New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretations
The present work used a statistical physics approach to present new insights into the adsorption of the pesticide glyphosate on modified carbon nanotubes via green synthesis (MWCNT/MPNs-Fe). The experimental equilibrium curves obtained for this system under pH 4 at temperatures 298, 308, 318, and 32...
- Autores:
-
Diel, Júlia
DA BOIT MARTINELLO, KATIA
da Silveira, Christian L.
Pereira, Hércules A.
P. Franco, Dison S.
O. Silva, Luis F.
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9291
- Acceso en línea:
- https://hdl.handle.net/11323/9291
https://doi.org/10.1016/j.cej.2021.134095
https://repositorio.cuc.edu.co/
- Palabra clave:
- Glyphosate
Carbon nanotubes
Green synthesis
Adsorption isotherms
Statistical physics
Adsorption mechanism
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_1fe2734197cfae3ec6b836e3599bae32 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9291 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretations |
title |
New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretations |
spellingShingle |
New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretations Glyphosate Carbon nanotubes Green synthesis Adsorption isotherms Statistical physics Adsorption mechanism |
title_short |
New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretations |
title_full |
New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretations |
title_fullStr |
New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretations |
title_full_unstemmed |
New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretations |
title_sort |
New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretations |
dc.creator.fl_str_mv |
Diel, Júlia DA BOIT MARTINELLO, KATIA da Silveira, Christian L. Pereira, Hércules A. P. Franco, Dison S. O. Silva, Luis F. Dotto, Guilherme Luiz |
dc.contributor.author.spa.fl_str_mv |
Diel, Júlia DA BOIT MARTINELLO, KATIA da Silveira, Christian L. Pereira, Hércules A. P. Franco, Dison S. O. Silva, Luis F. Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Glyphosate Carbon nanotubes Green synthesis Adsorption isotherms Statistical physics Adsorption mechanism |
topic |
Glyphosate Carbon nanotubes Green synthesis Adsorption isotherms Statistical physics Adsorption mechanism |
description |
The present work used a statistical physics approach to present new insights into the adsorption of the pesticide glyphosate on modified carbon nanotubes via green synthesis (MWCNT/MPNs-Fe). The experimental equilibrium curves obtained for this system under pH 4 at temperatures 298, 308, 318, and 328 K were simulated from monolayer, double layer, and multilayer models, with 1 and 2 energies, considering real and ideal fluid approaches. Taking into account the statistical indicators and the physical meaning of the parameters, exploring simplifying hypotheses, the Hill model with 1 energy and ideal fluid approach (M1) presented the best prediction of the experimental data, indicating that glyphosate adsorption occurs by the formation of a monolayer and that pesticide interaction with MWCNT/MPNs-Fe are characterized by only one energy. Based on this approach, to assess the steric aspects of the system, the number of molecules adsorbed per site (n), the density of receptor sites (Nm), adsorption capacity at saturation (Qsat), and concentration at half-saturation (W) were interpreted. As for the energetic aspects, the adsorption energy (ΔE) was inferred. The combination of parameters to its evolution with temperature and the magnitude of ΔE indicated an exothermic process involving a physical interaction mechanism. Finally, the new insights showed that the MWCNT/MPNs-Fe adsorbent favored pesticide adsorption by interacting glyphosate molecules with the metallic iron nanoparticles present on the adsorbent surface. © 2021 Elsevier B.V. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12-08 |
dc.date.accessioned.none.fl_str_mv |
2022-06-23T14:07:14Z |
dc.date.available.none.fl_str_mv |
2022-06-23T14:07:14Z 2023-12-08 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Júlia C. Diel, Kátia da Boit Martinello, Christian L. da Silveira, Hércules A. Pereira, Dison S.P. Franco, Luis F.O. Silva, Guilherme L. Dotto, New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: Statistical physical modeling and steric and energetic interpretations, Chemical Engineering Journal, Volume 431, Part 2, 2022, 134095, ISSN 1385-8947,https://doi.org/10.1016/j.cej.2021.134095 (https://www.sciencedirect.com/science/article/pii/S1385894721056692) |
dc.identifier.issn.spa.fl_str_mv |
1385-8947 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9291 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.cej.2021.134095 |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.cej.2021.134095 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Júlia C. Diel, Kátia da Boit Martinello, Christian L. da Silveira, Hércules A. Pereira, Dison S.P. Franco, Luis F.O. Silva, Guilherme L. Dotto, New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: Statistical physical modeling and steric and energetic interpretations, Chemical Engineering Journal, Volume 431, Part 2, 2022, 134095, ISSN 1385-8947,https://doi.org/10.1016/j.cej.2021.134095 (https://www.sciencedirect.com/science/article/pii/S1385894721056692) 1385-8947 10.1016/j.cej.2021.134095 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9291 https://doi.org/10.1016/j.cej.2021.134095 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Chemical Engineering Journal |
dc.relation.references.spa.fl_str_mv |
[1] B. Fern´ andez-Reyes, K. Ortiz-Martínez, J.A. Lasalde-Ramírez, A.J. Hernandez- ´ Maldonado, Engineered adsorbents for the removal of contaminants of emerging concern from water, in: Contaminants of Emerging Concern in Water and Wastewater, Elsevier Inc., 2020, pp. 3–45, https://doi.org/10.1016/B978-0-12- 813561-7.00001-8. [2] J. Scaria, A. Gopinath, P.V. Nidheesh, A versatile strategy to eliminate emerging contaminants from the aqueous environment: Heterogeneous Fenton process, J. Clean. Prod. 278 (2021) 124014, https://doi.org/10.1016/j. jclepro.2020.124014. [3] World Health Organization (WHO), 1994. Environmental Health Criteria 159: Glyphosate [WWW Document]. [4] S. Fiorilli, L. Rivoira, G. Calì, M. Appendini, M. Concetta, M. Coïsson, B. Onida, Applied Surface Science Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water, Appl. Surf. Sci. 411 (2017) 457–465, https://doi.org/10.1016/j.apsusc.2017.03.206. [5] R. Mesnage, M.N. Antoniou, Facts and Fallacies in the Debate on Glyphosate Toxicity, Front. Public Heal. 5 (2017) 1–7, https://doi.org/10.3389/ fpubh.2017.00316. [6] Y. Yang, Q. Deng, W. Yan, C. Jing, Y. Zhang, Comparative study of glyphosate removal on goethite and magnetite: Adsorption and photo-degradation, Chem. Eng. J. 352 (2018) 581–589, https://doi.org/10.1016/j.cej.2018.07.058. [7] N.U. Yamaguchi, R. Bergamasco, S. Hamoudi, Magnetic MnFe2O4–graphene hybrid composite for efficient removal of glyphosate from water, Chem. Eng. J. 295 (2016) 391–402, https://doi.org/10.1016/j.cej.2016.03.051. [8] Z. Liu, M. Zhu, P. Yu, Y. Xu, X. Zhao, Pretreatment of membrane separation of glyphosate mother liquor using a precipitation method, Desalination 313 (2013) 140–144, https://doi.org/10.1016/j.desal.2012.12.011. [9] H. Rubí-Juarez, ´ S. Cotillas, C. S´ aez, P. Canizares, ˜ C. Barrera-Díaz, M.A. Rodrigo, Use of conductive diamond photo-electrochemical oxidation for the removal of pesticide glyphosate, Sep. Purif. Technol. 167 (2016) 127–135, https://doi.org/ 10.1016/j.seppur.2016.04.048. [10] S. Chen, Y. Liu, Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst, Chemosphere 67 (5) (2007) 1010–1017, https://doi.org/10.1016/j. chemosphere.2006.10.054. [11] A. Serra-Clusellas, L. De Angelis, M. Beltramo, M. Bava, J. De Frankenberg, J. Vigliarolo, N. Di Giovanni, J.D. Stripeikis, J.A. Rengifo-Herrera, M.M. Fidalgo De Cortalezzi, Glyphosate and AMPA removal from water by solar induced processes using low Fe(III) or Fe(II) concentrations, Environ. Sci. Water Res. Technol. 5 (2019) 1932–1942, https://doi.org/10.1039/c9ew00442d. [12] T. Zheng, Y. Sun, Y. Lin, N. Wang, P. Wang, Study on preparation of microwave absorbing MnOx/Al2O3 adsorbent and degradation of adsorbed glyphosate in MWUV system, Chem. Eng. J. 298 (2016) 68–74, https://doi.org/10.1016/j. cej.2016.03.143. [13] M.R. Assalin, S.G. De Moraes, S.C.N. Queiroz, V.L. Ferracini, N. Duran, Studies on degradation of glyphosate by several oxidative chemical processes: Ozonation, photolysis and heterogeneous photocatalysis. J. Environ. Sci. Heal. - Part B Pestic, Food Contam. Agric. Wastes 45 (1) (2009) 89–94, https://doi.org/10.1080/ 03601230903404598. [14] Z. Shamsollahi, A. Partovinia, Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review, J. Environ. Manage. 246 (2019) 314–323, https://doi.org/10.1016/j.jenvman.2019.05.145. [15] X. Pang, L. Sellaoui, D. Franco, G.L. Dotto, J. Georgin, A. Bajahzar, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet, Z. Li, Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models, Chem. Eng. J. 378 (2019) 122101, https://doi.org/ 10.1016/j.cej.2019.122101. [16] P.V.S. Lins, D.C. Henrique, A.H. Ide, J.L.d.S. Duarte, G.L. Dotto, A. Yazidi, L. Sellaoui, A. Erto, C.L. Zanta, L. Meili, Adsorption of a non-steroidal antiinflammatory drug onto MgAl/LDH-activated carbon composite – Experimental investigation and statistical physics modeling, Colloids Surfaces A Physicochem. Eng. Asp. 586 (2020) 124217, https://doi.org/10.1016/j.colsurfa.2019.124217. [17] C.R. Zhou, G.P. Li, D.G. Jiang, Study on behavior of alkalescent fiber FFA-1 adsorbing glyphosate from production wastewater of glyphosate, Fluid Phase Equilib. 362 (2014) 69–73. [18] G.L. Dotto, E. Chaves, Y. Benguerba, E. ´ Cl´ audio, A. Ben, A. Erto, New insights into the adsorption of crystal violet dye on functionalized multi-walled carbon nanotubes : Experiments, statistical physics and COSMO – RS models application 248 (2017) 890–897, https://doi.org/10.1016/j.molliq.2017.10.124. [19] R.T.A. Carneiro, T.B. Taketa, R.J. Gomes Neto, J.L. Oliveira, E.V.R. Campos, M.A. D. Moraes, C.M.G. Silva, M.M. Beppu, L.F. Fraceto, Removal of glyphosate herbicide from water using biopolymer membranes, J. Environ. Manage. 151 (2015) 353–360, https://doi.org/10.1016/j.jenvman.2015.01.005. [20] F. Chen, C. Zhou, G.-P. Li, F.-F. Peng, Thermodynamics and kinetics of glyphosate adsorption on resin D301, Arab. J. Chem. 9 (2016) S1665–S1669, https://doi.org/ 10.1016/j.arabjc.2012.04.014. [21] I. Herath, P. Kumarathilaka, M.I. Al-Wabel, A. Abduljabbar, M. Ahmad, A.R. A. Usman, M. Vithanage, Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar, Microporous Mesoporous Mater. 225 (2016) 280–288, https://doi.org/10.1016/j.micromeso.2016.01.017. [22] P. Marin, R. Bergamasco, A.N. Modenes, ´ P.R. Paraiso, S. Hamoudi, Synthesis and characterization of graphene oxide functionalized with MnFe2O4 and supported on activated carbon for glyphosate adsorption in fixed bed column, Process Saf. Environ. Prot. 123 (2019) 59–71, https://doi.org/10.1016/j.psep.2018.12.027. [23] S.S. Mayakaduwa, P. Kumarathilaka, I. Herath, M. Ahmad, M. Al-Wabel, Y.S. Ok, A. Usman, A. Abduljabbar, M. Vithanage, Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal, Chemosphere 144 (2016) 2516–2521, https://doi.org/10.1016/j.chemosphere.2015.07.080. [24] L. Ramrakhiani, S. Ghosh, A.K. Mandal, S. Majumdar, Utilization of multi-metal laden spent biosorbent for removal of glyphosate herbicide from aqueous solution and its mechanism elucidation, Chem. Eng. J. 361 (2019) 1063–1077. [25] S. Zavareh, Z. Farrokhzad, F. Darvishi, Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water, Ecotoxicol. Environ. Saf. 155 (2018) 1–8, https://doi.org/10.1016/j.ecoenv.2018.02.043. [26] L. Samuel, R. Wang, G. Dubois, R. Allen, R. Wojtecki, Y.-H. La, Aminefunctionalized, multi-arm star polymers: A novel platform for removing glyphosate from aqueous media, Chemosphere 169 (2017) 437–442, https://doi.org/10.1016/ j.chemosphere.2016.11.049. [27] F.K. Rodrigues, N.P.G. Salau, G.L. Dotto, New insights about reactive red 141 adsorption onto multi–walled carbon nanotubes using statistical physics coupled with Van der Waals equation, Sep. Purif. Technol. 224 (2019) 290–294, https:// doi.org/10.1016/j.seppur.2019.05.042. [28] T. Rasheed, M. Adeel, F. Nabeel, M. Bilal, H.M.N. Iqbal, TiO2/SiO2 decorated carbon nanostructured materials as a multifunctional platform for emerging pollutants removal, Sci. Total Environ. 688 (2019) 299–311, https://doi.org/ 10.1016/j.scitotenv.2019.06.200. [29] C. Parlak, O. ¨ Alver, Adsorption of ibuprofen on silicon decorated fullerenes and single walled carbon nanotubes: A comparative DFT study, J. Mol. Struct. 1184 (2019) 110–113, https://doi.org/10.1016/j.molstruc.2019.02.023. [30] A. Avcı, ˙I. ˙Inci, N. Baylan, Adsorption of ciprofloxacin hydrochloride on multiwall carbon nanotube, J. Mol. Struct. 1206 (2020) 127711, https://doi.org/10.1016/j. molstruc.2020.127711. [31] Z. Li, L. Sellaoui, D. Franco, M.S. Netto, J. Georgin, G.L. Dotto, A. Bajahzar, H. Belmabrouk, A. Bonilla-Petriciolet, Q. Li, Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems: Experimental study and physicochemical interpretation of the adsorption mechanism, Chem. Eng. J. 389 (2020) 124467, https://doi.org/10.1016/j. cej.2020.124467. [32] L.D.T. Prola, F.M. Machado, C.P. Bergmann, F.E. de Souza, C.R. Gally, E.C. Lima, M.A. Adebayo, S.L.P. Dias, T. Calvete, Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon, J. Environ. Manage. 130 (2013) 166–175, https://doi.org/10.1016/j. jenvman.2013.09.003. [33] Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes, Carbon N. Y. 41 (5) (2003) 1057–1062, https://doi.org/10.1016/S0008-6223(02)00440-2. [34] Y.-H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, B. Wei, Lead adsorption on carbon nanotubes, Chem. Phys. Lett. 357 (3-4) (2002) 263–266. [35] O. ¨ Çelebican, ˙ I. ˙ Inci, N. Baylan, Modeling and optimization of formic acid adsorption by multiwall carbon nanotube using response surface methodology, J. Mol. Struct. 1203 (2020) 127312, https://doi.org/10.1016/j. molstruc.2019.127312. [36] D. Lin, B. Xing, Adsorption of Phenolic Compounds by Carbon Nanotubes: Role of Aromaticity and Substitution of Hydroxyl Groups, Environ. Sci. Technol. 42 (19) (2008) 7254–7259, https://doi.org/10.1021/es801297u. [37] Z. Hu, H. Xie, Q. Wang, S. Chen, Adsorption and diffusion of sulfur dioxide and nitrogen in single-wall carbon nanotubes, J. Mol. Graph. Model. 88 (2019) 62–70, https://doi.org/10.1016/j.jmgm.2019.01.003. [38] S.S. Fiyadh, M.A. AlSaadi, W.Z. Jaafar, M.K. AlOmar, S.S. Fayaed, N.S. Mohd, L. S. Hin, A. El-Shafie, Review on heavy metal adsorption processes by carbon nanotubes, J. Clean. Prod. 230 (2019) 783–793, https://doi.org/10.1016/j. jclepro.2019.05.154. [39] J.C. Diel, D.S.P. Franco, A.V. Igansi, T.R.S. Cadaval, H.A. Pereira, I.D.S. Nunes, C. W. Basso, M.d.C.M. Alves, J. Morais, D. Pinto, G.L. Dotto, Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption, Chemosphere 283 (2021) 131193, https:// doi.org/10.1016/j.chemosphere.2021.131193. [40] Z. Li, L. Sellaoui, G.L. Dotto, A.B. Lamine, A. Bonilla-Petriciolet, H. Hanafy, H. Belmabrouk, M.S. Netto, A. Erto, Interpretation of the adsorption mechanism of Reactive Black 5 and Ponceau 4R dyes on chitosan/polyamide nanofibers via advanced statistical physics model, J. Mol. Liq. 285 (2019) 165–170, https://doi. org/10.1016/j.molliq.2019.04.091. [41] D.S.P. Franco, J.S. Piccin, E.C. Lima, G.L. Dotto, Interpretations about methylene blue adsorption by surface modified chitin using the statistical physics treatment, Adsorption 21 (8) (2015) 557–564, https://doi.org/10.1007/s10450-015-9699-z. [42] L. Sellaoui, E.C. ´ Lima, G.L. Dotto, S.L.P. Dias, A. Ben Lamine, Physicochemical modeling of reactive violet 5 dye adsorption on home-made cocoa shell and commercial activated carbons using the statistical physics theory, Results Phys. 7 (2017) 233–237, https://doi.org/10.1016/j.rinp.2016.12.014. [43] L. Sellaoui, N. Mechi, E.C. ´ Lima, G.L. Dotto, A. Ben Lamine, Adsorption of diclofenac and nimesulide on activated carbon: Statistical physics modeling and effect of adsorbate size, J. Phys. Chem. Solids 109 (2017) 117–123, https://doi. org/10.1016/j.jpcs.2017.05.019. [44] J.C. Diel, D.S.P. Franco, I.D.S. Nunes, H.A. Pereira, K.S. Moreira, T.A. de L. Burgo, E.L. Foletto, G.L. Dotto, Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix, J. Environ. Chem. Eng. 9 (2) (2021) 105178, https://doi.org/ 10.1016/j.jece:2021.105178. [45] B. Bhaskara, P. Nagaraja, Direct Sensitive Spectrophotometric Determination of Glyphosate by Using Ninhydrin as a Chromogenic Reagent in Formulations and Environmental Water Samples, Helv. Chim. Acta 89 (11) (2006) 2686–2693, https://doi.org/10.1002/(ISSN)1522-267510.1002/hlca.v89:1110.1002/ hlca.200690240. [46] L. Sellaoui, S. Knani, A. Erto, M.A. Hachicha, A. Ben Lamine, Equilibrium isotherm simulation of tetrachlorethylene on activated carbon using the double layer model with two energies: Steric and energetic interpretations, Fluid Phase Equilib. 408 (2016) 259–264, https://doi.org/10.1016/j.fluid.2015.09.022. [47] K.H. Toumi, Y. Benguerba, A. Erto, G.L. Dotto, M. Khalfaoui, C. Tiar, S. Nacef, A. Amrane, Molecular modeling of cationic dyes adsorption on agricultural Algerian olive cake waste, J. Mol. Liq. 264 (2018) 127–133, https://doi.org/ 10.1016/j.molliq.2018.05.045. [48] N. Bouaziz, M. Ben, F. Aouaini, A. Ben, Investigation of hydrogen adsorption on zeolites A, X and Y using statistical physics formalism, Mater. Chem. Phys. 225 (2019) 111–121, https://doi.org/10.1016/j.matchemphys.2018.12.024. [49] F. Ayachi, E.C. Lima, A. Sakly, H. Mejri, A. Ben, Modeling of adsorption isotherms of reactive red RR-120 on spirulina platensis by statistical physics formalism involving interaction effect between adsorbate molecules, Prog. Biophys. Mol. Biol. 141 (2019) 47–59, https://doi.org/10.1016/j.pbiomolbio.2018.07.004. [50] A. Yazidi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A.C. Frohlich, ¨ A.B. Lamine, Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: Application of advanced statistical physics models, J. Mol. Liq. 283 (2019) 276–286, https://doi.org/10.1016/j.molliq.2019.03.101. [51] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A. Ben Lamine, Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon, Fluid Phase Equilib. 387 (2015) 103–110, https:// doi.org/10.1016/j.fluid.2014.12.018. [52] L. Zhang, L. Sellaoui, D. Franco, G.L. Dotto, A. Bajahzar, H. Belmabrouk, A. BonillaPetriciolet, M.L.S. Oliveira, Z. Li, Adsorption of dyes brilliant blue, sunset yellow and tartrazine from aqueous solution on chitosan: Analytical interpretation via multilayer statistical physics model, Chem. Eng. J. 382 (2020) 122952, https://doi. org/10.1016/j.cej.2019.122952. [53] E. Mezura-Montes, C.A. Coello Coello, Constraint-handling in nature-inspired numerical optimization: Past, present and future, Swarm Evol. Comput. 1 (4) (2011) 173–194, https://doi.org/10.1016/j.swevo.2011.10.001. [54] J. Kennedy, R. Eberhart, Particle Swarm Optimisation. Stud, Comput. Intell. 927 (1995) 1942–1948, https://doi.org/10.1007/978-3-030-61111-8_2. [55] K. Levenberg, A method for the solution of certain non-linear problems in least squares, Q. Appl. Math. 2 (2) (1944) 164–168, https://doi.org/10.1090/qam/ 1944-02-0210.1090/qam/10666. [56] D.W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Ind. Appl. Math. 11 (2) (1963) 431–441, https://doi.org/ 10.1137/0111030. [57] J.J. Mor´e, The Leveberg-Marquardt Algorithm: Implementation and Theory, Numer. Anal. (1977) 105–116. [58] C.L. da Silveira, M.A. Mazutti, N.PG. Salau, Solid-state fermentation process model reparametrization procedure for parameters estimation using particle swarm optimization, J. of Chem. Tech. and Biotech. 91 (3) (2016) 762–768, https://doi. org/10.1002/jctb.2016.91.issue-310.1002/jctb.4642. [59] C.L. Silveira, A.C. Galv˜ ao, W.S. Robazza, J.V.T. Feyh, Modeling and parameters estimation for the solubility calculations of nicotinamide using UNIFAC and COSMO-based models, Fluid Phase Equilibria 535 (2021) 112970, https://doi.org/ 10.1016/j.fluid.2021.112970. [60] L. Sellaoui, B.B. Saha, S. Wjihi, A.B. Lamine, Physicochemical parameters interpretation for adsorption equilibrium of ethanol on metal organic framework: Application of the multilayer model with saturation, J. Mol. Liq. 233 (2017) 537–542, https://doi.org/10.1016/j.molliq.2016.07.017. [61] H. Hanafy, L. Sellaoui, P.S. Thue, E.C. Lima, G.L. Dotto, T. Alharbi, H. Belmabrouk, A. Bonilla-Petriciolet, A.B. Lamine, Statistical physics modeling and interpretation of the adsorption of dye remazol black B on natural and carbonized biomasses, J. Mol. Liq. 299 (2020) 112099, https://doi.org/10.1016/j.molliq.2019.112099. [62] M. Khalfaoui, A. Nakhli, S. Knani, H.V. Baouab, A.B. Lamine, On the Statistical Physics Modeling of Dye Adsorption onto Anionized Nylon, Consequent New Interpretations 125 (2012) 1091–1102, https://doi.org/10.1002/app. [63] O.P.d. Amarante Junior, T.C.R.D. Santos, N.M. Brito, M.L. Ribeiro, Glifosato: propriedades, toxicidade, usos e legislaç˜ ao, Quim. Nova 25 (4) (2002) 589–593. [64] Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran-Valle, C.J., 2019. Adsorption in Water Treatment. Chem. Mol. Sci. Chem. Eng. 1–19. [65] Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Reynel-Avila, ´ H.E., 2017. Adsorption processes for water treatment and purification, Springer. ed, Adsorption Processes for Water Treatment and Purification. M´exico. https://doi.org/10.1007/978-3- 319-58136-1. [66] S. Knani, M. Khalfaoui, M.A. Hachicha, A. Ben Lamine, M. Mathlouthi, Modelling of water vapour adsorption on foods products by a statistical physics treatment using the grand canonical ensemble, Food Chem. 132 (4) (2012) 1686–1692, https://doi.org/10.1016/j.foodchem.2011.11.065. [67] M.B. Manaa, N. Wazzan, A.B. Lamine, Physico-chemical interpretations of the adsorption isotherms of D-π-A sensitizers with pyridyl group on TiO2 for dye sensitized solar cells using statistical physics and density functional theory, J. Mat. Reser. Tech. 15 (2021) 369–383, https://doi.org/10.1016/j.jmrt.2021.08.017. [68] H.A. Al-Yousef, B.M. Alotaibi, F. Aouaini, L. Sellaoui, A. Bonilla-Petriciolet, Adsorption of ibuprofen on cocoa shell biomass-based adsorbents: Interpretation of the adsorption equilibriumvia statistical physics theory, J. Mol. Liq. 331 (2021) 115697, https://doi.org/10.1016/j.molliq.2021.115697. [69] M.S. Shamsudin, S.F. Azha, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, S. Ismail, Performance and interactions of diclofenac adsorption using Alginate/ Carbonbased Films: Experimental investigation and statistical physics modelling, Chem. Eng. J. 428 (2022) 131929, https://doi.org/10.1016/j.cej.2021.131929. [70] H. Alyousef, M. Ben, F. Aouaini, Statistical physics modeling of water vapor adsorption isotherm into kernels of dates : Experiments, microscopic interpretation and thermodynamic functions evaluation, Arab. J. Chem. 13 (2020) 4691–4702, https://doi.org/10.1016/j.arabjc.2019.11.004. |
dc.relation.citationendpage.spa.fl_str_mv |
10 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
431 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2021 Elsevier B.V. All rights reserved. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2021 Elsevier B.V. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1385894721056692?via%3Dihub |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/f30eab6b-c54a-42bc-8d7f-a9f335c65886/download https://repositorio.cuc.edu.co/bitstreams/069aacdd-7d88-4752-a69e-c3776b9ae6dc/download https://repositorio.cuc.edu.co/bitstreams/58f6449e-9ad5-4475-a091-0085ca668da5/download https://repositorio.cuc.edu.co/bitstreams/a9b4ff4a-4dce-41ef-9a9f-4d6070f0a40b/download |
bitstream.checksum.fl_str_mv |
326760fa55fe46f6fbda2a6875690ebf e30e9215131d99561d40d6b0abbe9bad 95d2c9bceb9ddbe622be56ed0c700718 409e6cb4e45a439a007eeb4f4b56b426 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760699737636864 |
spelling |
Diel, JúliaDA BOIT MARTINELLO, KATIAda Silveira, Christian L.Pereira, Hércules A.P. Franco, Dison S.O. Silva, Luis F.Dotto, Guilherme Luiz2022-06-23T14:07:14Z2023-12-082022-06-23T14:07:14Z2021-12-08Júlia C. Diel, Kátia da Boit Martinello, Christian L. da Silveira, Hércules A. Pereira, Dison S.P. Franco, Luis F.O. Silva, Guilherme L. Dotto, New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: Statistical physical modeling and steric and energetic interpretations, Chemical Engineering Journal, Volume 431, Part 2, 2022, 134095, ISSN 1385-8947,https://doi.org/10.1016/j.cej.2021.134095 (https://www.sciencedirect.com/science/article/pii/S1385894721056692)1385-8947https://hdl.handle.net/11323/9291https://doi.org/10.1016/j.cej.2021.13409510.1016/j.cej.2021.134095Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present work used a statistical physics approach to present new insights into the adsorption of the pesticide glyphosate on modified carbon nanotubes via green synthesis (MWCNT/MPNs-Fe). The experimental equilibrium curves obtained for this system under pH 4 at temperatures 298, 308, 318, and 328 K were simulated from monolayer, double layer, and multilayer models, with 1 and 2 energies, considering real and ideal fluid approaches. Taking into account the statistical indicators and the physical meaning of the parameters, exploring simplifying hypotheses, the Hill model with 1 energy and ideal fluid approach (M1) presented the best prediction of the experimental data, indicating that glyphosate adsorption occurs by the formation of a monolayer and that pesticide interaction with MWCNT/MPNs-Fe are characterized by only one energy. Based on this approach, to assess the steric aspects of the system, the number of molecules adsorbed per site (n), the density of receptor sites (Nm), adsorption capacity at saturation (Qsat), and concentration at half-saturation (W) were interpreted. As for the energetic aspects, the adsorption energy (ΔE) was inferred. The combination of parameters to its evolution with temperature and the magnitude of ΔE indicated an exothermic process involving a physical interaction mechanism. Finally, the new insights showed that the MWCNT/MPNs-Fe adsorbent favored pesticide adsorption by interacting glyphosate molecules with the metallic iron nanoparticles present on the adsorbent surface. © 2021 Elsevier B.V.10 páginasapplication/pdfengElsevierNetherlandsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2021 Elsevier B.V. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfNew insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretationsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S1385894721056692?via%3DihubChemical Engineering Journal[1] B. Fern´ andez-Reyes, K. Ortiz-Martínez, J.A. Lasalde-Ramírez, A.J. Hernandez- ´ Maldonado, Engineered adsorbents for the removal of contaminants of emerging concern from water, in: Contaminants of Emerging Concern in Water and Wastewater, Elsevier Inc., 2020, pp. 3–45, https://doi.org/10.1016/B978-0-12- 813561-7.00001-8.[2] J. Scaria, A. Gopinath, P.V. Nidheesh, A versatile strategy to eliminate emerging contaminants from the aqueous environment: Heterogeneous Fenton process, J. Clean. Prod. 278 (2021) 124014, https://doi.org/10.1016/j. jclepro.2020.124014.[3] World Health Organization (WHO), 1994. Environmental Health Criteria 159: Glyphosate [WWW Document].[4] S. Fiorilli, L. Rivoira, G. Calì, M. Appendini, M. Concetta, M. Coïsson, B. Onida, Applied Surface Science Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water, Appl. Surf. Sci. 411 (2017) 457–465, https://doi.org/10.1016/j.apsusc.2017.03.206.[5] R. Mesnage, M.N. Antoniou, Facts and Fallacies in the Debate on Glyphosate Toxicity, Front. Public Heal. 5 (2017) 1–7, https://doi.org/10.3389/ fpubh.2017.00316.[6] Y. Yang, Q. Deng, W. Yan, C. Jing, Y. Zhang, Comparative study of glyphosate removal on goethite and magnetite: Adsorption and photo-degradation, Chem. Eng. J. 352 (2018) 581–589, https://doi.org/10.1016/j.cej.2018.07.058.[7] N.U. Yamaguchi, R. Bergamasco, S. Hamoudi, Magnetic MnFe2O4–graphene hybrid composite for efficient removal of glyphosate from water, Chem. Eng. J. 295 (2016) 391–402, https://doi.org/10.1016/j.cej.2016.03.051.[8] Z. Liu, M. Zhu, P. Yu, Y. Xu, X. Zhao, Pretreatment of membrane separation of glyphosate mother liquor using a precipitation method, Desalination 313 (2013) 140–144, https://doi.org/10.1016/j.desal.2012.12.011.[9] H. Rubí-Juarez, ´ S. Cotillas, C. S´ aez, P. Canizares, ˜ C. Barrera-Díaz, M.A. Rodrigo, Use of conductive diamond photo-electrochemical oxidation for the removal of pesticide glyphosate, Sep. Purif. Technol. 167 (2016) 127–135, https://doi.org/ 10.1016/j.seppur.2016.04.048.[10] S. Chen, Y. Liu, Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst, Chemosphere 67 (5) (2007) 1010–1017, https://doi.org/10.1016/j. chemosphere.2006.10.054.[11] A. Serra-Clusellas, L. De Angelis, M. Beltramo, M. Bava, J. De Frankenberg, J. Vigliarolo, N. Di Giovanni, J.D. Stripeikis, J.A. Rengifo-Herrera, M.M. Fidalgo De Cortalezzi, Glyphosate and AMPA removal from water by solar induced processes using low Fe(III) or Fe(II) concentrations, Environ. Sci. Water Res. Technol. 5 (2019) 1932–1942, https://doi.org/10.1039/c9ew00442d.[12] T. Zheng, Y. Sun, Y. Lin, N. Wang, P. Wang, Study on preparation of microwave absorbing MnOx/Al2O3 adsorbent and degradation of adsorbed glyphosate in MWUV system, Chem. Eng. J. 298 (2016) 68–74, https://doi.org/10.1016/j. cej.2016.03.143.[13] M.R. Assalin, S.G. De Moraes, S.C.N. Queiroz, V.L. Ferracini, N. Duran, Studies on degradation of glyphosate by several oxidative chemical processes: Ozonation, photolysis and heterogeneous photocatalysis. J. Environ. Sci. Heal. - Part B Pestic, Food Contam. Agric. Wastes 45 (1) (2009) 89–94, https://doi.org/10.1080/ 03601230903404598.[14] Z. Shamsollahi, A. Partovinia, Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review, J. Environ. Manage. 246 (2019) 314–323, https://doi.org/10.1016/j.jenvman.2019.05.145.[15] X. Pang, L. Sellaoui, D. Franco, G.L. Dotto, J. Georgin, A. Bajahzar, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet, Z. Li, Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models, Chem. Eng. J. 378 (2019) 122101, https://doi.org/ 10.1016/j.cej.2019.122101.[16] P.V.S. Lins, D.C. Henrique, A.H. Ide, J.L.d.S. Duarte, G.L. Dotto, A. Yazidi, L. Sellaoui, A. Erto, C.L. Zanta, L. Meili, Adsorption of a non-steroidal antiinflammatory drug onto MgAl/LDH-activated carbon composite – Experimental investigation and statistical physics modeling, Colloids Surfaces A Physicochem. Eng. Asp. 586 (2020) 124217, https://doi.org/10.1016/j.colsurfa.2019.124217.[17] C.R. Zhou, G.P. Li, D.G. Jiang, Study on behavior of alkalescent fiber FFA-1 adsorbing glyphosate from production wastewater of glyphosate, Fluid Phase Equilib. 362 (2014) 69–73.[18] G.L. Dotto, E. Chaves, Y. Benguerba, E. ´ Cl´ audio, A. Ben, A. Erto, New insights into the adsorption of crystal violet dye on functionalized multi-walled carbon nanotubes : Experiments, statistical physics and COSMO – RS models application 248 (2017) 890–897, https://doi.org/10.1016/j.molliq.2017.10.124.[19] R.T.A. Carneiro, T.B. Taketa, R.J. Gomes Neto, J.L. Oliveira, E.V.R. Campos, M.A. D. Moraes, C.M.G. Silva, M.M. Beppu, L.F. Fraceto, Removal of glyphosate herbicide from water using biopolymer membranes, J. Environ. Manage. 151 (2015) 353–360, https://doi.org/10.1016/j.jenvman.2015.01.005.[20] F. Chen, C. Zhou, G.-P. Li, F.-F. Peng, Thermodynamics and kinetics of glyphosate adsorption on resin D301, Arab. J. Chem. 9 (2016) S1665–S1669, https://doi.org/ 10.1016/j.arabjc.2012.04.014.[21] I. Herath, P. Kumarathilaka, M.I. Al-Wabel, A. Abduljabbar, M. Ahmad, A.R. A. Usman, M. Vithanage, Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar, Microporous Mesoporous Mater. 225 (2016) 280–288, https://doi.org/10.1016/j.micromeso.2016.01.017.[22] P. Marin, R. Bergamasco, A.N. Modenes, ´ P.R. Paraiso, S. Hamoudi, Synthesis and characterization of graphene oxide functionalized with MnFe2O4 and supported on activated carbon for glyphosate adsorption in fixed bed column, Process Saf. Environ. Prot. 123 (2019) 59–71, https://doi.org/10.1016/j.psep.2018.12.027.[23] S.S. Mayakaduwa, P. Kumarathilaka, I. Herath, M. Ahmad, M. Al-Wabel, Y.S. Ok, A. Usman, A. Abduljabbar, M. Vithanage, Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal, Chemosphere 144 (2016) 2516–2521, https://doi.org/10.1016/j.chemosphere.2015.07.080.[24] L. Ramrakhiani, S. Ghosh, A.K. Mandal, S. Majumdar, Utilization of multi-metal laden spent biosorbent for removal of glyphosate herbicide from aqueous solution and its mechanism elucidation, Chem. Eng. J. 361 (2019) 1063–1077.[25] S. Zavareh, Z. Farrokhzad, F. Darvishi, Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water, Ecotoxicol. Environ. Saf. 155 (2018) 1–8, https://doi.org/10.1016/j.ecoenv.2018.02.043.[26] L. Samuel, R. Wang, G. Dubois, R. Allen, R. Wojtecki, Y.-H. La, Aminefunctionalized, multi-arm star polymers: A novel platform for removing glyphosate from aqueous media, Chemosphere 169 (2017) 437–442, https://doi.org/10.1016/ j.chemosphere.2016.11.049.[27] F.K. Rodrigues, N.P.G. Salau, G.L. Dotto, New insights about reactive red 141 adsorption onto multi–walled carbon nanotubes using statistical physics coupled with Van der Waals equation, Sep. Purif. Technol. 224 (2019) 290–294, https:// doi.org/10.1016/j.seppur.2019.05.042.[28] T. Rasheed, M. Adeel, F. Nabeel, M. Bilal, H.M.N. Iqbal, TiO2/SiO2 decorated carbon nanostructured materials as a multifunctional platform for emerging pollutants removal, Sci. Total Environ. 688 (2019) 299–311, https://doi.org/ 10.1016/j.scitotenv.2019.06.200.[29] C. Parlak, O. ¨ Alver, Adsorption of ibuprofen on silicon decorated fullerenes and single walled carbon nanotubes: A comparative DFT study, J. Mol. Struct. 1184 (2019) 110–113, https://doi.org/10.1016/j.molstruc.2019.02.023.[30] A. Avcı, ˙I. ˙Inci, N. Baylan, Adsorption of ciprofloxacin hydrochloride on multiwall carbon nanotube, J. Mol. Struct. 1206 (2020) 127711, https://doi.org/10.1016/j. molstruc.2020.127711.[31] Z. Li, L. Sellaoui, D. Franco, M.S. Netto, J. Georgin, G.L. Dotto, A. Bajahzar, H. Belmabrouk, A. Bonilla-Petriciolet, Q. Li, Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems: Experimental study and physicochemical interpretation of the adsorption mechanism, Chem. Eng. J. 389 (2020) 124467, https://doi.org/10.1016/j. cej.2020.124467.[32] L.D.T. Prola, F.M. Machado, C.P. Bergmann, F.E. de Souza, C.R. Gally, E.C. Lima, M.A. Adebayo, S.L.P. Dias, T. Calvete, Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon, J. Environ. Manage. 130 (2013) 166–175, https://doi.org/10.1016/j. jenvman.2013.09.003.[33] Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes, Carbon N. Y. 41 (5) (2003) 1057–1062, https://doi.org/10.1016/S0008-6223(02)00440-2.[34] Y.-H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, B. Wei, Lead adsorption on carbon nanotubes, Chem. Phys. Lett. 357 (3-4) (2002) 263–266.[35] O. ¨ Çelebican, ˙ I. ˙ Inci, N. Baylan, Modeling and optimization of formic acid adsorption by multiwall carbon nanotube using response surface methodology, J. Mol. Struct. 1203 (2020) 127312, https://doi.org/10.1016/j. molstruc.2019.127312.[36] D. Lin, B. Xing, Adsorption of Phenolic Compounds by Carbon Nanotubes: Role of Aromaticity and Substitution of Hydroxyl Groups, Environ. Sci. Technol. 42 (19) (2008) 7254–7259, https://doi.org/10.1021/es801297u.[37] Z. Hu, H. Xie, Q. Wang, S. Chen, Adsorption and diffusion of sulfur dioxide and nitrogen in single-wall carbon nanotubes, J. Mol. Graph. Model. 88 (2019) 62–70, https://doi.org/10.1016/j.jmgm.2019.01.003.[38] S.S. Fiyadh, M.A. AlSaadi, W.Z. Jaafar, M.K. AlOmar, S.S. Fayaed, N.S. Mohd, L. S. Hin, A. El-Shafie, Review on heavy metal adsorption processes by carbon nanotubes, J. Clean. Prod. 230 (2019) 783–793, https://doi.org/10.1016/j. jclepro.2019.05.154.[39] J.C. Diel, D.S.P. Franco, A.V. Igansi, T.R.S. Cadaval, H.A. Pereira, I.D.S. Nunes, C. W. Basso, M.d.C.M. Alves, J. Morais, D. Pinto, G.L. Dotto, Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption, Chemosphere 283 (2021) 131193, https:// doi.org/10.1016/j.chemosphere.2021.131193.[40] Z. Li, L. Sellaoui, G.L. Dotto, A.B. Lamine, A. Bonilla-Petriciolet, H. Hanafy, H. Belmabrouk, M.S. Netto, A. Erto, Interpretation of the adsorption mechanism of Reactive Black 5 and Ponceau 4R dyes on chitosan/polyamide nanofibers via advanced statistical physics model, J. Mol. Liq. 285 (2019) 165–170, https://doi. org/10.1016/j.molliq.2019.04.091.[41] D.S.P. Franco, J.S. Piccin, E.C. Lima, G.L. Dotto, Interpretations about methylene blue adsorption by surface modified chitin using the statistical physics treatment, Adsorption 21 (8) (2015) 557–564, https://doi.org/10.1007/s10450-015-9699-z.[42] L. Sellaoui, E.C. ´ Lima, G.L. Dotto, S.L.P. Dias, A. Ben Lamine, Physicochemical modeling of reactive violet 5 dye adsorption on home-made cocoa shell and commercial activated carbons using the statistical physics theory, Results Phys. 7 (2017) 233–237, https://doi.org/10.1016/j.rinp.2016.12.014.[43] L. Sellaoui, N. Mechi, E.C. ´ Lima, G.L. Dotto, A. Ben Lamine, Adsorption of diclofenac and nimesulide on activated carbon: Statistical physics modeling and effect of adsorbate size, J. Phys. Chem. Solids 109 (2017) 117–123, https://doi. org/10.1016/j.jpcs.2017.05.019.[44] J.C. Diel, D.S.P. Franco, I.D.S. Nunes, H.A. Pereira, K.S. Moreira, T.A. de L. Burgo, E.L. Foletto, G.L. Dotto, Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix, J. Environ. Chem. Eng. 9 (2) (2021) 105178, https://doi.org/ 10.1016/j.jece:2021.105178.[45] B. Bhaskara, P. Nagaraja, Direct Sensitive Spectrophotometric Determination of Glyphosate by Using Ninhydrin as a Chromogenic Reagent in Formulations and Environmental Water Samples, Helv. Chim. Acta 89 (11) (2006) 2686–2693, https://doi.org/10.1002/(ISSN)1522-267510.1002/hlca.v89:1110.1002/ hlca.200690240.[46] L. Sellaoui, S. Knani, A. Erto, M.A. Hachicha, A. Ben Lamine, Equilibrium isotherm simulation of tetrachlorethylene on activated carbon using the double layer model with two energies: Steric and energetic interpretations, Fluid Phase Equilib. 408 (2016) 259–264, https://doi.org/10.1016/j.fluid.2015.09.022.[47] K.H. Toumi, Y. Benguerba, A. Erto, G.L. Dotto, M. Khalfaoui, C. Tiar, S. Nacef, A. Amrane, Molecular modeling of cationic dyes adsorption on agricultural Algerian olive cake waste, J. Mol. Liq. 264 (2018) 127–133, https://doi.org/ 10.1016/j.molliq.2018.05.045.[48] N. Bouaziz, M. Ben, F. Aouaini, A. Ben, Investigation of hydrogen adsorption on zeolites A, X and Y using statistical physics formalism, Mater. Chem. Phys. 225 (2019) 111–121, https://doi.org/10.1016/j.matchemphys.2018.12.024.[49] F. Ayachi, E.C. Lima, A. Sakly, H. Mejri, A. Ben, Modeling of adsorption isotherms of reactive red RR-120 on spirulina platensis by statistical physics formalism involving interaction effect between adsorbate molecules, Prog. Biophys. Mol. Biol. 141 (2019) 47–59, https://doi.org/10.1016/j.pbiomolbio.2018.07.004.[50] A. Yazidi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A.C. Frohlich, ¨ A.B. Lamine, Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: Application of advanced statistical physics models, J. Mol. Liq. 283 (2019) 276–286, https://doi.org/10.1016/j.molliq.2019.03.101.[51] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A. Ben Lamine, Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon, Fluid Phase Equilib. 387 (2015) 103–110, https:// doi.org/10.1016/j.fluid.2014.12.018.[52] L. Zhang, L. Sellaoui, D. Franco, G.L. Dotto, A. Bajahzar, H. Belmabrouk, A. BonillaPetriciolet, M.L.S. Oliveira, Z. Li, Adsorption of dyes brilliant blue, sunset yellow and tartrazine from aqueous solution on chitosan: Analytical interpretation via multilayer statistical physics model, Chem. Eng. J. 382 (2020) 122952, https://doi. org/10.1016/j.cej.2019.122952.[53] E. Mezura-Montes, C.A. Coello Coello, Constraint-handling in nature-inspired numerical optimization: Past, present and future, Swarm Evol. Comput. 1 (4) (2011) 173–194, https://doi.org/10.1016/j.swevo.2011.10.001.[54] J. Kennedy, R. Eberhart, Particle Swarm Optimisation. Stud, Comput. Intell. 927 (1995) 1942–1948, https://doi.org/10.1007/978-3-030-61111-8_2.[55] K. Levenberg, A method for the solution of certain non-linear problems in least squares, Q. Appl. Math. 2 (2) (1944) 164–168, https://doi.org/10.1090/qam/ 1944-02-0210.1090/qam/10666.[56] D.W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Ind. Appl. Math. 11 (2) (1963) 431–441, https://doi.org/ 10.1137/0111030.[57] J.J. Mor´e, The Leveberg-Marquardt Algorithm: Implementation and Theory, Numer. Anal. (1977) 105–116.[58] C.L. da Silveira, M.A. Mazutti, N.PG. Salau, Solid-state fermentation process model reparametrization procedure for parameters estimation using particle swarm optimization, J. of Chem. Tech. and Biotech. 91 (3) (2016) 762–768, https://doi. org/10.1002/jctb.2016.91.issue-310.1002/jctb.4642.[59] C.L. Silveira, A.C. Galv˜ ao, W.S. Robazza, J.V.T. Feyh, Modeling and parameters estimation for the solubility calculations of nicotinamide using UNIFAC and COSMO-based models, Fluid Phase Equilibria 535 (2021) 112970, https://doi.org/ 10.1016/j.fluid.2021.112970.[60] L. Sellaoui, B.B. Saha, S. Wjihi, A.B. Lamine, Physicochemical parameters interpretation for adsorption equilibrium of ethanol on metal organic framework: Application of the multilayer model with saturation, J. Mol. Liq. 233 (2017) 537–542, https://doi.org/10.1016/j.molliq.2016.07.017.[61] H. Hanafy, L. Sellaoui, P.S. Thue, E.C. Lima, G.L. Dotto, T. Alharbi, H. Belmabrouk, A. Bonilla-Petriciolet, A.B. Lamine, Statistical physics modeling and interpretation of the adsorption of dye remazol black B on natural and carbonized biomasses, J. Mol. Liq. 299 (2020) 112099, https://doi.org/10.1016/j.molliq.2019.112099.[62] M. Khalfaoui, A. Nakhli, S. Knani, H.V. Baouab, A.B. Lamine, On the Statistical Physics Modeling of Dye Adsorption onto Anionized Nylon, Consequent New Interpretations 125 (2012) 1091–1102, https://doi.org/10.1002/app.[63] O.P.d. Amarante Junior, T.C.R.D. Santos, N.M. Brito, M.L. Ribeiro, Glifosato: propriedades, toxicidade, usos e legislaç˜ ao, Quim. Nova 25 (4) (2002) 589–593.[64] Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran-Valle, C.J., 2019. Adsorption in Water Treatment. Chem. Mol. Sci. Chem. Eng. 1–19.[65] Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Reynel-Avila, ´ H.E., 2017. Adsorption processes for water treatment and purification, Springer. ed, Adsorption Processes for Water Treatment and Purification. M´exico. https://doi.org/10.1007/978-3- 319-58136-1.[66] S. Knani, M. Khalfaoui, M.A. Hachicha, A. Ben Lamine, M. Mathlouthi, Modelling of water vapour adsorption on foods products by a statistical physics treatment using the grand canonical ensemble, Food Chem. 132 (4) (2012) 1686–1692, https://doi.org/10.1016/j.foodchem.2011.11.065.[67] M.B. Manaa, N. Wazzan, A.B. Lamine, Physico-chemical interpretations of the adsorption isotherms of D-π-A sensitizers with pyridyl group on TiO2 for dye sensitized solar cells using statistical physics and density functional theory, J. Mat. Reser. Tech. 15 (2021) 369–383, https://doi.org/10.1016/j.jmrt.2021.08.017.[68] H.A. Al-Yousef, B.M. Alotaibi, F. Aouaini, L. Sellaoui, A. Bonilla-Petriciolet, Adsorption of ibuprofen on cocoa shell biomass-based adsorbents: Interpretation of the adsorption equilibriumvia statistical physics theory, J. Mol. Liq. 331 (2021) 115697, https://doi.org/10.1016/j.molliq.2021.115697.[69] M.S. Shamsudin, S.F. Azha, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, S. Ismail, Performance and interactions of diclofenac adsorption using Alginate/ Carbonbased Films: Experimental investigation and statistical physics modelling, Chem. Eng. J. 428 (2022) 131929, https://doi.org/10.1016/j.cej.2021.131929.[70] H. Alyousef, M. Ben, F. Aouaini, Statistical physics modeling of water vapor adsorption isotherm into kernels of dates : Experiments, microscopic interpretation and thermodynamic functions evaluation, Arab. J. Chem. 13 (2020) 4691–4702, https://doi.org/10.1016/j.arabjc.2019.11.004.101431GlyphosateCarbon nanotubesGreen synthesisAdsorption isothermsStatistical physicsAdsorption mechanismPublicationORIGINAL1-s2.0-S1385894721056692-main.pdf1-s2.0-S1385894721056692-main.pdfapplication/pdf1270792https://repositorio.cuc.edu.co/bitstreams/f30eab6b-c54a-42bc-8d7f-a9f335c65886/download326760fa55fe46f6fbda2a6875690ebfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/069aacdd-7d88-4752-a69e-c3776b9ae6dc/downloade30e9215131d99561d40d6b0abbe9badMD52TEXT1-s2.0-S1385894721056692-main.pdf.txt1-s2.0-S1385894721056692-main.pdf.txttext/plain67506https://repositorio.cuc.edu.co/bitstreams/58f6449e-9ad5-4475-a091-0085ca668da5/download95d2c9bceb9ddbe622be56ed0c700718MD53THUMBNAIL1-s2.0-S1385894721056692-main.pdf.jpg1-s2.0-S1385894721056692-main.pdf.jpgimage/jpeg14516https://repositorio.cuc.edu.co/bitstreams/a9b4ff4a-4dce-41ef-9a9f-4d6070f0a40b/download409e6cb4e45a439a007eeb4f4b56b426MD5411323/9291oai:repositorio.cuc.edu.co:11323/92912024-09-17 10:17:28.224https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |