Preservation of confidential information privacy and association rule hiding for data mining: a bibliometric review

In this era of technology, data of business organizations are growing with acceleration. Mining hidden patterns from this huge database would benefit many industries improving their decision-making processes. Along with the non-sensitive information, these databases also contain some sensitive infor...

Full description

Autores:
Silva, Jesus
Cubillos, Jenny
Vargas Villa, Jesus
Romero, Ligia
Solano, Darwin
Fernández, Claudia
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/4837
Acceso en línea:
https://hdl.handle.net/11323/4837
https://repositorio.cuc.edu.co/
Palabra clave:
confidential information privacy preservation
approaches to hiding of association rules of data
bibliometric analysis
SCOPUS
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_1e7f387c9a2b751bbc8f3266278a1b7f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/4837
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Preservation of confidential information privacy and association rule hiding for data mining: a bibliometric review
title Preservation of confidential information privacy and association rule hiding for data mining: a bibliometric review
spellingShingle Preservation of confidential information privacy and association rule hiding for data mining: a bibliometric review
confidential information privacy preservation
approaches to hiding of association rules of data
bibliometric analysis
SCOPUS
title_short Preservation of confidential information privacy and association rule hiding for data mining: a bibliometric review
title_full Preservation of confidential information privacy and association rule hiding for data mining: a bibliometric review
title_fullStr Preservation of confidential information privacy and association rule hiding for data mining: a bibliometric review
title_full_unstemmed Preservation of confidential information privacy and association rule hiding for data mining: a bibliometric review
title_sort Preservation of confidential information privacy and association rule hiding for data mining: a bibliometric review
dc.creator.fl_str_mv Silva, Jesus
Cubillos, Jenny
Vargas Villa, Jesus
Romero, Ligia
Solano, Darwin
Fernández, Claudia
dc.contributor.author.spa.fl_str_mv Silva, Jesus
Cubillos, Jenny
Vargas Villa, Jesus
Romero, Ligia
Solano, Darwin
Fernández, Claudia
dc.subject.spa.fl_str_mv confidential information privacy preservation
approaches to hiding of association rules of data
bibliometric analysis
SCOPUS
topic confidential information privacy preservation
approaches to hiding of association rules of data
bibliometric analysis
SCOPUS
description In this era of technology, data of business organizations are growing with acceleration. Mining hidden patterns from this huge database would benefit many industries improving their decision-making processes. Along with the non-sensitive information, these databases also contain some sensitive information about customers. During the mining process, sensitive information about a person can get leaked, resulting in a misuse of the data and causing loss to an individual. The privacy preserving data mining can bring a solution to this problem, helping provide the benefits of mined data along with maintaining the privacy of the sensitive information. Hence, there is a growing interest in the scientific community for developing new approaches to hide the mined sensitive information. In this research, a bibliometric review is carried out during the period 2010 to 2018 to analyze the growth of studies regarding the confidential information privacy preservation through approaches addressed to the hiding of association rules of data.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-06-10T13:53:35Z
dc.date.available.none.fl_str_mv 2019-06-10T13:53:35Z
dc.date.issued.none.fl_str_mv 2019
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0000-2010
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/4837
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0000-2010
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/4837
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Nguyen XC, Le HB, Cao TA (2012). An enhanced scheme for privacy-preserving association rules mining on horizontally distributed databases. In: Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF) IEEE, pp: 1-4. [2] Doganay MC, Pedersen TB, Saygin Y, Savaş E, Levi A (2008). Distributed privacy preserving k-means clustering with additive secret sharing. In: Proceedings of the 2008 international workshop on Privacy and anonymity in information society ACM, pp: 3-11. [3] Moustakides G V and Verykios V S (2008). A maxmin approach for hiding frequent itemsets. Data and Knowledge Engineering 65(1):75– 89. [4] Adhvaryu R, Domadiya N (2012). An Improved EMHS Algorithm for Privacy Preserving in Association Rule Mining on Horizontally Partitioned Database. In: Security in Computing and Communications Springer Berlin Heidelberg, pp: 272-280. [5] Aggarwal CC, Philip SY (2004). A condensation approach to privacy preserving data mining. In: Advances in Database Technology-EDBT Springer Berlin Heidelberg, pp. 183-199. [6] Moustakides G V and Verykios V S (2006). A max–min approach for hiding frequent itemsets. In: Workshops Proceedings of the 6th IEEE International Conference on Data Mining (ICDM), pp: 502–506. [7] Bogdanov D, Talviste R, Willemson J (2012). Deploying secure multi-party computation for financial data analysis. In: Financial Cryptography and Data Security Springer Berlin Heidelberg, pp: 57-64. [8] Dnyanesh P, Akhtar WS, Loknath S, TN R (2012). Perturbation Based Reliability And Maintaining Authentication In Data Mining. In: International Conference on Advances in Computer and Electrical Engineering, pp: 59-63. [9] Li G, Wang Y (2012). A Privacy-Preserving Classification Method Based on Singular Value Decomposition. In: Int. Arab J. Inf. Technol.: 9(6):529-34. [10] Li G, Xi M (2015). An Improved Algorithm for Privacy-preserving Data Mining Based on NMF. In: Journal of Information & Computational Science, 12(9), pp: 3423–3430. [11] Domadiya NH and Rao UP (2013). Hiding sensitive association rules to maintain privacy and data quality in database. In: Advance Computing Conference, IEEE, pp: 1306-1310. [12] Gaitán-Angulo M., Cubillos Díaz J., Viloria A., Lis-Gutiérrez JP., Rodríguez-Garnica P.A. (2018) Bibliometric Analysis of Social Innovation and Complexity (Databases Scopus and Dialnet 2007–2017). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [13] Lis-Gutiérrez J.P., Henao C., Zerda Á., Gaitán M., Correa J.C., Viloria A. (2018) Determinants of the Impact Factor of Publications: A Panel Model for Journals Indexed in Scopus 2017. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/3797c4df-7b1b-445a-8c13-6ab6a9016383/download
https://repositorio.cuc.edu.co/bitstreams/78f8c60c-1896-4906-bff3-a65c1de8a043/download
https://repositorio.cuc.edu.co/bitstreams/f384906a-bbd8-4547-a232-1b112334159f/download
https://repositorio.cuc.edu.co/bitstreams/8b620e5d-1a88-4232-b431-e5d741f1e781/download
https://repositorio.cuc.edu.co/bitstreams/dd6aa682-ebdf-41fb-ba63-b051794cbd1b/download
bitstream.checksum.fl_str_mv 4e47b59455cb32d5a56488a8c0eab1fa
4460e5956bc1d1639be9ae6146a50347
8a4605be74aa9ea9d79846c1fba20a33
61b47faf11d45c39cf9b519af373a81c
b8b922c973c2a7469028079501324d83
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760738552774656
spelling Silva, JesusCubillos, JennyVargas Villa, JesusRomero, LigiaSolano, DarwinFernández, Claudia2019-06-10T13:53:35Z2019-06-10T13:53:35Z20190000-2010https://hdl.handle.net/11323/4837Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this era of technology, data of business organizations are growing with acceleration. Mining hidden patterns from this huge database would benefit many industries improving their decision-making processes. Along with the non-sensitive information, these databases also contain some sensitive information about customers. During the mining process, sensitive information about a person can get leaked, resulting in a misuse of the data and causing loss to an individual. The privacy preserving data mining can bring a solution to this problem, helping provide the benefits of mined data along with maintaining the privacy of the sensitive information. Hence, there is a growing interest in the scientific community for developing new approaches to hide the mined sensitive information. In this research, a bibliometric review is carried out during the period 2010 to 2018 to analyze the growth of studies regarding the confidential information privacy preservation through approaches addressed to the hiding of association rules of data.Silva, Jesus-60750872-819f-4163-bbb8-c33aee0e2cf1-0Cubillos, Jenny-88c2e465-a654-46ce-bb93-5cfe9391462c-0Vargas Villa, Jesus-b77d96d8-0dcd-4a19-8751-3dd474b578a3-0Romero, Ligia-4a5c7d67-e016-4781-b6d9-43f858ce2e2c-0Solano, Darwin-86b36b17-6546-4ba2-b51f-9fd6c1d6edf0-0Fernández, Claudia-e843819d-0e52-4950-ba59-60c40278e900-0engProcedia Computer ScienceAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2confidential information privacy preservationapproaches to hiding of association rules of databibliometric analysisSCOPUSPreservation of confidential information privacy and association rule hiding for data mining: a bibliometric reviewArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Nguyen XC, Le HB, Cao TA (2012). An enhanced scheme for privacy-preserving association rules mining on horizontally distributed databases. In: Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF) IEEE, pp: 1-4. [2] Doganay MC, Pedersen TB, Saygin Y, Savaş E, Levi A (2008). Distributed privacy preserving k-means clustering with additive secret sharing. In: Proceedings of the 2008 international workshop on Privacy and anonymity in information society ACM, pp: 3-11. [3] Moustakides G V and Verykios V S (2008). A maxmin approach for hiding frequent itemsets. Data and Knowledge Engineering 65(1):75– 89. [4] Adhvaryu R, Domadiya N (2012). An Improved EMHS Algorithm for Privacy Preserving in Association Rule Mining on Horizontally Partitioned Database. In: Security in Computing and Communications Springer Berlin Heidelberg, pp: 272-280. [5] Aggarwal CC, Philip SY (2004). A condensation approach to privacy preserving data mining. In: Advances in Database Technology-EDBT Springer Berlin Heidelberg, pp. 183-199. [6] Moustakides G V and Verykios V S (2006). A max–min approach for hiding frequent itemsets. In: Workshops Proceedings of the 6th IEEE International Conference on Data Mining (ICDM), pp: 502–506. [7] Bogdanov D, Talviste R, Willemson J (2012). Deploying secure multi-party computation for financial data analysis. In: Financial Cryptography and Data Security Springer Berlin Heidelberg, pp: 57-64. [8] Dnyanesh P, Akhtar WS, Loknath S, TN R (2012). Perturbation Based Reliability And Maintaining Authentication In Data Mining. In: International Conference on Advances in Computer and Electrical Engineering, pp: 59-63. [9] Li G, Wang Y (2012). A Privacy-Preserving Classification Method Based on Singular Value Decomposition. In: Int. Arab J. Inf. Technol.: 9(6):529-34. [10] Li G, Xi M (2015). An Improved Algorithm for Privacy-preserving Data Mining Based on NMF. In: Journal of Information & Computational Science, 12(9), pp: 3423–3430. [11] Domadiya NH and Rao UP (2013). Hiding sensitive association rules to maintain privacy and data quality in database. In: Advance Computing Conference, IEEE, pp: 1306-1310. [12] Gaitán-Angulo M., Cubillos Díaz J., Viloria A., Lis-Gutiérrez JP., Rodríguez-Garnica P.A. (2018) Bibliometric Analysis of Social Innovation and Complexity (Databases Scopus and Dialnet 2007–2017). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [13] Lis-Gutiérrez J.P., Henao C., Zerda Á., Gaitán M., Correa J.C., Viloria A. (2018) Determinants of the Impact Factor of Publications: A Panel Model for Journals Indexed in Scopus 2017. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, ChamPublicationORIGINALPreservation of confidential information privacy and association rule hiding for data mining a bibliometric review.pdfPreservation of confidential information privacy and association rule hiding for data mining a bibliometric review.pdfapplication/pdf716461https://repositorio.cuc.edu.co/bitstreams/3797c4df-7b1b-445a-8c13-6ab6a9016383/download4e47b59455cb32d5a56488a8c0eab1faMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/78f8c60c-1896-4906-bff3-a65c1de8a043/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/f384906a-bbd8-4547-a232-1b112334159f/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILPreservation of confidential information privacy and association rule hiding for data mining a bibliometric review.pdf.jpgPreservation of confidential information privacy and association rule hiding for data mining a bibliometric review.pdf.jpgimage/jpeg44487https://repositorio.cuc.edu.co/bitstreams/8b620e5d-1a88-4232-b431-e5d741f1e781/download61b47faf11d45c39cf9b519af373a81cMD55TEXTPreservation of confidential information privacy and association rule hiding for data mining a bibliometric review.pdf.txtPreservation of confidential information privacy and association rule hiding for data mining a bibliometric review.pdf.txttext/plain17058https://repositorio.cuc.edu.co/bitstreams/dd6aa682-ebdf-41fb-ba63-b051794cbd1b/downloadb8b922c973c2a7469028079501324d83MD5611323/4837oai:repositorio.cuc.edu.co:11323/48372024-09-17 10:54:06.837http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=