dynamics in the Magdalena river basin, Colombia: implications for understanding tropical river processes and hydropower development (2020)Alizamir, M., et al.: Advanced machine learning model for better prediction accuracy of soil temperature at different depths. PLoS ONE 15(4), e0231055 (2020)Li, Y., Wang, X., Zhao, Z., Han, S., Liu, Z.: Lagoon water quality monitoring based on digital image analysis and machine learning estimators. Water Res. 172, 115471 (2020)Alfonso, L., Tefferi, M.: Effects of uncertain control in transport of water in a river-wetland system of the Low Magdalena River, Colombia. In: Ocampo-Martinez, C., Negenborn, R.R. (eds.) Transport of water versus transport over water, pp. 131–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16133-4_8Ren, J., et al.: Multi-objective optimization of wave break forest design through machine learning. J. Hydroinf. 21(2), 295–307 (2019)Anfuso, G., Rangel-Buitrago, N., Arango, I.D.C.: Evolution of sandspits along the Caribbean coast of Colombia: natural and human influences. In: Randazzo, G., Jackson, D.W.T., Andrew, J., Cooper, G. (eds.) Sand and Gravel Spits, pp. 1–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13716-2_1Phillips, A.: Modelling riverine dissolved silica on different spatial and ttemporal scales using statistical and machine learning methods. Doctoral dissertation (2020)Adab, H., Morbidelli, R., Saltalippi, C., Moradian, M., Ghalhari, G.A.F.: Machine learning to estimate surface soil moisture from remote sensing data. Water 12(11), 3223 (2020)Björk, K.-M., Eirola, E., Miche, Y., Lendasse, A.: A new application of machine learning in health care, pp. 1–4 (2016). https://doi.org/10.1145/2910674.2935861Ariza Colpas, P., Vicario, E., De-La-Hoz-Franco, E., Pineres-Melo, M., Oviedo-Carrascal, A., Patara, F.: Unsupervised human activity recognition using the clustering approach: a review. Sensors 20(9), 2702 (2020)Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)Amiribesheli, M., Benmansour, A., Bouchachia, A.: A review of smart homes in healthcare. J. Ambient. Intell. Humaniz. Comput. 6(4), 495–517 (2015). https://doi.org/10.1007/s12652-015-0270-2Fleury, A., Vacher, M., Noury, N.: SVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE Trans. Inf Technol. Biomed. 14(2), 274–283 (2010). https://doi.org/10.1109/TITB.2009.203731McCallum, A., Nigam, K.: A comparison of event models for Naive Bayes text classification. In: AAAI-98 Workshop on Learning for Text Categorization, vol. 752, no. 1, pp. 41–48, July 1998Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755–763 (1998). https://academic.oup.com/bioinformatics/article-abstract/14/9/755/259550. Envejecimiento y salud (5 February 2018). https://www.who.int/es/news-room/fact-sheets/detail/envejecimiento-y-saludMurata, N., Yoshizawa, S., Amari, S.: Network information criterion-determining the number of hidden units for an artificial neural network model. IEEE Trans. Neural Networks 5(6), 865–872 (1994). https://doi.org/10.1109/72.329683Du, W.S., Hu, B.Q.: Approximate distribution reducts in inconsistent interval-valued ordered decision tables. Inf. Sci. 271, 93–114 (2014). https://doi.org/10.1016/j.ins.2014.02.070Chen, W., et al.: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 151, 147–160 (2017). https://doi.org/10.1016/j.catena.2016.11.032PublicationORIGINALMultilayer Perceptron Applied to the IOT Systems for Identification of Saline Wedge in the Magdalena Estuary.pdfMultilayer Perceptron Applied to the IOT Systems for Identification of Saline Wedge in the Magdalena Estuary.pdfapplication/pdf90238https://repositorio.cuc.edu.co/bitstreams/89750cf1-e61d-4253-a717-b88448da2eb4/download8ea0a45c757505a5468188e4aa761eceMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/e4a6495c-12dd-4bc0-b68b-f31ffdde5713/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/eaff70a4-fd96-4288-8bc7-2c92959f103b/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILMultilayer Perceptron Applied to the IOT Systems for Identification of Saline Wedge in the Magdalena Estuary.pdf.jpgMultilayer Perceptron Applied to the IOT Systems for Identification of Saline Wedge in the Magdalena Estuary.pdf.jpgimage/jpeg45602https://repositorio.cuc.edu.co/bitstreams/13ec86cc-0e49-46c4-a6de-4289e1bc91a0/downloadb7be19b46d3dd0a553a9d82d8bb066d2MD54TEXTMultilayer Perceptron Applied to the IOT Systems for Identification of Saline Wedge in the Magdalena Estuary.pdf.txtMultilayer Perceptron Applied to the IOT Systems for Identification of Saline Wedge in the Magdalena Estuary.pdf.txttext/plain1567https://repositorio.cuc.edu.co/bitstreams/d3de2c76-9269-41f2-b694-083c93550730/download330076158816d7e0be6900698251ba66MD5511323/8806oai:repositorio.cuc.edu.co:11323/88062024-09-16 16:42:32.19http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |