Degradation of cyanides in wastewater from gold mining: A review of literature
Among the persistent chemical compoundsin the residual discharges are the highly toxic cyanides used in the industrial sector and in particular the mining industry for the extraction of gold, frequently appearing in low concentrations in the water, deteriorating its quality. Bemg of vital importance...
- Autores:
-
Vidal Tovar, Carlos
Correa Turizo, Rafael
Severiche Sierra, Carlos Alberto
Cabrera Lafaurie, Wilman
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8485
- Acceso en línea:
- https://hdl.handle.net/11323/8485
https://doi.org/10.36478/jeasci.2019.1475.1485
https://repositorio.cuc.edu.co/
- Palabra clave:
- Cyanized waters
Environmental pollution
Gold mining
Liquid spills
Quality
Toxic effluents
Aguas cianizadas
Contaminación ambiental
Minería de oro
Derrames de líquidos
Calidad
Efluentes tóxicos
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_1ed0a77c23ba7c9f28f90bf9086dbbd3 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8485 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Degradation of cyanides in wastewater from gold mining: A review of literature |
dc.title.translated.spa.fl_str_mv |
Degradación de cianuros en aguas residuales de la minería de oro: una revisión de la literatura |
title |
Degradation of cyanides in wastewater from gold mining: A review of literature |
spellingShingle |
Degradation of cyanides in wastewater from gold mining: A review of literature Cyanized waters Environmental pollution Gold mining Liquid spills Quality Toxic effluents Aguas cianizadas Contaminación ambiental Minería de oro Derrames de líquidos Calidad Efluentes tóxicos |
title_short |
Degradation of cyanides in wastewater from gold mining: A review of literature |
title_full |
Degradation of cyanides in wastewater from gold mining: A review of literature |
title_fullStr |
Degradation of cyanides in wastewater from gold mining: A review of literature |
title_full_unstemmed |
Degradation of cyanides in wastewater from gold mining: A review of literature |
title_sort |
Degradation of cyanides in wastewater from gold mining: A review of literature |
dc.creator.fl_str_mv |
Vidal Tovar, Carlos Correa Turizo, Rafael Severiche Sierra, Carlos Alberto Cabrera Lafaurie, Wilman |
dc.contributor.author.spa.fl_str_mv |
Vidal Tovar, Carlos Correa Turizo, Rafael Severiche Sierra, Carlos Alberto Cabrera Lafaurie, Wilman |
dc.subject.spa.fl_str_mv |
Cyanized waters Environmental pollution Gold mining Liquid spills Quality Toxic effluents Aguas cianizadas Contaminación ambiental Minería de oro Derrames de líquidos Calidad Efluentes tóxicos |
topic |
Cyanized waters Environmental pollution Gold mining Liquid spills Quality Toxic effluents Aguas cianizadas Contaminación ambiental Minería de oro Derrames de líquidos Calidad Efluentes tóxicos |
description |
Among the persistent chemical compoundsin the residual discharges are the highly toxic cyanides used in the industrial sector and in particular the mining industry for the extraction of gold, frequently appearing in low concentrations in the water, deteriorating its quality. Bemg of vital importance the treatment of the cyanide effluent, to reduce the concentration of cyanide before its final discharge, thus producing less toxic effluents, to achieve this several studies have been carried out and developed methods for its treatment, chemical, physical and biological An alternative to improve the quality of wastewater is the heterogeneous photocatalysis mediated by different semiconductors such as TiO,, considering this a simple technology and economical in relation to bioremediation treatments, effective and innovative in our environment for aqueous effluents. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-07-27T13:18:59Z |
dc.date.available.none.fl_str_mv |
2021-07-27T13:18:59Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
18196608 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8485 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.36478/jeasci.2019.1475.1485 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
18196608 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8485 https://doi.org/10.36478/jeasci.2019.1475.1485 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Acheampong, M.A. and P.N. Lens, 2014. Treatment of gold mining effluent in pilot fixed bed sorption system. Hydrometallurgy, 141: 1-7. Aguldelo, R., J. Betancur and C. Jaramillo, 2010. [Biotreatment of cyanide waste and its relation to public health (In Spanish)]. Rev. Fac. Nac. Salud Publica, 28: 7-20. Ahmed, M.S. and Y.A. Attia, 1995. Aerogel materials for photocatalytic detoxification of cyanide wastes in water. J. Non Cryst. Solids, 186: 402-407. Al-Ekabi, H. and N. Serpone, 1988. Kinetics studies in heterogeneous photocatalysis,I photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over TiO, supported on a glass matrix. J. Phys. Chem., 92: 5726-5731. Alrousan, D.M.A., MI. Polo-Lopez, P.S.M. Dunlop, P. Fernandez-Ibanez and J.A. Byrne, 2012. Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors. Applied Catal. B: Environ., 128: 126-134. Anonymous, 1984. [Decree 1594 of 1984. through which the uses of water and liquid waste are regulated]. Ministry of Health and Social Protection, Bogota, Colombia. (In Spanish) Arias-Lafargue, T., D. Fernandez-Compta, Y. SanchezRodriguez and <A. Lasserra-Portuondo, 2017. [Influence of leaching on the recovery of gold at the Oro-Barita mine in Santiago de Cuba (In Spanish)]. Chem. Technol., 37: 461-476. Augugliaro, V., V. Loddo, G. Marci, L. Palmisano and M.J. Lopez-Munoz, 1997. Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions. J. Catal., 166: 272-283.Augugliaro, V., V. Loddo, G. Marci, L. Palmisano and M.J. Lopez-Munoz, 1997. Photocatalytic oxidation of cyanides in aqueoustitanium dioxide suspensions. J. Catal., 166: 272-283. Baeissa, E.S., 2015. Synthesis and characterization of sulfur-titantum dioxide nanocomposites for photocatalytic oxidation of cyanide using visible light irradiation. Chin. J. Catal., 36: 698-704. Barakat, M.A., Y.T. Chen and C.P. Huang, 2004. Removal of toxic cyanide and Cu (I) ions from water by illuminated TiO, catalyst. J. Applied Catalysis B: Environ., 53: 13-20. Barrios, R.L.A., C.A.S. Sierra and J.D.C.J. Morales, 2017. [Toxic effects of paracetamol on human health and the environment (In Spanish)]. Agrar. Res. Magaz., 8: 139-149. Bruger, A., G. Fafilek and L. Rojas-Mendoza, 2018. On the volatilisation and decomposition of cyanide contaminations from gold mining. Sci. Total Environ., 627: 1167-1173. Cardona, 8.P.P., 2001. Coupling of photocatalytic and biological processes as a contribution to the detoxification of water. PhD Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland. Carey, JH, J. Lawrence and Y.H.M. Tosine, 1976. Photodechlorination of PCBs in the presence of titanium dioxide im aqueous suspensions. Bull. Environ. Contam. Toxicol., 16: 697-701. Chiang, K., R. Amal and T. Tran, 2002. Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv. Environ. Res., 6: 471-485. Chiang, K., R. Amal and T. Tran, 2003. Photocatalytic oxidation of cyanide: Kinetic and mechanistic studies. J. Mol. Catal. Chem., 193: 285-297. Choi, W.Y., A. Termin and M.R. Hoffmann, 1994. Romote bleaching of methylene blue by UV irradiated TiO, in the gas phase. J. Phys. Chem., 98: 13669-13679. Dash, R.R., A. Gaur and C. Balomajumder, 2009a. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J. Hazardous Mater., 163: 1-11. Dash, R.R., C. Balomajyumder and A. Kumar, 2009b. Removal of cyanide from water and wastewater using granular activated carbon. Chem. Eng. J., 146: 408-41 3. Davit, P., G. Martra, 8. Coluccia, V. Augugliaro and E.G. Lopez et al, 2003. Adsorption and photocatalytic degradation of acetonitrile: FT-IR investigation. J. Mol. Catal. Chem., 204: 693-701. Domenech, X., W.F. Jardim and MJ. Litter, 2001. [Advanced Oxidation Processes for the Elimination of Pollutants]. In: [Elimination of Contaminants by Heterogeneous Photocatalysis], CYTED. (Ed.). National Atomic Energy Commission, Buenos Aires, Argentina, pp: 3-25 (In Spanish). Donato, D.B., O. Nichols, H. Possingham, M. Moore and PF. Ricci et al., 2007. A critical review of the effects ofgold cyanide-bearing tailings solutions on wildlife. Environ.Intl., 33: 974-984. Duran, A., J.M. Monteagudo, I. San Martin and R. Sanchez-Romero, 2009. Photocatalytic treatment of IGCC powerstation effluents in a UV-pilot plant. J. Hazard. Mater., 167: 885-891. Dwivedi, N., C. Balomajumder and P. Mondal, 2016. Comparative investigation on the removal of cyanide from aqueous solution using two different bioadsorbents. Water Resour. Ind., 15: 28-40. Fajardo, J.A., D.C. Burbano, E.J. Burbano, N.J. Apraez and M.I.L.T.O.N. Rosero Moreano, 2010. [Study of chemical methods of cyanide removal present in cyanide residues from the vein gold extraction process in the Department of Narino (In Spanish)]. Revista Luna Azul, 31: 8-16. Feng, C., C. Aldrich, J.J. Eksteen and D.W.M. Arrigan, 2018. Removal of arsenic from gold cyanidation process waters by use of cerium-based magnetic adsorbents. Miner. Eng., 122: 84-90. Fortuna, D., A. Rahimsyah and Y. Puspitasri, 2015. Degradation of acid cyanide poison in rubber seed (Hevea brasiliensis) after treatment with rice husk ash. Intl. J. Adv. Sci. Eng. Inf. Technol., 5: 291-293. Garces Giraldo, L.F., M. Franco, E. Alejandro and J.J. Santamaria Arango, 2004. [Photocatalysis as an alternative for wastewater treatment (In Spanish)]. Lasallista Magaz. Invest., 1: 83-92. Garcia, D.E.G., 2015. [Assessment of ecological impacts due to gold miming in the Guabas River, Valle del Cauca, Colombia (In Spanish)]. Magaz. Agrar. Environ. Res., 6: 243-254. Garcia-Ochoa, F. and A. Santos, 2001. [Catalytic Oxidation of Phenolic Compounds in Wastewater]. In: Catalysts and Adsorbents for Environmental Protection in the Ibero-American Region, Jesus Blanco, P.A. (Ed.). Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo, Madrid, Spain, pp: 275-284. Gebresemati, M., N. Gabbiye and O. Sahu, 2017. Sorption of cyanide from aqueous medium by coffee husk: Response surface methodology. J. Applied Res. Technol., 15: 27-35. Gimenez, J., D. Curco and M.A. Queral, 1999. Photocatalytic treatment of phenol and 2, 4- dichlorophenol in a solar plant in the way to scaling-up. Catal. Today, 54: 229-243. Gomez, L., A. Urkiaga, M. Gutierrez and L. De las Fuentes, 2000. [Photooxidation for chemical spills: Review and experiences of advanced oxidation processes (In Spamsh)]. Chem. Eng. Magaz., 32: 211-216. Gordo, D.A.M., 2018. [Phenolic compounds, an approach to your biosynthesis, synthesis and biological activity (In Spanish)]. Magaz. Agrar. Environ. Res., 9: 81-104. Guadalima, M.P.G. and D.A.N. Monteros, 2018. Evaluation of the rotational speed and carbon source on the biological removal of free cyanide present on gold mine wastewater, using a rotating biological contactor. J. Water Proc. Eng., 23: 84-90. Hernandez-Alonso, M.D., J.M. Coronado, A.J. Maira, J. Soria and V. Loddo et a/., 2002. Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanide ions. Appl. Catal. Environ., 39: 257-267. Hidaka, H., T. Nakamura, A. Ishizaka, M. Tsuchiya and J. Zhao, 1992. Heterogeneous photocatalytic degradation of cyanide on Ti0, surfaces. J. Photochem. Photobiol. Chem., 66: 367-374. Irfan, U.R., I. Nur and M. Kasim, 2017. Hydrothermal alteration mineralogy associated with gold mineralization in Buladu Area, Gorontalo, Northern Sulawesi, Indonesia. Intl. J. Adv. Sci. Eng. Inf. Technol., 7: 2244-2250. Jaramillo, G., J.A. Pabon and E.G. Pavas, 2002. [Photodegradation of phenols in industrial wastewater (In Spanish)]. Chem. Eng., 386: 117-122. Johnson, C.A., 2015. The fate of cyanide in leach wastes at gold mines: An environmental perspective. Appl. Geochem., 57: 194-205. Kim, T.K., T. Kim, A. Jo, 8. Park and K.H. Choi et ai, 2018. Degradation mechanism of cyanide in water using a UV-LED/H,O,/Cu™ system. Chemosphere, 208: 441-449. Kopytko, M., S.N.C. Torres and M.J.E. Gomez, 2017. [Stimulated biodegradation of soils contaminated with organochlorine pesticides (In Spanish)]. Agrar. Environ. Res. J., 8: 119-130. Kuyucak, N. and A. Akcil, 2013. Cyamde and removal options from effluents in gold mining and metallurgical processes. Miner. Eng., 50: 13-29. Laliberte, M., 2015. Reducing the toxicity of gold-mine effluent using biological reactors and precipitation. Miner. Metall. Proc., 32: 1-5. Liu, W., W. Sun, A.G. Borthwick and J. Ni, 2013. Comparison on aggregation and sedimentation of titanium dioxide, titanate nanotubes and titanate nanotubes-T10,: Influence of pH, ionic strength and natural organic matter. Colloids Surf. Physicochemical Eng. Aspec., 434: 319-328. Lopez, A.L.B. and I.M.C. Sierra, 2012. [Comparative catalytic study of the TiO, and Nb,O, systemsin the degradation of cyanide according to the type of oxidant (In Spanish)]. Eng. Sci., 8: 257-280. Malato, A., J. Blanco, A. Vidal and C. Richter, 2002. Photocatalysis with solar energy at a pilot-plant scale: An overview. Applied Catalysis B: Environ., 37: 1-15. Mekuto, L., S.K. Ntwampe and A. Akcil, 2016. An integrated biological approach for treatment of cyanidation wastewater. Sci. Total Environ, 571: 711-720. Mesa, G.A.P., 1998. [Photolysis and photodegradation sensitized with Fe,, and TiO, ofpesticides in natural waters (In Spanish)]. Ph.D Thesis, Universidad de Barcelona, Barcelona, Spain. Moussavi, G., M. Pourakbar, E. Aghayami and M. Mahdavianpour, 2018. Investigating the aerated VUV/PSprocess simultaneously generating hydroxyl and sulfate radicals for the oxidation of cyanide in aqueous solution and industrial wastewater. Chem. Eng. J., 350: 673-680. Oh, Y.C. and W.S. Jenks, 2004. Photocatalytic degradation of a cyanuric acid, a recalcitrant species. J. Photochem. Photobiol. Chem., 162: 323-328. Olivero-Verbel, J., Negrete-Marrugo, K. Caballero-Gallardo and J. 2011. Relationship between localization of gold mining areas and hair mercury levels in people from Bolivar, north of Colombia.Biol. Trace Element Res., 144: 118-132. Osathaphan, K., B. Chucherdwatanasak, P. Rachdawong and V.K. Sharma, 2008. Photocatalytic oxidation of cyanide in aqueous titanium dioxide suspensions: Effect of ethylenediaminetetraacetate. Solar Energy, 82: 1031-1036. Pala, A. R.R. Politi, G. Kursun, M. Erol and F. Bakal et ai, 2015. Photocatalytic degradation of cyanide in wastewater using new generated nanothin film photocatalyst. Surf. Coat. Technol, 271: 207-216. Parmon, V., A.V. Emeline and N. Serpone, 2002. Glossary of terms in photocatalysis and radiocatalysis. Intl. J. Photoenergy, 4: 91-131. Peral, J., J. Munoz and X. Domenech, 1990. Photosensitized CNoxidation over TiO, J. Photochem. Photobiol. Chem., 55: 251-257. Percherancier, J.P., R. Chapelon and B. Pouyet, 1995. Semiconductor-sensitized photodegradation of pesticides in water: The case of carbetamide. J. Photochem. Photobiol. Chem., 87: 261-266. Pirmoradi, M., S. Hashemian and M.R. Shayesteh, 2017. Kinetics and thermodynamics of cyanide removal by ZnO@ NiO nanocrystals. Trans. Nonferrous Met. Soc. China, 27: 1394-1403. Pozzo, R.L., M.A. Baltanas and A.E. Cassano, 1997. Supported titamum oxide as photocatalyst in water decontamination: State of the art. Catal. Today, 39: 219-231. Quintero, E.C., A.G.G. Bayona, M.A.-H. Lopez and M.L.P. Rojas, 2017. [Strategic management of the production of sterile waste from sustaimable mining, using eco-efficient mining practices in Colombia (In Spanish)]. Agrar. Environ. Res. J., 8: 107-118. Quiroga, P.N. and V. Olmos, 2009. [Review of the toxicokinetics and toxicity of hydrocyanic acid and cyanides (In Spanish)]. Acta Toxicol. Argent., 17: 20-32. Quispe, L., M.D.C. Arteaga, E. Cardenas, C. Santelices and E. Palenque et a/., 2011. [Elimination of cyanide by combined UV/H,O,/TiO , system (In Spanish)]. Boliv. J. Chem., 28: 113-118. Ray, A.K., 1999. Design, modelling and experimentation of a new large-scale photocatalytic reactor for water treatment. Chem. Eng. Sci., 54: 3113-3125. Razanamahandry, L.C., H.A. Andrianisa, H. Karoui, K.M. Kouakou and H. Yacouba, 2016. Biodegradation of free cyanide by bacterial species isolated from cyanide-contaminated artisanal gold mining catchment area in Burkina Faso. Chemosphere, 157: 71-78. Sancho, J.P., B. Fernandez, J. Ayala, M.P. Garcia and A. Lavandeira, 2011. [Application of potassium permanganate for the elumination of copper cyanides in wastewater from the leaching plant in a gold mine (II): Pilot plant tests (in Spanish)]. Revista Metalurgia, 47: 224-233. Sarla, M., M. Pandit, D.K. Tyagi and J.C. Kapoor, 2004. Oxidation of cyamde in aqueous solution by chemical and photochemical process. J. Hazard. Mater., 116: 49-56. Serpone, N., 1997. Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J. Ady. Oxid. Technol., 2: 203-216. Vidal, A. AI. Dyaz, A. El Hraiki, M. Romero and I. Muguruza et al., 1999. Solar photocatalysis for detoxification and disinfection of contaminated water: Pilot plant studies. Catal. Today, 54: 283-290. Yeddou, A.R., 5. Chergui, A. Chergui, F. Halet and A. Hamza et al., 2011. Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide in presence of copper-impregnated activated carbon. Miner. Eng., 24: 788-793. Yu, X., R. Xu, C. Wei and H. Wu, 2016. Removal of cyanide compounds from coking wastewater by ferrous sulfate: Improvement of biode gradability. J. Hazard. Mater., 302: 468-474. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
ARPN Journal of Engineering and Applied Sciences |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://medwelljournals.com/abstract/?doi=jeasci.2019.1475.1485 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/553ee996-40eb-41ac-a960-b957848f6cfc/download https://repositorio.cuc.edu.co/bitstreams/460e3625-d338-422e-a704-1cfe42bafebe/download https://repositorio.cuc.edu.co/bitstreams/8595249e-555b-4703-9f60-8a32d5307386/download https://repositorio.cuc.edu.co/bitstreams/bf3602d3-aad9-4c0b-ab35-e1e45c5add4d/download https://repositorio.cuc.edu.co/bitstreams/e6726d1b-5650-4656-8146-6bbe1a45d3df/download |
bitstream.checksum.fl_str_mv |
a0e363bb15e8473bfe9bfc27a2ecac6e 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad c9106b55956fa13d0518e10b19a65c0c c13694495bac56ff0e07ac50c21249fa |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166824625176576 |
spelling |
Vidal Tovar, CarlosCorrea Turizo, RafaelSeveriche Sierra, Carlos AlbertoCabrera Lafaurie, Wilman2021-07-27T13:18:59Z2021-07-27T13:18:59Z201918196608https://hdl.handle.net/11323/8485https://doi.org/10.36478/jeasci.2019.1475.1485Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Among the persistent chemical compoundsin the residual discharges are the highly toxic cyanides used in the industrial sector and in particular the mining industry for the extraction of gold, frequently appearing in low concentrations in the water, deteriorating its quality. Bemg of vital importance the treatment of the cyanide effluent, to reduce the concentration of cyanide before its final discharge, thus producing less toxic effluents, to achieve this several studies have been carried out and developed methods for its treatment, chemical, physical and biological An alternative to improve the quality of wastewater is the heterogeneous photocatalysis mediated by different semiconductors such as TiO,, considering this a simple technology and economical in relation to bioremediation treatments, effective and innovative in our environment for aqueous effluents.Entre los compuestos químicos persistentes en las descargas residuales se encuentran los cianuros altamente tóxicos. utilizado en el sector industrial y en particular la industria minera para la extracción de oro, apareciendo frecuentemente en bajas concentraciones en el agua, deteriorando su calidad. Siendo de vital importancia el tratamiento de la efluente de cianuro, para reducir la concentración de cianuro antes de su descarga final, produciendo así menos tóxicos efluentes, para lograrlo se han realizado varios estudios y se han desarrollado métodos para su tratamiento, química, física y biológica Una alternativa para mejorar la calidad de las aguas residuales es la heterogeneidad fotocatálisis mediada por diferentes semiconductores como el TiO, considerando esta una tecnología simple y económico en relación a los tratamientos de biorremediación, eficaz e innovador en nuestro medio para acuosos efluentes.Vidal Tovar, CarlosCorrea Turizo, Rafael-will be generated-orcid-0000-0002-3978-1196-600Severiche Sierra, Carlos Alberto-will be generated-orcid-0000-0001-7190-4849-600Cabrera Lafaurie, Wilmanapplication/pdfengARPN Journal of Engineering and Applied SciencesCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cyanized watersEnvironmental pollutionGold miningLiquid spillsQualityToxic effluentsAguas cianizadasContaminación ambientalMinería de oroDerrames de líquidosCalidadEfluentes tóxicosDegradation of cyanides in wastewater from gold mining: A review of literatureDegradación de cianuros en aguas residuales de la minería de oro: una revisión de la literaturaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://medwelljournals.com/abstract/?doi=jeasci.2019.1475.1485Acheampong, M.A. and P.N. Lens, 2014. Treatment of gold mining effluent in pilot fixed bed sorption system. Hydrometallurgy, 141: 1-7.Aguldelo, R., J. Betancur and C. Jaramillo, 2010. [Biotreatment of cyanide waste and its relation to public health (In Spanish)]. Rev. Fac. Nac. Salud Publica, 28: 7-20.Ahmed, M.S. and Y.A. Attia, 1995. Aerogel materials for photocatalytic detoxification of cyanide wastes in water. J. Non Cryst. Solids, 186: 402-407.Al-Ekabi, H. and N. Serpone, 1988. Kinetics studies in heterogeneous photocatalysis,I photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over TiO, supported on a glass matrix. J. Phys. Chem., 92: 5726-5731.Alrousan, D.M.A., MI. Polo-Lopez, P.S.M. Dunlop, P. Fernandez-Ibanez and J.A. Byrne, 2012. Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors. Applied Catal. B: Environ., 128: 126-134.Anonymous, 1984. [Decree 1594 of 1984. through which the uses of water and liquid waste are regulated]. Ministry of Health and Social Protection, Bogota, Colombia. (In Spanish)Arias-Lafargue, T., D. Fernandez-Compta, Y. SanchezRodriguez and <A. Lasserra-Portuondo, 2017. [Influence of leaching on the recovery of gold at the Oro-Barita mine in Santiago de Cuba (In Spanish)]. Chem. Technol., 37: 461-476.Augugliaro, V., V. Loddo, G. Marci, L. Palmisano and M.J. Lopez-Munoz, 1997. Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions. J. Catal., 166: 272-283.Augugliaro, V., V. Loddo, G. Marci, L. Palmisano and M.J. Lopez-Munoz, 1997. Photocatalytic oxidation of cyanides in aqueoustitanium dioxide suspensions. J. Catal., 166: 272-283.Baeissa, E.S., 2015. Synthesis and characterization of sulfur-titantum dioxide nanocomposites for photocatalytic oxidation of cyanide using visible light irradiation. Chin. J. Catal., 36: 698-704.Barakat, M.A., Y.T. Chen and C.P. Huang, 2004. Removal of toxic cyanide and Cu (I) ions from water by illuminated TiO, catalyst. J. Applied Catalysis B: Environ., 53: 13-20.Barrios, R.L.A., C.A.S. Sierra and J.D.C.J. Morales, 2017. [Toxic effects of paracetamol on human health and the environment (In Spanish)]. Agrar. Res. Magaz., 8: 139-149.Bruger, A., G. Fafilek and L. Rojas-Mendoza, 2018. On the volatilisation and decomposition of cyanide contaminations from gold mining. Sci. Total Environ., 627: 1167-1173.Cardona, 8.P.P., 2001. Coupling of photocatalytic and biological processes as a contribution to the detoxification of water. PhD Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.Carey, JH, J. Lawrence and Y.H.M. Tosine, 1976. Photodechlorination of PCBs in the presence of titanium dioxide im aqueous suspensions. Bull. Environ. Contam. Toxicol., 16: 697-701.Chiang, K., R. Amal and T. Tran, 2002. Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv. Environ. Res., 6: 471-485.Chiang, K., R. Amal and T. Tran, 2003. Photocatalytic oxidation of cyanide: Kinetic and mechanistic studies. J. Mol. Catal. Chem., 193: 285-297.Choi, W.Y., A. Termin and M.R. Hoffmann, 1994. Romote bleaching of methylene blue by UV irradiated TiO, in the gas phase. J. Phys. Chem., 98: 13669-13679.Dash, R.R., A. Gaur and C. Balomajumder, 2009a. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J. Hazardous Mater., 163: 1-11.Dash, R.R., C. Balomajyumder and A. Kumar, 2009b. Removal of cyanide from water and wastewater using granular activated carbon. Chem. Eng. J., 146: 408-41 3.Davit, P., G. Martra, 8. Coluccia, V. Augugliaro and E.G. Lopez et al, 2003. Adsorption and photocatalytic degradation of acetonitrile: FT-IR investigation. J. Mol. Catal. Chem., 204: 693-701.Domenech, X., W.F. Jardim and MJ. Litter, 2001. [Advanced Oxidation Processes for the Elimination of Pollutants]. In: [Elimination of Contaminants by Heterogeneous Photocatalysis], CYTED. (Ed.). National Atomic Energy Commission, Buenos Aires, Argentina, pp: 3-25 (In Spanish).Donato, D.B., O. Nichols, H. Possingham, M. Moore and PF. Ricci et al., 2007. A critical review of the effects ofgold cyanide-bearing tailings solutions on wildlife. Environ.Intl., 33: 974-984.Duran, A., J.M. Monteagudo, I. San Martin and R. Sanchez-Romero, 2009. Photocatalytic treatment of IGCC powerstation effluents in a UV-pilot plant. J. Hazard. Mater., 167: 885-891.Dwivedi, N., C. Balomajumder and P. Mondal, 2016. Comparative investigation on the removal of cyanide from aqueous solution using two different bioadsorbents. Water Resour. Ind., 15: 28-40.Fajardo, J.A., D.C. Burbano, E.J. Burbano, N.J. Apraez and M.I.L.T.O.N. Rosero Moreano, 2010. [Study of chemical methods of cyanide removal present in cyanide residues from the vein gold extraction process in the Department of Narino (In Spanish)]. Revista Luna Azul, 31: 8-16.Feng, C., C. Aldrich, J.J. Eksteen and D.W.M. Arrigan, 2018. Removal of arsenic from gold cyanidation process waters by use of cerium-based magnetic adsorbents. Miner. Eng., 122: 84-90.Fortuna, D., A. Rahimsyah and Y. Puspitasri, 2015. Degradation of acid cyanide poison in rubber seed (Hevea brasiliensis) after treatment with rice husk ash. Intl. J. Adv. Sci. Eng. Inf. Technol., 5: 291-293.Garces Giraldo, L.F., M. Franco, E. Alejandro and J.J. Santamaria Arango, 2004. [Photocatalysis as an alternative for wastewater treatment (In Spanish)]. Lasallista Magaz. Invest., 1: 83-92.Garcia, D.E.G., 2015. [Assessment of ecological impacts due to gold miming in the Guabas River, Valle del Cauca, Colombia (In Spanish)]. Magaz. Agrar. Environ. Res., 6: 243-254.Garcia-Ochoa, F. and A. Santos, 2001. [Catalytic Oxidation of Phenolic Compounds in Wastewater]. In: Catalysts and Adsorbents for Environmental Protection in the Ibero-American Region, Jesus Blanco, P.A. (Ed.). Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo, Madrid, Spain, pp: 275-284.Gebresemati, M., N. Gabbiye and O. Sahu, 2017. Sorption of cyanide from aqueous medium by coffee husk: Response surface methodology. J. Applied Res. Technol., 15: 27-35.Gimenez, J., D. Curco and M.A. Queral, 1999. Photocatalytic treatment of phenol and 2, 4- dichlorophenol in a solar plant in the way to scaling-up. Catal. Today, 54: 229-243.Gomez, L., A. Urkiaga, M. Gutierrez and L. De las Fuentes, 2000. [Photooxidation for chemical spills: Review and experiences of advanced oxidation processes (In Spamsh)]. Chem. Eng. Magaz., 32: 211-216.Gordo, D.A.M., 2018. [Phenolic compounds, an approach to your biosynthesis, synthesis and biological activity (In Spanish)]. Magaz. Agrar. Environ. Res., 9: 81-104.Guadalima, M.P.G. and D.A.N. Monteros, 2018. Evaluation of the rotational speed and carbon source on the biological removal of free cyanide present on gold mine wastewater, using a rotating biological contactor. J. Water Proc. Eng., 23: 84-90.Hernandez-Alonso, M.D., J.M. Coronado, A.J. Maira, J. Soria and V. Loddo et a/., 2002. Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanide ions. Appl. Catal. Environ., 39: 257-267.Hidaka, H., T. Nakamura, A. Ishizaka, M. Tsuchiya and J. Zhao, 1992. Heterogeneous photocatalytic degradation of cyanide on Ti0, surfaces. J. Photochem. Photobiol. Chem., 66: 367-374.Irfan, U.R., I. Nur and M. Kasim, 2017. Hydrothermal alteration mineralogy associated with gold mineralization in Buladu Area, Gorontalo, Northern Sulawesi, Indonesia. Intl. J. Adv. Sci. Eng. Inf. Technol., 7: 2244-2250.Jaramillo, G., J.A. Pabon and E.G. Pavas, 2002. [Photodegradation of phenols in industrial wastewater (In Spanish)]. Chem. Eng., 386: 117-122.Johnson, C.A., 2015. The fate of cyanide in leach wastes at gold mines: An environmental perspective. Appl. Geochem., 57: 194-205.Kim, T.K., T. Kim, A. Jo, 8. Park and K.H. Choi et ai, 2018. Degradation mechanism of cyanide in water using a UV-LED/H,O,/Cu™ system. Chemosphere, 208: 441-449.Kopytko, M., S.N.C. Torres and M.J.E. Gomez, 2017. [Stimulated biodegradation of soils contaminated with organochlorine pesticides (In Spanish)]. Agrar. Environ. Res. J., 8: 119-130.Kuyucak, N. and A. Akcil, 2013. Cyamde and removal options from effluents in gold mining and metallurgical processes. Miner. Eng., 50: 13-29.Laliberte, M., 2015. Reducing the toxicity of gold-mine effluent using biological reactors and precipitation. Miner. Metall. Proc., 32: 1-5.Liu, W., W. Sun, A.G. Borthwick and J. Ni, 2013. Comparison on aggregation and sedimentation of titanium dioxide, titanate nanotubes and titanate nanotubes-T10,: Influence of pH, ionic strength and natural organic matter. Colloids Surf. Physicochemical Eng. Aspec., 434: 319-328.Lopez, A.L.B. and I.M.C. Sierra, 2012. [Comparative catalytic study of the TiO, and Nb,O, systemsin the degradation of cyanide according to the type of oxidant (In Spanish)]. Eng. Sci., 8: 257-280.Malato, A., J. Blanco, A. Vidal and C. Richter, 2002. Photocatalysis with solar energy at a pilot-plant scale: An overview. Applied Catalysis B: Environ., 37: 1-15.Mekuto, L., S.K. Ntwampe and A. Akcil, 2016. An integrated biological approach for treatment of cyanidation wastewater. Sci. Total Environ, 571: 711-720.Mesa, G.A.P., 1998. [Photolysis and photodegradation sensitized with Fe,, and TiO, ofpesticides in natural waters (In Spanish)]. Ph.D Thesis, Universidad de Barcelona, Barcelona, Spain.Moussavi, G., M. Pourakbar, E. Aghayami and M. Mahdavianpour, 2018. Investigating the aerated VUV/PSprocess simultaneously generating hydroxyl and sulfate radicals for the oxidation of cyanide in aqueous solution and industrial wastewater. Chem. Eng. J., 350: 673-680.Oh, Y.C. and W.S. Jenks, 2004. Photocatalytic degradation of a cyanuric acid, a recalcitrant species. J. Photochem. Photobiol. Chem., 162: 323-328.Olivero-Verbel, J., Negrete-Marrugo, K. Caballero-Gallardo and J. 2011. Relationship between localization of gold mining areas and hair mercury levels in people from Bolivar, north of Colombia.Biol. Trace Element Res., 144: 118-132.Osathaphan, K., B. Chucherdwatanasak, P. Rachdawong and V.K. Sharma, 2008. Photocatalytic oxidation of cyanide in aqueous titanium dioxide suspensions: Effect of ethylenediaminetetraacetate. Solar Energy, 82: 1031-1036.Pala, A. R.R. Politi, G. Kursun, M. Erol and F. Bakal et ai, 2015. Photocatalytic degradation of cyanide in wastewater using new generated nanothin film photocatalyst. Surf. Coat. Technol, 271: 207-216.Parmon, V., A.V. Emeline and N. Serpone, 2002. Glossary of terms in photocatalysis and radiocatalysis. Intl. J. Photoenergy, 4: 91-131.Peral, J., J. Munoz and X. Domenech, 1990. Photosensitized CNoxidation over TiO, J. Photochem. Photobiol. Chem., 55: 251-257.Percherancier, J.P., R. Chapelon and B. Pouyet, 1995. Semiconductor-sensitized photodegradation of pesticides in water: The case of carbetamide. J. Photochem. Photobiol. Chem., 87: 261-266.Pirmoradi, M., S. Hashemian and M.R. Shayesteh, 2017. Kinetics and thermodynamics of cyanide removal by ZnO@ NiO nanocrystals. Trans. Nonferrous Met. Soc. China, 27: 1394-1403.Pozzo, R.L., M.A. Baltanas and A.E. Cassano, 1997. Supported titamum oxide as photocatalyst in water decontamination: State of the art. Catal. Today, 39: 219-231.Quintero, E.C., A.G.G. Bayona, M.A.-H. Lopez and M.L.P. Rojas, 2017. [Strategic management of the production of sterile waste from sustaimable mining, using eco-efficient mining practices in Colombia (In Spanish)]. Agrar. Environ. Res. J., 8: 107-118.Quiroga, P.N. and V. Olmos, 2009. [Review of the toxicokinetics and toxicity of hydrocyanic acid and cyanides (In Spanish)]. Acta Toxicol. Argent., 17: 20-32.Quispe, L., M.D.C. Arteaga, E. Cardenas, C. Santelices and E. Palenque et a/., 2011. [Elimination of cyanide by combined UV/H,O,/TiO , system (In Spanish)]. Boliv. J. Chem., 28: 113-118.Ray, A.K., 1999. Design, modelling and experimentation of a new large-scale photocatalytic reactor for water treatment. Chem. Eng. Sci., 54: 3113-3125.Razanamahandry, L.C., H.A. Andrianisa, H. Karoui, K.M. Kouakou and H. Yacouba, 2016. Biodegradation of free cyanide by bacterial species isolated from cyanide-contaminated artisanal gold mining catchment area in Burkina Faso. Chemosphere, 157: 71-78.Sancho, J.P., B. Fernandez, J. Ayala, M.P. Garcia and A. Lavandeira, 2011. [Application of potassium permanganate for the elumination of copper cyanides in wastewater from the leaching plant in a gold mine (II): Pilot plant tests (in Spanish)]. Revista Metalurgia, 47: 224-233.Sarla, M., M. Pandit, D.K. Tyagi and J.C. Kapoor, 2004. Oxidation of cyamde in aqueous solution by chemical and photochemical process. J. Hazard. Mater., 116: 49-56.Serpone, N., 1997. Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J. Ady. Oxid. Technol., 2: 203-216.Vidal, A. AI. Dyaz, A. El Hraiki, M. Romero and I. Muguruza et al., 1999. Solar photocatalysis for detoxification and disinfection of contaminated water: Pilot plant studies. Catal. Today, 54: 283-290.Yeddou, A.R., 5. Chergui, A. Chergui, F. Halet and A. Hamza et al., 2011. Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide in presence of copper-impregnated activated carbon. Miner. Eng., 24: 788-793.Yu, X., R. Xu, C. Wei and H. Wu, 2016. Removal of cyanide compounds from coking wastewater by ferrous sulfate: Improvement of biode gradability. J. Hazard. Mater., 302: 468-474.PublicationORIGINALPDF.pdfPDF.pdfapplication/pdf1037957https://repositorio.cuc.edu.co/bitstreams/553ee996-40eb-41ac-a960-b957848f6cfc/downloada0e363bb15e8473bfe9bfc27a2ecac6eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/460e3625-d338-422e-a704-1cfe42bafebe/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8595249e-555b-4703-9f60-8a32d5307386/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILPDF.pdf.jpgPDF.pdf.jpgimage/jpeg13933https://repositorio.cuc.edu.co/bitstreams/bf3602d3-aad9-4c0b-ab35-e1e45c5add4d/downloadc9106b55956fa13d0518e10b19a65c0cMD54TEXTPDF.pdf.txtPDF.pdf.txttext/plain53065https://repositorio.cuc.edu.co/bitstreams/e6726d1b-5650-4656-8146-6bbe1a45d3df/downloadc13694495bac56ff0e07ac50c21249faMD5511323/8485oai:repositorio.cuc.edu.co:11323/84852024-09-17 14:14:29.845http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |