Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia

Microbial richness of agricultural soils is an indicator of its health and fertility with a significant impact on crop yields. Present study analyzed the relationship between nitrogen-fixing bacteria and physicochemical characteristics of agricultural soils in the southern department of Atlántico, C...

Full description

Autores:
Martinez Mera, Eliana Andrea
Torregroza Espinosa, Ana Carolina
Valencia Garcia, Anderson David
Rojas Geronimo, Laura Maria
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1074
Acceso en línea:
https://hdl.handle.net/11323/1074
https://repositorio.cuc.edu.co/
Palabra clave:
Native microorganism
Fertilization
Sustainable management
Conservation
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_1f13207de2416a72f2c3e2813efdd712
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1074
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia
title Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia
spellingShingle Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia
Native microorganism
Fertilization
Sustainable management
Conservation
title_short Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia
title_full Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia
title_fullStr Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia
title_full_unstemmed Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia
title_sort Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia
dc.creator.fl_str_mv Martinez Mera, Eliana Andrea
Torregroza Espinosa, Ana Carolina
Valencia Garcia, Anderson David
Rojas Geronimo, Laura Maria
dc.contributor.author.spa.fl_str_mv Martinez Mera, Eliana Andrea
Torregroza Espinosa, Ana Carolina
Valencia Garcia, Anderson David
Rojas Geronimo, Laura Maria
dc.subject.eng.fl_str_mv Native microorganism
Fertilization
Sustainable management
Conservation
topic Native microorganism
Fertilization
Sustainable management
Conservation
description Microbial richness of agricultural soils is an indicator of its health and fertility with a significant impact on crop yields. Present study analyzed the relationship between nitrogen-fixing bacteria and physicochemical characteristics of agricultural soils in the southern department of Atlántico, Colombia. Soil samples were collected from 10 sites of Repelón irrigation district, for physicochemical analysis (pH, organic matter, texture, moisture and available phosphorus) and isolation of nitrogen-fixing bacterial’ strains using nitrogen-free culture media. Results demostrated the higher previlance of nitrogen–fixing bacteria in northern zone and central zone of the Repelón irrigation district (1.63 × 108 CFU g-1 for strain-1, 5.2 × 107 CFU g-1 for strain-2 and 4.5 × 107 CFU g-1 for strain-3). On the other hand, the physicochemical characteristics of soil show the adequacy to sustain nitrogen-fixing bacteria. The findings of the present research may serve as a baseline to identify soil micorganisms and defining strategies for sustainable management of agricultural soils in the region because these are integral component in ecosystem for nutrient recycling. © 2017, Soil Science Society of Pakistan
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2018-11-15T21:50:24Z
dc.date.available.none.fl_str_mv 2018-11-15T21:50:24Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2074-9546
2074-9546
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/1074
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2074-9546
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/1074
https://repositorio.cuc.edu.co/
dc.relation.references.spa.fl_str_mv Appelhans, S.C., S.M. Benitende, P.A. Barbagelata and M.B. Fontana. 2016. Los cultivos de 221 cobertura y la fertilización afectan el aporte de fósforo microbiano. En A. Degioann (Presidente), 222 XXV Congreso Argentino de la Ciencia del Suelo: ordenamiento territorial: un desafío para la 223 ciencia del suelo. Río Cuatro, Argentina. 224 Aquilanti, F., F. Favillib and F. Clementina. 2004. Comparison of different strategies for isolation 225 and preliminary identification of Azotobacter from soil samples. Soil Biology and Biochemistry 226 36: 1475-1483.Barassi, C.A., R.J. Sueldo, C.M. Creus, L.E. Carrozzi, E. Casanovas and M. Pereyra. 2007. 228 Azospirillum spp. a dynamic soil bacterium favorable to vegetable crop production. Dynamic Soil, 229 Dynamic Plant 1(2): 68-82. 230 Climate, Data. 2017. National Center for Environmental Information. [Online] Available at: 231 http://es.climate-data.org/location/50352/ [Accessed 1 March 2017]. 232 Dahal, B., G. Nanda-Kafle, L. Perkins and V.S. Brozel. 2017. Diversity of free-living nitrogen 233 fixing Streptomyces in soils of the badliands of South Dakota. Microbiological Research 195: 31- 234 39. 235 Di-Rienzo, J., F. Casanoves, M. Balzarini, M. Gonzalez-Tablada and C. Robledo. 2012. 236 Universidad Nacional de Córdoba. [Online] Available at: http://www.infostat.com.ar [Accessed 237 28 February 2017]. 238 Escobar, C., Y. Horna, C. Carreño and G. Mendoza. 2011. Caracterización de cepas nativas de 239 Azotobacter spp. y su efecto en el desarrollo de Lycopersicum esculentum Mill. "tomate" en 240 Lambayeque. Scientia Agropecuaria 2: 36-49. 241 Fernández, L.A., P. Zalba, M.A. Gómez and M. A. Sagardoy. 2005. Bacterias solubilizadoras de 242 fosfato inorgánico aisladas de suelos de la región sojera. Ciencia del Suelo 23 (1): 31-37. 243 Ferrera, R and A. Alarcón. 2001. La microbiología del suelo en la agricultura sostenible. Ciencia 244 Ergo Sum 8(2): 175-183. 245 Flores-Gallegos, A.C., J.C. Contreras-Esquivel and M. Humberto. 2012. Aislamiento e 246 identificación de cepas nativas del suelo mexicano del género Azotobacter. Revista Cientifíca de 247 la Universidad Autónoma de Coahuila 4(8): 1-10. 248 García, S.C. 2011. Bacterias simbióticas fijadoras de nitrógeno. Cuadernos del Tomás 3: 173-186. 249 Gupta, V.S and M. M. Roper. 2010. Protection of free-living nitrogen-fixing bacteria within the 250 soil matrix. Soil and Tillage Research 109: 50-54.Hamid-Dar, G. A. Kamili, R. Nazir, S. Bandh and R. Ahmad-Bhat. 2012. A prelimilary study of 252 colony forming units of bacteria from the soil of Yusmarg Forest, Kashmir Valley India. 253 International Journal of Current Research 4(12): 467-472. 254 Horneck, D.A., D.M. Sullivan, J.S. Owen and J.M. Hart. 2011. Soil test interpretation guide. 255 [Online] Available at: https://catalog.extension.oregonstate.edu/ec1478 [Accessed 4 March 2017]. 256 IGAC-Instituto Geográfico Agustin Codazzi. 2006. Métodos analíticos del laboratorio de suelos. 257 Bogotá: Imprenta Nacional de Colombia. 258 IGAC- Instituto Geográfico Agustin Codazzi. 2008. Estudio general de suelos y zonificación de 259 tierras. Departamento del Atlántico. Bogotá: Imprenta Nacional de Colombia. 260 Ilyas, N., A. Bano and S. Iqbal. 2008. Variation in Rhizobium and Azospirillum strains isolated 261 from maize growing in arid and semiarid areas. International Journal of Agriculture and Biology 262 10(6): 612-618. 263 Iturri, L. A and D.E. Buschiazzo. 2016. Light acidification in N-fertilizer losses soils along a limo 264 sequence affected chemical and mineralogical properties in short-term. Catena 139: 92-98. 265 Jiménez, D. J., J.S. Montaña and M.M. Martínez. 2011. Characterization of free nitrogen fixing 266 bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils. Brazilian Journal 267 of Microbiology 57(4): 915-927. 268 Kumar, V and K. Singh. 2000. Enriching vermi-compost by nitrogen fixing and phosphate 269 solubilizing bacteria. Bioresource Technology 156(1): 173-175. 270 Mahmood, K. W., N. Yang, Z. Kidhwar, A. Rajputy and A. Arijo. 2006. Study of cellulolytic soil 271 fungi and two nova species and new medium. Journal of Shejiang University Science 7: 459-466. 272 Mantilla-Paredes, A.J., G.I. Cardona, C.P. Peña-Venegas, U. Murcia, M. Rodríguez and M.M. 273 Zambrano. 2009. Distribución de bacterias potencialmente fijadoras de nitrógeno y su relación con 274 parámetros fisicoquímicos en suelos con tres coberturas vegetales en el sur de la Amazonía 275 colombiana. Revista Biología Tropical 57(4): 915-927Martínez-Mera, E., E. Valencia and H. Cuevas. 2016. Evaluación del rendimiento de maíz dulce 277 (Zea mays "Suresweet") con las leguminosas cobertoras mucuna enana (Mucuna pruriens) y 278 crotalaria (Crotalaria juncea "Tropic sun") en un oxisol de Puerto Rico. The Journal of Agriculture 279 of the University of Puerto Rico 100(1): 57-70. 280 Murphy, S., D. Giménez, L. Muldowney and J. Heckman. 2002. Soil organic matter level and 281 interpretaion. [Online] Available at: http://njaes.rutgers.edu/pubs/publication.asp?pid=FS1136 282 [Accessed 2 March 2017]. 283 NRCS-National Resources Conservation Service. 2011. Soil quality for environmental matter 284 level and interpretation. [Online] Available at: http://soilquality.org/indicators/soil_ph.html 285 [Accessed 4 March 2017]. 286 Obando-Castellanos, D.M., L.D. Burgos-Zabala, D.M. Rivera-Botia, M.F. Rubiano-Garrido, V.L. 287 Divan-Baldani and R.R. Bonilla-Buitrago. 2011. Caracterización de bacterias diazotróficas 288 asimbióticas asociadas al eucalipto (Eucalyptus spp) en Codazzi, Cesar (Colombia). Acta 289 Biológica Colombiana 15(3): 107-120. 290 Olsen, S.R., C.V. Cole, F.S. Watanabe and L.A. Dean. 1954. Estimation of available phosphorus 291 in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture Circ. 939. 292 Pérez, A., T. Grisales and J. Fuentes. 2011. Determinación de morfotipos nativos de Rhizobium 293 asociados a la leguminosa Teramnus volubilis Sw en fincas ganaderas en el municipio de Tolú en 294 el departamento de Sucre. Revista Colombiana de Ciencia Animal 3(1): 62-89. 295 Philippot, L and J.C. Germon. 2005. Contribution of bacterial to initial input and cycling of 296 nitrogen in soils. In: F. Buscot and A. Varma. (Eds.), Microorganisms in soils: roles in genesis 297 and functions. New York: Springer, pp. 159-176. 298 Scott, J and J. Robert. 2006. Soil texture and nitrogen mineralization potential across a riparian 299 toposequence in a semi-arid savanna. Soil Biology and Biochemestry 38(6): 1325-1333. 300 Torres-Bejarano, F., J. Padilla-Coba, C. Rodríguez-Cuevas, H. Ramírez-León and R. Cantero301 Rodelo. 2016. La modelación hidrodinámica para la gestión hídrica del embalse El Guájaro, Colombia. Revista Internacional de Métodos Numéricos para Cálculo y Diseño de Ingeniería 303 32(3): 163-172. 304 Vieira, F.C and E. Nahas. 2005. Comparision of microbial numbers in soils by using various 305 culture media and temperatures. Microbiological Research 3(1): 62-89. 306 Vivek, K., K. Rishi and N. Neeru, 2000. Establishment of phosphate solubilizing strains of 307 Azotobacter chroococcum in the rizospehere and their effect on wheat cultivars under greenhouse 308 conditions. Microbial Research 156(1): 87-93. 309 Walkley, A and I.A. Black. 1934. An examination of Degtjareff method for determining soil 310 organic matter, and proposed modification of the chromic acid tritation method. Soil Science 311 37:29-38.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Soil and Environment
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/903d462f-189f-4bbf-b3f1-2d65ec79f42d/download
https://repositorio.cuc.edu.co/bitstreams/80322cf0-3c18-4715-b428-c6c0712520f1/download
https://repositorio.cuc.edu.co/bitstreams/c8e6e5ff-aed7-49f1-83d9-cdfda4b91238/download
https://repositorio.cuc.edu.co/bitstreams/574c1440-d5df-462f-b31e-aeb201f0dad6/download
bitstream.checksum.fl_str_mv a717832a67f1dd7455c6ca05e8fcab29
8a4605be74aa9ea9d79846c1fba20a33
142e1ac1e67f4b26e5dde3a7d1f8195e
352899d3d751b09577ea0a2d8b06ffdd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166886664175616
spelling Martinez Mera, Eliana AndreaTorregroza Espinosa, Ana CarolinaValencia Garcia, Anderson DavidRojas Geronimo, Laura Maria2018-11-15T21:50:24Z2018-11-15T21:50:24Z20172074-95462074-9546https://hdl.handle.net/11323/1074Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Microbial richness of agricultural soils is an indicator of its health and fertility with a significant impact on crop yields. Present study analyzed the relationship between nitrogen-fixing bacteria and physicochemical characteristics of agricultural soils in the southern department of Atlántico, Colombia. Soil samples were collected from 10 sites of Repelón irrigation district, for physicochemical analysis (pH, organic matter, texture, moisture and available phosphorus) and isolation of nitrogen-fixing bacterial’ strains using nitrogen-free culture media. Results demostrated the higher previlance of nitrogen–fixing bacteria in northern zone and central zone of the Repelón irrigation district (1.63 × 108 CFU g-1 for strain-1, 5.2 × 107 CFU g-1 for strain-2 and 4.5 × 107 CFU g-1 for strain-3). On the other hand, the physicochemical characteristics of soil show the adequacy to sustain nitrogen-fixing bacteria. The findings of the present research may serve as a baseline to identify soil micorganisms and defining strategies for sustainable management of agricultural soils in the region because these are integral component in ecosystem for nutrient recycling. © 2017, Soil Science Society of PakistanMartinez Mera, Eliana Andrea-0000-0003-2094-8061-600Torregroza Espinosa, Ana Carolina-0000-0001-8077-8880-600Valencia Garcia, Anderson David-48612080-36ef-4d6a-962c-aec64dd1d45b-0Rojas Geronimo, Laura Maria-4d9ca08d-8f8e-45c4-8b8b-210da0f66522-0Soil and EnvironmentAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Native microorganismFertilizationSustainable managementConservationRelationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAppelhans, S.C., S.M. Benitende, P.A. Barbagelata and M.B. Fontana. 2016. Los cultivos de 221 cobertura y la fertilización afectan el aporte de fósforo microbiano. En A. Degioann (Presidente), 222 XXV Congreso Argentino de la Ciencia del Suelo: ordenamiento territorial: un desafío para la 223 ciencia del suelo. Río Cuatro, Argentina. 224 Aquilanti, F., F. Favillib and F. Clementina. 2004. Comparison of different strategies for isolation 225 and preliminary identification of Azotobacter from soil samples. Soil Biology and Biochemistry 226 36: 1475-1483.Barassi, C.A., R.J. Sueldo, C.M. Creus, L.E. Carrozzi, E. Casanovas and M. Pereyra. 2007. 228 Azospirillum spp. a dynamic soil bacterium favorable to vegetable crop production. Dynamic Soil, 229 Dynamic Plant 1(2): 68-82. 230 Climate, Data. 2017. National Center for Environmental Information. [Online] Available at: 231 http://es.climate-data.org/location/50352/ [Accessed 1 March 2017]. 232 Dahal, B., G. Nanda-Kafle, L. Perkins and V.S. Brozel. 2017. Diversity of free-living nitrogen 233 fixing Streptomyces in soils of the badliands of South Dakota. Microbiological Research 195: 31- 234 39. 235 Di-Rienzo, J., F. Casanoves, M. Balzarini, M. Gonzalez-Tablada and C. Robledo. 2012. 236 Universidad Nacional de Córdoba. [Online] Available at: http://www.infostat.com.ar [Accessed 237 28 February 2017]. 238 Escobar, C., Y. Horna, C. Carreño and G. Mendoza. 2011. Caracterización de cepas nativas de 239 Azotobacter spp. y su efecto en el desarrollo de Lycopersicum esculentum Mill. "tomate" en 240 Lambayeque. Scientia Agropecuaria 2: 36-49. 241 Fernández, L.A., P. Zalba, M.A. Gómez and M. A. Sagardoy. 2005. Bacterias solubilizadoras de 242 fosfato inorgánico aisladas de suelos de la región sojera. Ciencia del Suelo 23 (1): 31-37. 243 Ferrera, R and A. Alarcón. 2001. La microbiología del suelo en la agricultura sostenible. Ciencia 244 Ergo Sum 8(2): 175-183. 245 Flores-Gallegos, A.C., J.C. Contreras-Esquivel and M. Humberto. 2012. Aislamiento e 246 identificación de cepas nativas del suelo mexicano del género Azotobacter. Revista Cientifíca de 247 la Universidad Autónoma de Coahuila 4(8): 1-10. 248 García, S.C. 2011. Bacterias simbióticas fijadoras de nitrógeno. Cuadernos del Tomás 3: 173-186. 249 Gupta, V.S and M. M. Roper. 2010. Protection of free-living nitrogen-fixing bacteria within the 250 soil matrix. Soil and Tillage Research 109: 50-54.Hamid-Dar, G. A. Kamili, R. Nazir, S. Bandh and R. Ahmad-Bhat. 2012. A prelimilary study of 252 colony forming units of bacteria from the soil of Yusmarg Forest, Kashmir Valley India. 253 International Journal of Current Research 4(12): 467-472. 254 Horneck, D.A., D.M. Sullivan, J.S. Owen and J.M. Hart. 2011. Soil test interpretation guide. 255 [Online] Available at: https://catalog.extension.oregonstate.edu/ec1478 [Accessed 4 March 2017]. 256 IGAC-Instituto Geográfico Agustin Codazzi. 2006. Métodos analíticos del laboratorio de suelos. 257 Bogotá: Imprenta Nacional de Colombia. 258 IGAC- Instituto Geográfico Agustin Codazzi. 2008. Estudio general de suelos y zonificación de 259 tierras. Departamento del Atlántico. Bogotá: Imprenta Nacional de Colombia. 260 Ilyas, N., A. Bano and S. Iqbal. 2008. Variation in Rhizobium and Azospirillum strains isolated 261 from maize growing in arid and semiarid areas. International Journal of Agriculture and Biology 262 10(6): 612-618. 263 Iturri, L. A and D.E. Buschiazzo. 2016. Light acidification in N-fertilizer losses soils along a limo 264 sequence affected chemical and mineralogical properties in short-term. Catena 139: 92-98. 265 Jiménez, D. J., J.S. Montaña and M.M. Martínez. 2011. Characterization of free nitrogen fixing 266 bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils. Brazilian Journal 267 of Microbiology 57(4): 915-927. 268 Kumar, V and K. Singh. 2000. Enriching vermi-compost by nitrogen fixing and phosphate 269 solubilizing bacteria. Bioresource Technology 156(1): 173-175. 270 Mahmood, K. W., N. Yang, Z. Kidhwar, A. Rajputy and A. Arijo. 2006. Study of cellulolytic soil 271 fungi and two nova species and new medium. Journal of Shejiang University Science 7: 459-466. 272 Mantilla-Paredes, A.J., G.I. Cardona, C.P. Peña-Venegas, U. Murcia, M. Rodríguez and M.M. 273 Zambrano. 2009. Distribución de bacterias potencialmente fijadoras de nitrógeno y su relación con 274 parámetros fisicoquímicos en suelos con tres coberturas vegetales en el sur de la Amazonía 275 colombiana. Revista Biología Tropical 57(4): 915-927Martínez-Mera, E., E. Valencia and H. Cuevas. 2016. Evaluación del rendimiento de maíz dulce 277 (Zea mays "Suresweet") con las leguminosas cobertoras mucuna enana (Mucuna pruriens) y 278 crotalaria (Crotalaria juncea "Tropic sun") en un oxisol de Puerto Rico. The Journal of Agriculture 279 of the University of Puerto Rico 100(1): 57-70. 280 Murphy, S., D. Giménez, L. Muldowney and J. Heckman. 2002. Soil organic matter level and 281 interpretaion. [Online] Available at: http://njaes.rutgers.edu/pubs/publication.asp?pid=FS1136 282 [Accessed 2 March 2017]. 283 NRCS-National Resources Conservation Service. 2011. Soil quality for environmental matter 284 level and interpretation. [Online] Available at: http://soilquality.org/indicators/soil_ph.html 285 [Accessed 4 March 2017]. 286 Obando-Castellanos, D.M., L.D. Burgos-Zabala, D.M. Rivera-Botia, M.F. Rubiano-Garrido, V.L. 287 Divan-Baldani and R.R. Bonilla-Buitrago. 2011. Caracterización de bacterias diazotróficas 288 asimbióticas asociadas al eucalipto (Eucalyptus spp) en Codazzi, Cesar (Colombia). Acta 289 Biológica Colombiana 15(3): 107-120. 290 Olsen, S.R., C.V. Cole, F.S. Watanabe and L.A. Dean. 1954. Estimation of available phosphorus 291 in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture Circ. 939. 292 Pérez, A., T. Grisales and J. Fuentes. 2011. Determinación de morfotipos nativos de Rhizobium 293 asociados a la leguminosa Teramnus volubilis Sw en fincas ganaderas en el municipio de Tolú en 294 el departamento de Sucre. Revista Colombiana de Ciencia Animal 3(1): 62-89. 295 Philippot, L and J.C. Germon. 2005. Contribution of bacterial to initial input and cycling of 296 nitrogen in soils. In: F. Buscot and A. Varma. (Eds.), Microorganisms in soils: roles in genesis 297 and functions. New York: Springer, pp. 159-176. 298 Scott, J and J. Robert. 2006. Soil texture and nitrogen mineralization potential across a riparian 299 toposequence in a semi-arid savanna. Soil Biology and Biochemestry 38(6): 1325-1333. 300 Torres-Bejarano, F., J. Padilla-Coba, C. Rodríguez-Cuevas, H. Ramírez-León and R. Cantero301 Rodelo. 2016. La modelación hidrodinámica para la gestión hídrica del embalse El Guájaro, Colombia. Revista Internacional de Métodos Numéricos para Cálculo y Diseño de Ingeniería 303 32(3): 163-172. 304 Vieira, F.C and E. Nahas. 2005. Comparision of microbial numbers in soils by using various 305 culture media and temperatures. Microbiological Research 3(1): 62-89. 306 Vivek, K., K. Rishi and N. Neeru, 2000. Establishment of phosphate solubilizing strains of 307 Azotobacter chroococcum in the rizospehere and their effect on wheat cultivars under greenhouse 308 conditions. Microbial Research 156(1): 87-93. 309 Walkley, A and I.A. Black. 1934. An examination of Degtjareff method for determining soil 310 organic matter, and proposed modification of the chromic acid tritation method. Soil Science 311 37:29-38.PublicationORIGINALRelationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils.pdfRelationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils.pdfapplication/pdf426897https://repositorio.cuc.edu.co/bitstreams/903d462f-189f-4bbf-b3f1-2d65ec79f42d/downloada717832a67f1dd7455c6ca05e8fcab29MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/80322cf0-3c18-4715-b428-c6c0712520f1/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILRelationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils.pdf.jpgRelationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils.pdf.jpgimage/jpeg61784https://repositorio.cuc.edu.co/bitstreams/c8e6e5ff-aed7-49f1-83d9-cdfda4b91238/download142e1ac1e67f4b26e5dde3a7d1f8195eMD54TEXTRelationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils.pdf.txtRelationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils.pdf.txttext/plain31845https://repositorio.cuc.edu.co/bitstreams/574c1440-d5df-462f-b31e-aeb201f0dad6/download352899d3d751b09577ea0a2d8b06ffddMD5511323/1074oai:repositorio.cuc.edu.co:11323/10742024-09-17 14:22:10.254open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=