Degradation of cyanides in wastewater from gold mining: A review of literature

Among the persistent chemical compoundsin the residual discharges are the highly toxic cyanides used in the industrial sector and in particular the mining industry for the extraction of gold, frequently appearing in low concentrations in the water, deteriorating its quality. Bemg of vital importance...

Full description

Autores:
Vidal Tovar, Carlos
Correa Turizo, Rafael
Severiche Sierra, Carlos Alberto
Cabrera Lafaurie, Wilman
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8485
Acceso en línea:
https://hdl.handle.net/11323/8485
https://doi.org/10.36478/jeasci.2019.1475.1485
https://repositorio.cuc.edu.co/
Palabra clave:
Cyanized waters
Environmental pollution
Gold mining
Liquid spills
Quality
Toxic effluents
Aguas cianizadas
Contaminación ambiental
Minería de oro
Derrames de líquidos
Calidad
Efluentes tóxicos
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_1ed0a77c23ba7c9f28f90bf9086dbbd3
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8485
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Degradation of cyanides in wastewater from gold mining: A review of literature
dc.title.translated.spa.fl_str_mv Degradación de cianuros en aguas residuales de la minería de oro: una revisión de la literatura
title Degradation of cyanides in wastewater from gold mining: A review of literature
spellingShingle Degradation of cyanides in wastewater from gold mining: A review of literature
Cyanized waters
Environmental pollution
Gold mining
Liquid spills
Quality
Toxic effluents
Aguas cianizadas
Contaminación ambiental
Minería de oro
Derrames de líquidos
Calidad
Efluentes tóxicos
title_short Degradation of cyanides in wastewater from gold mining: A review of literature
title_full Degradation of cyanides in wastewater from gold mining: A review of literature
title_fullStr Degradation of cyanides in wastewater from gold mining: A review of literature
title_full_unstemmed Degradation of cyanides in wastewater from gold mining: A review of literature
title_sort Degradation of cyanides in wastewater from gold mining: A review of literature
dc.creator.fl_str_mv Vidal Tovar, Carlos
Correa Turizo, Rafael
Severiche Sierra, Carlos Alberto
Cabrera Lafaurie, Wilman
dc.contributor.author.spa.fl_str_mv Vidal Tovar, Carlos
Correa Turizo, Rafael
Severiche Sierra, Carlos Alberto
Cabrera Lafaurie, Wilman
dc.subject.spa.fl_str_mv Cyanized waters
Environmental pollution
Gold mining
Liquid spills
Quality
Toxic effluents
Aguas cianizadas
Contaminación ambiental
Minería de oro
Derrames de líquidos
Calidad
Efluentes tóxicos
topic Cyanized waters
Environmental pollution
Gold mining
Liquid spills
Quality
Toxic effluents
Aguas cianizadas
Contaminación ambiental
Minería de oro
Derrames de líquidos
Calidad
Efluentes tóxicos
description Among the persistent chemical compoundsin the residual discharges are the highly toxic cyanides used in the industrial sector and in particular the mining industry for the extraction of gold, frequently appearing in low concentrations in the water, deteriorating its quality. Bemg of vital importance the treatment of the cyanide effluent, to reduce the concentration of cyanide before its final discharge, thus producing less toxic effluents, to achieve this several studies have been carried out and developed methods for its treatment, chemical, physical and biological An alternative to improve the quality of wastewater is the heterogeneous photocatalysis mediated by different semiconductors such as TiO,, considering this a simple technology and economical in relation to bioremediation treatments, effective and innovative in our environment for aqueous effluents.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2021-07-27T13:18:59Z
dc.date.available.none.fl_str_mv 2021-07-27T13:18:59Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 18196608
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8485
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.36478/jeasci.2019.1475.1485
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 18196608
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8485
https://doi.org/10.36478/jeasci.2019.1475.1485
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Acheampong, M.A. and P.N. Lens, 2014. Treatment of gold mining effluent in pilot fixed bed sorption system. Hydrometallurgy, 141: 1-7.
Aguldelo, R., J. Betancur and C. Jaramillo, 2010. [Biotreatment of cyanide waste and its relation to public health (In Spanish)]. Rev. Fac. Nac. Salud Publica, 28: 7-20.
Ahmed, M.S. and Y.A. Attia, 1995. Aerogel materials for photocatalytic detoxification of cyanide wastes in water. J. Non Cryst. Solids, 186: 402-407.
Al-Ekabi, H. and N. Serpone, 1988. Kinetics studies in heterogeneous photocatalysis,I photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over TiO, supported on a glass matrix. J. Phys. Chem., 92: 5726-5731.
Alrousan, D.M.A., MI. Polo-Lopez, P.S.M. Dunlop, P. Fernandez-Ibanez and J.A. Byrne, 2012. Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors. Applied Catal. B: Environ., 128: 126-134.
Anonymous, 1984. [Decree 1594 of 1984. through which the uses of water and liquid waste are regulated]. Ministry of Health and Social Protection, Bogota, Colombia. (In Spanish)
Arias-Lafargue, T., D. Fernandez-Compta, Y. SanchezRodriguez and <A. Lasserra-Portuondo, 2017. [Influence of leaching on the recovery of gold at the Oro-Barita mine in Santiago de Cuba (In Spanish)]. Chem. Technol., 37: 461-476.
Augugliaro, V., V. Loddo, G. Marci, L. Palmisano and M.J. Lopez-Munoz, 1997. Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions. J. Catal., 166: 272-283.Augugliaro, V., V. Loddo, G. Marci, L. Palmisano and M.J. Lopez-Munoz, 1997. Photocatalytic oxidation of cyanides in aqueoustitanium dioxide suspensions. J. Catal., 166: 272-283.
Baeissa, E.S., 2015. Synthesis and characterization of sulfur-titantum dioxide nanocomposites for photocatalytic oxidation of cyanide using visible light irradiation. Chin. J. Catal., 36: 698-704.
Barakat, M.A., Y.T. Chen and C.P. Huang, 2004. Removal of toxic cyanide and Cu (I) ions from water by illuminated TiO, catalyst. J. Applied Catalysis B: Environ., 53: 13-20.
Barrios, R.L.A., C.A.S. Sierra and J.D.C.J. Morales, 2017. [Toxic effects of paracetamol on human health and the environment (In Spanish)]. Agrar. Res. Magaz., 8: 139-149.
Bruger, A., G. Fafilek and L. Rojas-Mendoza, 2018. On the volatilisation and decomposition of cyanide contaminations from gold mining. Sci. Total Environ., 627: 1167-1173.
Cardona, 8.P.P., 2001. Coupling of photocatalytic and biological processes as a contribution to the detoxification of water. PhD Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
Carey, JH, J. Lawrence and Y.H.M. Tosine, 1976. Photodechlorination of PCBs in the presence of titanium dioxide im aqueous suspensions. Bull. Environ. Contam. Toxicol., 16: 697-701.
Chiang, K., R. Amal and T. Tran, 2002. Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv. Environ. Res., 6: 471-485.
Chiang, K., R. Amal and T. Tran, 2003. Photocatalytic oxidation of cyanide: Kinetic and mechanistic studies. J. Mol. Catal. Chem., 193: 285-297.
Choi, W.Y., A. Termin and M.R. Hoffmann, 1994. Romote bleaching of methylene blue by UV irradiated TiO, in the gas phase. J. Phys. Chem., 98: 13669-13679.
Dash, R.R., A. Gaur and C. Balomajumder, 2009a. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J. Hazardous Mater., 163: 1-11.
Dash, R.R., C. Balomajyumder and A. Kumar, 2009b. Removal of cyanide from water and wastewater using granular activated carbon. Chem. Eng. J., 146: 408-41 3.
Davit, P., G. Martra, 8. Coluccia, V. Augugliaro and E.G. Lopez et al, 2003. Adsorption and photocatalytic degradation of acetonitrile: FT-IR investigation. J. Mol. Catal. Chem., 204: 693-701.
Domenech, X., W.F. Jardim and MJ. Litter, 2001. [Advanced Oxidation Processes for the Elimination of Pollutants]. In: [Elimination of Contaminants by Heterogeneous Photocatalysis], CYTED. (Ed.). National Atomic Energy Commission, Buenos Aires, Argentina, pp: 3-25 (In Spanish).
Donato, D.B., O. Nichols, H. Possingham, M. Moore and PF. Ricci et al., 2007. A critical review of the effects ofgold cyanide-bearing tailings solutions on wildlife. Environ.Intl., 33: 974-984.
Duran, A., J.M. Monteagudo, I. San Martin and R. Sanchez-Romero, 2009. Photocatalytic treatment of IGCC powerstation effluents in a UV-pilot plant. J. Hazard. Mater., 167: 885-891.
Dwivedi, N., C. Balomajumder and P. Mondal, 2016. Comparative investigation on the removal of cyanide from aqueous solution using two different bioadsorbents. Water Resour. Ind., 15: 28-40.
Fajardo, J.A., D.C. Burbano, E.J. Burbano, N.J. Apraez and M.I.L.T.O.N. Rosero Moreano, 2010. [Study of chemical methods of cyanide removal present in cyanide residues from the vein gold extraction process in the Department of Narino (In Spanish)]. Revista Luna Azul, 31: 8-16.
Feng, C., C. Aldrich, J.J. Eksteen and D.W.M. Arrigan, 2018. Removal of arsenic from gold cyanidation process waters by use of cerium-based magnetic adsorbents. Miner. Eng., 122: 84-90.
Fortuna, D., A. Rahimsyah and Y. Puspitasri, 2015. Degradation of acid cyanide poison in rubber seed (Hevea brasiliensis) after treatment with rice husk ash. Intl. J. Adv. Sci. Eng. Inf. Technol., 5: 291-293.
Garces Giraldo, L.F., M. Franco, E. Alejandro and J.J. Santamaria Arango, 2004. [Photocatalysis as an alternative for wastewater treatment (In Spanish)]. Lasallista Magaz. Invest., 1: 83-92.
Garcia, D.E.G., 2015. [Assessment of ecological impacts due to gold miming in the Guabas River, Valle del Cauca, Colombia (In Spanish)]. Magaz. Agrar. Environ. Res., 6: 243-254.
Garcia-Ochoa, F. and A. Santos, 2001. [Catalytic Oxidation of Phenolic Compounds in Wastewater]. In: Catalysts and Adsorbents for Environmental Protection in the Ibero-American Region, Jesus Blanco, P.A. (Ed.). Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo, Madrid, Spain, pp: 275-284.
Gebresemati, M., N. Gabbiye and O. Sahu, 2017. Sorption of cyanide from aqueous medium by coffee husk: Response surface methodology. J. Applied Res. Technol., 15: 27-35.
Gimenez, J., D. Curco and M.A. Queral, 1999. Photocatalytic treatment of phenol and 2, 4- dichlorophenol in a solar plant in the way to scaling-up. Catal. Today, 54: 229-243.
Gomez, L., A. Urkiaga, M. Gutierrez and L. De las Fuentes, 2000. [Photooxidation for chemical spills: Review and experiences of advanced oxidation processes (In Spamsh)]. Chem. Eng. Magaz., 32: 211-216.
Gordo, D.A.M., 2018. [Phenolic compounds, an approach to your biosynthesis, synthesis and biological activity (In Spanish)]. Magaz. Agrar. Environ. Res., 9: 81-104.
Guadalima, M.P.G. and D.A.N. Monteros, 2018. Evaluation of the rotational speed and carbon source on the biological removal of free cyanide present on gold mine wastewater, using a rotating biological contactor. J. Water Proc. Eng., 23: 84-90.
Hernandez-Alonso, M.D., J.M. Coronado, A.J. Maira, J. Soria and V. Loddo et a/., 2002. Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanide ions. Appl. Catal. Environ., 39: 257-267.
Hidaka, H., T. Nakamura, A. Ishizaka, M. Tsuchiya and J. Zhao, 1992. Heterogeneous photocatalytic degradation of cyanide on Ti0, surfaces. J. Photochem. Photobiol. Chem., 66: 367-374.
Irfan, U.R., I. Nur and M. Kasim, 2017. Hydrothermal alteration mineralogy associated with gold mineralization in Buladu Area, Gorontalo, Northern Sulawesi, Indonesia. Intl. J. Adv. Sci. Eng. Inf. Technol., 7: 2244-2250.
Jaramillo, G., J.A. Pabon and E.G. Pavas, 2002. [Photodegradation of phenols in industrial wastewater (In Spanish)]. Chem. Eng., 386: 117-122.
Johnson, C.A., 2015. The fate of cyanide in leach wastes at gold mines: An environmental perspective. Appl. Geochem., 57: 194-205.
Kim, T.K., T. Kim, A. Jo, 8. Park and K.H. Choi et ai, 2018. Degradation mechanism of cyanide in water using a UV-LED/H,O,/Cu™ system. Chemosphere, 208: 441-449.
Kopytko, M., S.N.C. Torres and M.J.E. Gomez, 2017. [Stimulated biodegradation of soils contaminated with organochlorine pesticides (In Spanish)]. Agrar. Environ. Res. J., 8: 119-130.
Kuyucak, N. and A. Akcil, 2013. Cyamde and removal options from effluents in gold mining and metallurgical processes. Miner. Eng., 50: 13-29.
Laliberte, M., 2015. Reducing the toxicity of gold-mine effluent using biological reactors and precipitation. Miner. Metall. Proc., 32: 1-5.
Liu, W., W. Sun, A.G. Borthwick and J. Ni, 2013. Comparison on aggregation and sedimentation of titanium dioxide, titanate nanotubes and titanate nanotubes-T10,: Influence of pH, ionic strength and natural organic matter. Colloids Surf. Physicochemical Eng. Aspec., 434: 319-328.
Lopez, A.L.B. and I.M.C. Sierra, 2012. [Comparative catalytic study of the TiO, and Nb,O, systemsin the degradation of cyanide according to the type of oxidant (In Spanish)]. Eng. Sci., 8: 257-280.
Malato, A., J. Blanco, A. Vidal and C. Richter, 2002. Photocatalysis with solar energy at a pilot-plant scale: An overview. Applied Catalysis B: Environ., 37: 1-15.
Mekuto, L., S.K. Ntwampe and A. Akcil, 2016. An integrated biological approach for treatment of cyanidation wastewater. Sci. Total Environ, 571: 711-720.
Mesa, G.A.P., 1998. [Photolysis and photodegradation sensitized with Fe,, and TiO, ofpesticides in natural waters (In Spanish)]. Ph.D Thesis, Universidad de Barcelona, Barcelona, Spain.
Moussavi, G., M. Pourakbar, E. Aghayami and M. Mahdavianpour, 2018. Investigating the aerated VUV/PSprocess simultaneously generating hydroxyl and sulfate radicals for the oxidation of cyanide in aqueous solution and industrial wastewater. Chem. Eng. J., 350: 673-680.
Oh, Y.C. and W.S. Jenks, 2004. Photocatalytic degradation of a cyanuric acid, a recalcitrant species. J. Photochem. Photobiol. Chem., 162: 323-328.
Olivero-Verbel, J., Negrete-Marrugo, K. Caballero-Gallardo and J. 2011. Relationship between localization of gold mining areas and hair mercury levels in people from Bolivar, north of Colombia.Biol. Trace Element Res., 144: 118-132.
Osathaphan, K., B. Chucherdwatanasak, P. Rachdawong and V.K. Sharma, 2008. Photocatalytic oxidation of cyanide in aqueous titanium dioxide suspensions: Effect of ethylenediaminetetraacetate. Solar Energy, 82: 1031-1036.
Pala, A. R.R. Politi, G. Kursun, M. Erol and F. Bakal et ai, 2015. Photocatalytic degradation of cyanide in wastewater using new generated nanothin film photocatalyst. Surf. Coat. Technol, 271: 207-216.
Parmon, V., A.V. Emeline and N. Serpone, 2002. Glossary of terms in photocatalysis and radiocatalysis. Intl. J. Photoenergy, 4: 91-131.
Peral, J., J. Munoz and X. Domenech, 1990. Photosensitized CNoxidation over TiO, J. Photochem. Photobiol. Chem., 55: 251-257.
Percherancier, J.P., R. Chapelon and B. Pouyet, 1995. Semiconductor-sensitized photodegradation of pesticides in water: The case of carbetamide. J. Photochem. Photobiol. Chem., 87: 261-266.
Pirmoradi, M., S. Hashemian and M.R. Shayesteh, 2017. Kinetics and thermodynamics of cyanide removal by ZnO@ NiO nanocrystals. Trans. Nonferrous Met. Soc. China, 27: 1394-1403.
Pozzo, R.L., M.A. Baltanas and A.E. Cassano, 1997. Supported titamum oxide as photocatalyst in water decontamination: State of the art. Catal. Today, 39: 219-231.
Quintero, E.C., A.G.G. Bayona, M.A.-H. Lopez and M.L.P. Rojas, 2017. [Strategic management of the production of sterile waste from sustaimable mining, using eco-efficient mining practices in Colombia (In Spanish)]. Agrar. Environ. Res. J., 8: 107-118.
Quiroga, P.N. and V. Olmos, 2009. [Review of the toxicokinetics and toxicity of hydrocyanic acid and cyanides (In Spanish)]. Acta Toxicol. Argent., 17: 20-32.
Quispe, L., M.D.C. Arteaga, E. Cardenas, C. Santelices and E. Palenque et a/., 2011. [Elimination of cyanide by combined UV/H,O,/TiO , system (In Spanish)]. Boliv. J. Chem., 28: 113-118.
Ray, A.K., 1999. Design, modelling and experimentation of a new large-scale photocatalytic reactor for water treatment. Chem. Eng. Sci., 54: 3113-3125.
Razanamahandry, L.C., H.A. Andrianisa, H. Karoui, K.M. Kouakou and H. Yacouba, 2016. Biodegradation of free cyanide by bacterial species isolated from cyanide-contaminated artisanal gold mining catchment area in Burkina Faso. Chemosphere, 157: 71-78.
Sancho, J.P., B. Fernandez, J. Ayala, M.P. Garcia and A. Lavandeira, 2011. [Application of potassium permanganate for the elumination of copper cyanides in wastewater from the leaching plant in a gold mine (II): Pilot plant tests (in Spanish)]. Revista Metalurgia, 47: 224-233.
Sarla, M., M. Pandit, D.K. Tyagi and J.C. Kapoor, 2004. Oxidation of cyamde in aqueous solution by chemical and photochemical process. J. Hazard. Mater., 116: 49-56.
Serpone, N., 1997. Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J. Ady. Oxid. Technol., 2: 203-216.
Vidal, A. AI. Dyaz, A. El Hraiki, M. Romero and I. Muguruza et al., 1999. Solar photocatalysis for detoxification and disinfection of contaminated water: Pilot plant studies. Catal. Today, 54: 283-290.
Yeddou, A.R., 5. Chergui, A. Chergui, F. Halet and A. Hamza et al., 2011. Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide in presence of copper-impregnated activated carbon. Miner. Eng., 24: 788-793.
Yu, X., R. Xu, C. Wei and H. Wu, 2016. Removal of cyanide compounds from coking wastewater by ferrous sulfate: Improvement of biode gradability. J. Hazard. Mater., 302: 468-474.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv ARPN Journal of Engineering and Applied Sciences
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://medwelljournals.com/abstract/?doi=jeasci.2019.1475.1485
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/553ee996-40eb-41ac-a960-b957848f6cfc/download
https://repositorio.cuc.edu.co/bitstreams/460e3625-d338-422e-a704-1cfe42bafebe/download
https://repositorio.cuc.edu.co/bitstreams/8595249e-555b-4703-9f60-8a32d5307386/download
https://repositorio.cuc.edu.co/bitstreams/bf3602d3-aad9-4c0b-ab35-e1e45c5add4d/download
https://repositorio.cuc.edu.co/bitstreams/e6726d1b-5650-4656-8146-6bbe1a45d3df/download
bitstream.checksum.fl_str_mv a0e363bb15e8473bfe9bfc27a2ecac6e
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
c9106b55956fa13d0518e10b19a65c0c
c13694495bac56ff0e07ac50c21249fa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166824625176576
spelling Vidal Tovar, CarlosCorrea Turizo, RafaelSeveriche Sierra, Carlos AlbertoCabrera Lafaurie, Wilman2021-07-27T13:18:59Z2021-07-27T13:18:59Z201918196608https://hdl.handle.net/11323/8485https://doi.org/10.36478/jeasci.2019.1475.1485Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Among the persistent chemical compoundsin the residual discharges are the highly toxic cyanides used in the industrial sector and in particular the mining industry for the extraction of gold, frequently appearing in low concentrations in the water, deteriorating its quality. Bemg of vital importance the treatment of the cyanide effluent, to reduce the concentration of cyanide before its final discharge, thus producing less toxic effluents, to achieve this several studies have been carried out and developed methods for its treatment, chemical, physical and biological An alternative to improve the quality of wastewater is the heterogeneous photocatalysis mediated by different semiconductors such as TiO,, considering this a simple technology and economical in relation to bioremediation treatments, effective and innovative in our environment for aqueous effluents.Entre los compuestos químicos persistentes en las descargas residuales se encuentran los cianuros altamente tóxicos. utilizado en el sector industrial y en particular la industria minera para la extracción de oro, apareciendo frecuentemente en bajas concentraciones en el agua, deteriorando su calidad. Siendo de vital importancia el tratamiento de la efluente de cianuro, para reducir la concentración de cianuro antes de su descarga final, produciendo así menos tóxicos efluentes, para lograrlo se han realizado varios estudios y se han desarrollado métodos para su tratamiento, química, física y biológica Una alternativa para mejorar la calidad de las aguas residuales es la heterogeneidad fotocatálisis mediada por diferentes semiconductores como el TiO, considerando esta una tecnología simple y económico en relación a los tratamientos de biorremediación, eficaz e innovador en nuestro medio para acuosos efluentes.Vidal Tovar, CarlosCorrea Turizo, Rafael-will be generated-orcid-0000-0002-3978-1196-600Severiche Sierra, Carlos Alberto-will be generated-orcid-0000-0001-7190-4849-600Cabrera Lafaurie, Wilmanapplication/pdfengARPN Journal of Engineering and Applied SciencesCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cyanized watersEnvironmental pollutionGold miningLiquid spillsQualityToxic effluentsAguas cianizadasContaminación ambientalMinería de oroDerrames de líquidosCalidadEfluentes tóxicosDegradation of cyanides in wastewater from gold mining: A review of literatureDegradación de cianuros en aguas residuales de la minería de oro: una revisión de la literaturaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://medwelljournals.com/abstract/?doi=jeasci.2019.1475.1485Acheampong, M.A. and P.N. Lens, 2014. Treatment of gold mining effluent in pilot fixed bed sorption system. Hydrometallurgy, 141: 1-7.Aguldelo, R., J. Betancur and C. Jaramillo, 2010. [Biotreatment of cyanide waste and its relation to public health (In Spanish)]. Rev. Fac. Nac. Salud Publica, 28: 7-20.Ahmed, M.S. and Y.A. Attia, 1995. Aerogel materials for photocatalytic detoxification of cyanide wastes in water. J. Non Cryst. Solids, 186: 402-407.Al-Ekabi, H. and N. Serpone, 1988. Kinetics studies in heterogeneous photocatalysis,I photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over TiO, supported on a glass matrix. J. Phys. Chem., 92: 5726-5731.Alrousan, D.M.A., MI. Polo-Lopez, P.S.M. Dunlop, P. Fernandez-Ibanez and J.A. Byrne, 2012. Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors. Applied Catal. B: Environ., 128: 126-134.Anonymous, 1984. [Decree 1594 of 1984. through which the uses of water and liquid waste are regulated]. Ministry of Health and Social Protection, Bogota, Colombia. (In Spanish)Arias-Lafargue, T., D. Fernandez-Compta, Y. SanchezRodriguez and <A. Lasserra-Portuondo, 2017. [Influence of leaching on the recovery of gold at the Oro-Barita mine in Santiago de Cuba (In Spanish)]. Chem. Technol., 37: 461-476.Augugliaro, V., V. Loddo, G. Marci, L. Palmisano and M.J. Lopez-Munoz, 1997. Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions. J. Catal., 166: 272-283.Augugliaro, V., V. Loddo, G. Marci, L. Palmisano and M.J. Lopez-Munoz, 1997. Photocatalytic oxidation of cyanides in aqueoustitanium dioxide suspensions. J. Catal., 166: 272-283.Baeissa, E.S., 2015. Synthesis and characterization of sulfur-titantum dioxide nanocomposites for photocatalytic oxidation of cyanide using visible light irradiation. Chin. J. Catal., 36: 698-704.Barakat, M.A., Y.T. Chen and C.P. Huang, 2004. Removal of toxic cyanide and Cu (I) ions from water by illuminated TiO, catalyst. J. Applied Catalysis B: Environ., 53: 13-20.Barrios, R.L.A., C.A.S. Sierra and J.D.C.J. Morales, 2017. [Toxic effects of paracetamol on human health and the environment (In Spanish)]. Agrar. Res. Magaz., 8: 139-149.Bruger, A., G. Fafilek and L. Rojas-Mendoza, 2018. On the volatilisation and decomposition of cyanide contaminations from gold mining. Sci. Total Environ., 627: 1167-1173.Cardona, 8.P.P., 2001. Coupling of photocatalytic and biological processes as a contribution to the detoxification of water. PhD Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.Carey, JH, J. Lawrence and Y.H.M. Tosine, 1976. Photodechlorination of PCBs in the presence of titanium dioxide im aqueous suspensions. Bull. Environ. Contam. Toxicol., 16: 697-701.Chiang, K., R. Amal and T. Tran, 2002. Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv. Environ. Res., 6: 471-485.Chiang, K., R. Amal and T. Tran, 2003. Photocatalytic oxidation of cyanide: Kinetic and mechanistic studies. J. Mol. Catal. Chem., 193: 285-297.Choi, W.Y., A. Termin and M.R. Hoffmann, 1994. Romote bleaching of methylene blue by UV irradiated TiO, in the gas phase. J. Phys. Chem., 98: 13669-13679.Dash, R.R., A. Gaur and C. Balomajumder, 2009a. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J. Hazardous Mater., 163: 1-11.Dash, R.R., C. Balomajyumder and A. Kumar, 2009b. Removal of cyanide from water and wastewater using granular activated carbon. Chem. Eng. J., 146: 408-41 3.Davit, P., G. Martra, 8. Coluccia, V. Augugliaro and E.G. Lopez et al, 2003. Adsorption and photocatalytic degradation of acetonitrile: FT-IR investigation. J. Mol. Catal. Chem., 204: 693-701.Domenech, X., W.F. Jardim and MJ. Litter, 2001. [Advanced Oxidation Processes for the Elimination of Pollutants]. In: [Elimination of Contaminants by Heterogeneous Photocatalysis], CYTED. (Ed.). National Atomic Energy Commission, Buenos Aires, Argentina, pp: 3-25 (In Spanish).Donato, D.B., O. Nichols, H. Possingham, M. Moore and PF. Ricci et al., 2007. A critical review of the effects ofgold cyanide-bearing tailings solutions on wildlife. Environ.Intl., 33: 974-984.Duran, A., J.M. Monteagudo, I. San Martin and R. Sanchez-Romero, 2009. Photocatalytic treatment of IGCC powerstation effluents in a UV-pilot plant. J. Hazard. Mater., 167: 885-891.Dwivedi, N., C. Balomajumder and P. Mondal, 2016. Comparative investigation on the removal of cyanide from aqueous solution using two different bioadsorbents. Water Resour. Ind., 15: 28-40.Fajardo, J.A., D.C. Burbano, E.J. Burbano, N.J. Apraez and M.I.L.T.O.N. Rosero Moreano, 2010. [Study of chemical methods of cyanide removal present in cyanide residues from the vein gold extraction process in the Department of Narino (In Spanish)]. Revista Luna Azul, 31: 8-16.Feng, C., C. Aldrich, J.J. Eksteen and D.W.M. Arrigan, 2018. Removal of arsenic from gold cyanidation process waters by use of cerium-based magnetic adsorbents. Miner. Eng., 122: 84-90.Fortuna, D., A. Rahimsyah and Y. Puspitasri, 2015. Degradation of acid cyanide poison in rubber seed (Hevea brasiliensis) after treatment with rice husk ash. Intl. J. Adv. Sci. Eng. Inf. Technol., 5: 291-293.Garces Giraldo, L.F., M. Franco, E. Alejandro and J.J. Santamaria Arango, 2004. [Photocatalysis as an alternative for wastewater treatment (In Spanish)]. Lasallista Magaz. Invest., 1: 83-92.Garcia, D.E.G., 2015. [Assessment of ecological impacts due to gold miming in the Guabas River, Valle del Cauca, Colombia (In Spanish)]. Magaz. Agrar. Environ. Res., 6: 243-254.Garcia-Ochoa, F. and A. Santos, 2001. [Catalytic Oxidation of Phenolic Compounds in Wastewater]. In: Catalysts and Adsorbents for Environmental Protection in the Ibero-American Region, Jesus Blanco, P.A. (Ed.). Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo, Madrid, Spain, pp: 275-284.Gebresemati, M., N. Gabbiye and O. Sahu, 2017. Sorption of cyanide from aqueous medium by coffee husk: Response surface methodology. J. Applied Res. Technol., 15: 27-35.Gimenez, J., D. Curco and M.A. Queral, 1999. Photocatalytic treatment of phenol and 2, 4- dichlorophenol in a solar plant in the way to scaling-up. Catal. Today, 54: 229-243.Gomez, L., A. Urkiaga, M. Gutierrez and L. De las Fuentes, 2000. [Photooxidation for chemical spills: Review and experiences of advanced oxidation processes (In Spamsh)]. Chem. Eng. Magaz., 32: 211-216.Gordo, D.A.M., 2018. [Phenolic compounds, an approach to your biosynthesis, synthesis and biological activity (In Spanish)]. Magaz. Agrar. Environ. Res., 9: 81-104.Guadalima, M.P.G. and D.A.N. Monteros, 2018. Evaluation of the rotational speed and carbon source on the biological removal of free cyanide present on gold mine wastewater, using a rotating biological contactor. J. Water Proc. Eng., 23: 84-90.Hernandez-Alonso, M.D., J.M. Coronado, A.J. Maira, J. Soria and V. Loddo et a/., 2002. Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanide ions. Appl. Catal. Environ., 39: 257-267.Hidaka, H., T. Nakamura, A. Ishizaka, M. Tsuchiya and J. Zhao, 1992. Heterogeneous photocatalytic degradation of cyanide on Ti0, surfaces. J. Photochem. Photobiol. Chem., 66: 367-374.Irfan, U.R., I. Nur and M. Kasim, 2017. Hydrothermal alteration mineralogy associated with gold mineralization in Buladu Area, Gorontalo, Northern Sulawesi, Indonesia. Intl. J. Adv. Sci. Eng. Inf. Technol., 7: 2244-2250.Jaramillo, G., J.A. Pabon and E.G. Pavas, 2002. [Photodegradation of phenols in industrial wastewater (In Spanish)]. Chem. Eng., 386: 117-122.Johnson, C.A., 2015. The fate of cyanide in leach wastes at gold mines: An environmental perspective. Appl. Geochem., 57: 194-205.Kim, T.K., T. Kim, A. Jo, 8. Park and K.H. Choi et ai, 2018. Degradation mechanism of cyanide in water using a UV-LED/H,O,/Cu™ system. Chemosphere, 208: 441-449.Kopytko, M., S.N.C. Torres and M.J.E. Gomez, 2017. [Stimulated biodegradation of soils contaminated with organochlorine pesticides (In Spanish)]. Agrar. Environ. Res. J., 8: 119-130.Kuyucak, N. and A. Akcil, 2013. Cyamde and removal options from effluents in gold mining and metallurgical processes. Miner. Eng., 50: 13-29.Laliberte, M., 2015. Reducing the toxicity of gold-mine effluent using biological reactors and precipitation. Miner. Metall. Proc., 32: 1-5.Liu, W., W. Sun, A.G. Borthwick and J. Ni, 2013. Comparison on aggregation and sedimentation of titanium dioxide, titanate nanotubes and titanate nanotubes-T10,: Influence of pH, ionic strength and natural organic matter. Colloids Surf. Physicochemical Eng. Aspec., 434: 319-328.Lopez, A.L.B. and I.M.C. Sierra, 2012. [Comparative catalytic study of the TiO, and Nb,O, systemsin the degradation of cyanide according to the type of oxidant (In Spanish)]. Eng. Sci., 8: 257-280.Malato, A., J. Blanco, A. Vidal and C. Richter, 2002. Photocatalysis with solar energy at a pilot-plant scale: An overview. Applied Catalysis B: Environ., 37: 1-15.Mekuto, L., S.K. Ntwampe and A. Akcil, 2016. An integrated biological approach for treatment of cyanidation wastewater. Sci. Total Environ, 571: 711-720.Mesa, G.A.P., 1998. [Photolysis and photodegradation sensitized with Fe,, and TiO, ofpesticides in natural waters (In Spanish)]. Ph.D Thesis, Universidad de Barcelona, Barcelona, Spain.Moussavi, G., M. Pourakbar, E. Aghayami and M. Mahdavianpour, 2018. Investigating the aerated VUV/PSprocess simultaneously generating hydroxyl and sulfate radicals for the oxidation of cyanide in aqueous solution and industrial wastewater. Chem. Eng. J., 350: 673-680.Oh, Y.C. and W.S. Jenks, 2004. Photocatalytic degradation of a cyanuric acid, a recalcitrant species. J. Photochem. Photobiol. Chem., 162: 323-328.Olivero-Verbel, J., Negrete-Marrugo, K. Caballero-Gallardo and J. 2011. Relationship between localization of gold mining areas and hair mercury levels in people from Bolivar, north of Colombia.Biol. Trace Element Res., 144: 118-132.Osathaphan, K., B. Chucherdwatanasak, P. Rachdawong and V.K. Sharma, 2008. Photocatalytic oxidation of cyanide in aqueous titanium dioxide suspensions: Effect of ethylenediaminetetraacetate. Solar Energy, 82: 1031-1036.Pala, A. R.R. Politi, G. Kursun, M. Erol and F. Bakal et ai, 2015. Photocatalytic degradation of cyanide in wastewater using new generated nanothin film photocatalyst. Surf. Coat. Technol, 271: 207-216.Parmon, V., A.V. Emeline and N. Serpone, 2002. Glossary of terms in photocatalysis and radiocatalysis. Intl. J. Photoenergy, 4: 91-131.Peral, J., J. Munoz and X. Domenech, 1990. Photosensitized CNoxidation over TiO, J. Photochem. Photobiol. Chem., 55: 251-257.Percherancier, J.P., R. Chapelon and B. Pouyet, 1995. Semiconductor-sensitized photodegradation of pesticides in water: The case of carbetamide. J. Photochem. Photobiol. Chem., 87: 261-266.Pirmoradi, M., S. Hashemian and M.R. Shayesteh, 2017. Kinetics and thermodynamics of cyanide removal by ZnO@ NiO nanocrystals. Trans. Nonferrous Met. Soc. China, 27: 1394-1403.Pozzo, R.L., M.A. Baltanas and A.E. Cassano, 1997. Supported titamum oxide as photocatalyst in water decontamination: State of the art. Catal. Today, 39: 219-231.Quintero, E.C., A.G.G. Bayona, M.A.-H. Lopez and M.L.P. Rojas, 2017. [Strategic management of the production of sterile waste from sustaimable mining, using eco-efficient mining practices in Colombia (In Spanish)]. Agrar. Environ. Res. J., 8: 107-118.Quiroga, P.N. and V. Olmos, 2009. [Review of the toxicokinetics and toxicity of hydrocyanic acid and cyanides (In Spanish)]. Acta Toxicol. Argent., 17: 20-32.Quispe, L., M.D.C. Arteaga, E. Cardenas, C. Santelices and E. Palenque et a/., 2011. [Elimination of cyanide by combined UV/H,O,/TiO , system (In Spanish)]. Boliv. J. Chem., 28: 113-118.Ray, A.K., 1999. Design, modelling and experimentation of a new large-scale photocatalytic reactor for water treatment. Chem. Eng. Sci., 54: 3113-3125.Razanamahandry, L.C., H.A. Andrianisa, H. Karoui, K.M. Kouakou and H. Yacouba, 2016. Biodegradation of free cyanide by bacterial species isolated from cyanide-contaminated artisanal gold mining catchment area in Burkina Faso. Chemosphere, 157: 71-78.Sancho, J.P., B. Fernandez, J. Ayala, M.P. Garcia and A. Lavandeira, 2011. [Application of potassium permanganate for the elumination of copper cyanides in wastewater from the leaching plant in a gold mine (II): Pilot plant tests (in Spanish)]. Revista Metalurgia, 47: 224-233.Sarla, M., M. Pandit, D.K. Tyagi and J.C. Kapoor, 2004. Oxidation of cyamde in aqueous solution by chemical and photochemical process. J. Hazard. Mater., 116: 49-56.Serpone, N., 1997. Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J. Ady. Oxid. Technol., 2: 203-216.Vidal, A. AI. Dyaz, A. El Hraiki, M. Romero and I. Muguruza et al., 1999. Solar photocatalysis for detoxification and disinfection of contaminated water: Pilot plant studies. Catal. Today, 54: 283-290.Yeddou, A.R., 5. Chergui, A. Chergui, F. Halet and A. Hamza et al., 2011. Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide in presence of copper-impregnated activated carbon. Miner. Eng., 24: 788-793.Yu, X., R. Xu, C. Wei and H. Wu, 2016. Removal of cyanide compounds from coking wastewater by ferrous sulfate: Improvement of biode gradability. J. Hazard. Mater., 302: 468-474.PublicationORIGINALPDF.pdfPDF.pdfapplication/pdf1037957https://repositorio.cuc.edu.co/bitstreams/553ee996-40eb-41ac-a960-b957848f6cfc/downloada0e363bb15e8473bfe9bfc27a2ecac6eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/460e3625-d338-422e-a704-1cfe42bafebe/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8595249e-555b-4703-9f60-8a32d5307386/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILPDF.pdf.jpgPDF.pdf.jpgimage/jpeg13933https://repositorio.cuc.edu.co/bitstreams/bf3602d3-aad9-4c0b-ab35-e1e45c5add4d/downloadc9106b55956fa13d0518e10b19a65c0cMD54TEXTPDF.pdf.txtPDF.pdf.txttext/plain53065https://repositorio.cuc.edu.co/bitstreams/e6726d1b-5650-4656-8146-6bbe1a45d3df/downloadc13694495bac56ff0e07ac50c21249faMD5511323/8485oai:repositorio.cuc.edu.co:11323/84852024-09-17 14:14:29.845http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==