Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar

Introducción— Las aguas residuales hospitalarias son consideradas peligrosas y dañinas para el medio ambiente y la salud pública, lo que exige la utilización de sistemas de tratamiento adecuados para controlar los contaminantes en ellas. Objetivos— Este estudio evaluó el desempeño de un reactor anae...

Full description

Autores:
Rodriguez, Tatiana
Rueda Bayona, Juan Gabriel
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12278
Acceso en línea:
https://hdl.handle.net/11323/12278
https://doi.org/10.17981/ingecuc.17.1.2020.04
Palabra clave:
anaerobic digestion
recalcitrant compounds
UASB
water treatment
digestión anaerobia
compuestos recalcitrantes
UASB
tratamiento de agua
Rights
openAccess
License
INGE CUC - 2020
id RCUC2_1def43c24d77ded7ebf7fa8ad0493a22
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12278
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar
dc.title.translated.eng.fl_str_mv Performance of an Upflow anaerobic sludge blanket reactor for hospitals’ wastewaters treatment in Colombia: A preliminary study
title Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar
spellingShingle Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar
anaerobic digestion
recalcitrant compounds
UASB
water treatment
digestión anaerobia
compuestos recalcitrantes
UASB
tratamiento de agua
title_short Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar
title_full Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar
title_fullStr Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar
title_full_unstemmed Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar
title_sort Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar
dc.creator.fl_str_mv Rodriguez, Tatiana
Rueda Bayona, Juan Gabriel
dc.contributor.author.spa.fl_str_mv Rodriguez, Tatiana
Rueda Bayona, Juan Gabriel
dc.subject.eng.fl_str_mv anaerobic digestion
recalcitrant compounds
UASB
water treatment
topic anaerobic digestion
recalcitrant compounds
UASB
water treatment
digestión anaerobia
compuestos recalcitrantes
UASB
tratamiento de agua
dc.subject.spa.fl_str_mv digestión anaerobia
compuestos recalcitrantes
UASB
tratamiento de agua
description Introducción— Las aguas residuales hospitalarias son consideradas peligrosas y dañinas para el medio ambiente y la salud pública, lo que exige la utilización de sistemas de tratamiento adecuados para controlar los contaminantes en ellas. Objetivos— Este estudio evaluó el desempeño de un reactor anaerobio de Manto de Lodos y Flujo Ascendente (UASB) para tratar Aguas Residuales Hospitalarias reales (HMC). Metodología— El reactor operó durante 145 días variando los valores de la Carga Orgánica Volumétrica (COV). Resultados— Los resultados mostraron que para valores medios de carga de 0.950 Kg DQO/m3 ∙ d la eficiencia de remoción de materia orgánica fue 59% ± 14%, sin embargo, el proceso fue inestable y mostró una baja producción de gas metano. Conclusiones— Como resultado, esta investigación encontró que el reactor convencional tipo UASB no es una tecnología de tratamiento confiable y adecuada para el tratamiento de materia orgánica presente en las aguas residuales de los hospitales.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-10-28 00:00:00
2024-04-09T20:17:54Z
dc.date.available.none.fl_str_mv 2020-10-28 00:00:00
2024-04-09T20:17:54Z
dc.date.issued.none.fl_str_mv 2020-10-28
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12278
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.17.1.2020.04
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.17.1.2020.04
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.17.1.2020.04
2382-4700
url https://hdl.handle.net/11323/12278
https://doi.org/10.17981/ingecuc.17.1.2020.04
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.spa.fl_str_mv P. Verlicchi, A. Galletti, M. Petrovic & D. Barceló, “Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options,” J Hydrol, vol. 389, no. 3–4, pp. 416–428, Aug. 2010. https://doi.org/10.1016/j.jhydrol.2010.06.005
P. Verlicchi, M. Al Aukidy & E. Zambello, “What have we learned from worldwide experiences on the management and treatment of hospital effluent? - An overview and a discussion on perspectives,” Sci Total Environ, vol. 514, pp. 467–491, May. 2015. https://doi.org/10.1016/j.scitotenv.2015.02.020
J. B. Palter, I. Marinov, J. L. Sarmiento & N. Gruber, “ Large-Scale, Persistent Nutrient Fronts of the World,” The Handbook of Environmental Chemistry. HDB: Springer, pp. 1–38, 2006. https://doi.org/10.1007/698_2013_241
P. Verlicchi, M. Al Aukidy, A. Galletti, M. Petrovic & D. Barceló, “Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment,” Sci Total Environ, vol. 430, pp. 109–118, Jul. 2012. https://doi.org/10.1016/j.scitotenv.2012.04.055
N. A.Khan, S. U. Khan, S. Ahmed, I. H. Farooqi, M. Yousefi, A. A. Mohammadi & F. Changani, “Recent trends in disposal and treatment technologies of emerging-pollutants- A critical review,” TrAC - Trends Anal Chem, vol. 122, 2020. https://doi.org/10.1016/j.trac.2019.115744
P. Gupta, N. Mathur, P. Bhatnagar, P. Nagar & S. Srivastava, “Genotoxicity evaluation of hospital wastewaters,” Ecotoxicol Environ Saf, vol. 72, no. 7, pp. 1925–1932, Oct. 2009. https://doi.org/10.1016/j.ecoenv.2009.05.012
X.W. Wang, J. Li, T. Guo, B. Zhen, Q. Kong, B. Yi, Z. Li, N. Song, M. Jin, W. Xiao, X. zhu, C. Gu, J. Yin, W. Wei, W. Yao, C. Liu, J. Li, G. Ou, M. Wang, T. Fang, G. Wang, Y. Qiu, H. Wu, F. Chao & J. Li, “Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan hospital and the 309th Hospital of the Chinese People’s Liberation Army,” Water Sci Technol, vol. 52, no. 8, pp. 213–221, 2005. https://doi.org/10.2166/wst.2005.0266
International Water Association -IWA, “Water utility managers, water professionals,” in COVID-19: A Water Professional’s Perspective. LDN, UK: IWA, 2020.
S. Aydin, B. Ince & O. Ince, “Inhibitory effect of erythromycin, tetracycline and sulfamethoxazole antibiotics on anaerobic treatment of a pharmaceutical wastewater,” Water Sci Technol, vol. 71, no. 11, pp. 1620–1628, 2015. https://doi.org/10.2166/wst.2015.126
X. Shi, K. Y. Leong & H. Y. Ng, “Anaerobic treatment of pharmaceutical wastewater: A critical review,” Bioresour Technol, vol. 245, no. Part A, pp. 1238–1244, Dec. 2017. https://doi.org/10.1016/j.biortech.2017.08.150
S. Chelliapan & P. J. Sallis, “Removal of organic compound from pharmaceutical wastewater using advanced oxidation processes,,” J Sci Ind Res (India), vol. 72, no. 4, pp. 248–254, Apr. 2013. Available: http://hdl.handle.net/123456789/16874
C. E. M. Ortiz & T. R. Chaparro, “Combination of advanced oxidation process and anaerobic process for hospital wastewater treatment,” Afinidad, vol. 71, no. 565, pp. 63–67, 2014. Disponible en https://raco.cat/index.php/afinidad/index
 E. de Sousa & J.T and Foresti, “Domestic sewage treatment in an upflow anaerobic sludge blanket - sequencing batch reactor system,” Water Sci Technol, vol. 33, no. 3, pp. 73–84, 1996. https://doi.org/10.1016/0273-1223(96)00323-X
 APHA (American Public Health Association), Standard Methods for examination of water and wastewater, 22 ed, Wa, USA.: APHA, 2012.
 L. E. Ripley, W. C. Boyle & J. C. Converse , “Improved alkalimetric monitoring for anaerobic digestion of high-strebgth wastes,” J Water Pollut Control Fed, vol. 58, no. 5, pp. 406–411, 1986. Available: https://www.jstor.org/stable/25042933
 C. Chernicharo, Anaerobic Reactors. LDN, UK: IWA Publishing, 2007.
 P. Verlicchi, M. A. Aukidy, A. Galletti, M. Petrovic & D. Barceló, “Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment,” Sci Total Environ, vol. 430, pp. 109–118, Jul. 15, 2012. https://doi.org/10.1016/J.SCITOTENV.2012.04.055
 J. S. González, A. Rivera, R. Borja & E. Sánchez, “Influence of organic volumetric loading rate, nutrient balance and alkalinity: COD ratio on the anaerobic sludge granulation of an UASB reactor treating sugar cane molasses,” Int Biodeterior Biodegradation, vol. 41, no. 2, pp. 127–131, 1998. https://doi.org/10.1016/S0964-8305(98)00003-1
 A. P. Buzzine & E. C. Pires, “Cellulose pulp mill effluent treatment in an upflow anaerobic sludge blanket reactor,” Process Biochem, vol. 38, no. 5, pp. 707–713, Dic. 2002. https://doi.org/10.1016/S0032-9592(02)00190-5
 A. Rezaee, M. Ansari, A. Khavanin, A. Sabzali & M. M. Aryan, “Hospital Wastewater Treatment Using an Integrated Anaerobic Aerobic Fixed Film Bioreactor,” Am J Environ Sci, vol. 1, no. 4,pp. 259–263, Dec. 2005. https://doi.org/10.3844/ajessp.2005.259.263
 E. Foresti, M. Zaiat & M. Vallero, “Anaerobic processes as the core technology for sustainable domestic wastewater treatment: Consolidated applications, new trends, perspectives, and challenges,” Rev Environ Sci Biotechnol, vol. 5, no. 1, pp. 3–19, Feb. 2006. https://doi.org/10.1007/s11157-005-4630-9
dc.relation.citationendpage.none.fl_str_mv 48
dc.relation.citationstartpage.none.fl_str_mv 41
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 17
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/2926/3025
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2926/3586
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2926/3631
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2021 : (Enero - Junio)
dc.rights.spa.fl_str_mv INGE CUC - 2020
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2020
http://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
text/html
application/xml
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/2926
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/99b342ee-62d7-4a24-ab48-70b6c87da41e/download
bitstream.checksum.fl_str_mv 99181e93390f122c6024a76d3f589ae3
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760701972152320
spelling Rodriguez, TatianaRueda Bayona, Juan Gabriel2020-10-28 00:00:002024-04-09T20:17:54Z2020-10-28 00:00:002024-04-09T20:17:54Z2020-10-280122-6517https://hdl.handle.net/11323/12278https://doi.org/10.17981/ingecuc.17.1.2020.0410.17981/ingecuc.17.1.2020.042382-4700Introducción— Las aguas residuales hospitalarias son consideradas peligrosas y dañinas para el medio ambiente y la salud pública, lo que exige la utilización de sistemas de tratamiento adecuados para controlar los contaminantes en ellas. Objetivos— Este estudio evaluó el desempeño de un reactor anaerobio de Manto de Lodos y Flujo Ascendente (UASB) para tratar Aguas Residuales Hospitalarias reales (HMC). Metodología— El reactor operó durante 145 días variando los valores de la Carga Orgánica Volumétrica (COV). Resultados— Los resultados mostraron que para valores medios de carga de 0.950 Kg DQO/m3 ∙ d la eficiencia de remoción de materia orgánica fue 59% ± 14%, sin embargo, el proceso fue inestable y mostró una baja producción de gas metano. Conclusiones— Como resultado, esta investigación encontró que el reactor convencional tipo UASB no es una tecnología de tratamiento confiable y adecuada para el tratamiento de materia orgánica presente en las aguas residuales de los hospitales.Introduction— The hospitals’ wastewater is considered harmful to the environment and public health, which demands the utilization of proper treatment systems to manage the pollutants in them. Objectives— This study evaluated the performance of an anaerobic reactor Upflow Sludge Blanket (UASB) to treat real Hospitals’ Wastewater (HWW). Methodology— The reactor operated for 145 days with variations of the amount of Organic Load Rate (OLR). Results— The results showed that for mean organic load rate (OLR) of 0.950 Kg COD/m3 ∙ d the removal efficiency of organic matter was 59% ± 14%, however, the process was unstable and showed low methane gas production. Conclusions— As a result, this research found that UASB standard systems are not reliable and proper treatment technologies y for treating organic pollutants of hospitals’ wastewater.application/pdftext/htmlapplication/xmlspaUniversidad de la CostaINGE CUC - 2020http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/2926anaerobic digestionrecalcitrant compoundsUASBwater treatmentdigestión anaerobiacompuestos recalcitrantesUASBtratamiento de aguaDesempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminarPerformance of an Upflow anaerobic sludge blanket reactor for hospitals’ wastewaters treatment in Colombia: A preliminary studyArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucP. Verlicchi, A. Galletti, M. Petrovic & D. Barceló, “Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options,” J Hydrol, vol. 389, no. 3–4, pp. 416–428, Aug. 2010. https://doi.org/10.1016/j.jhydrol.2010.06.005P. Verlicchi, M. Al Aukidy & E. Zambello, “What have we learned from worldwide experiences on the management and treatment of hospital effluent? - An overview and a discussion on perspectives,” Sci Total Environ, vol. 514, pp. 467–491, May. 2015. https://doi.org/10.1016/j.scitotenv.2015.02.020J. B. Palter, I. Marinov, J. L. Sarmiento & N. Gruber, “ Large-Scale, Persistent Nutrient Fronts of the World,” The Handbook of Environmental Chemistry. HDB: Springer, pp. 1–38, 2006. https://doi.org/10.1007/698_2013_241P. Verlicchi, M. Al Aukidy, A. Galletti, M. Petrovic & D. Barceló, “Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment,” Sci Total Environ, vol. 430, pp. 109–118, Jul. 2012. https://doi.org/10.1016/j.scitotenv.2012.04.055N. A.Khan, S. U. Khan, S. Ahmed, I. H. Farooqi, M. Yousefi, A. A. Mohammadi & F. Changani, “Recent trends in disposal and treatment technologies of emerging-pollutants- A critical review,” TrAC - Trends Anal Chem, vol. 122, 2020. https://doi.org/10.1016/j.trac.2019.115744P. Gupta, N. Mathur, P. Bhatnagar, P. Nagar & S. Srivastava, “Genotoxicity evaluation of hospital wastewaters,” Ecotoxicol Environ Saf, vol. 72, no. 7, pp. 1925–1932, Oct. 2009. https://doi.org/10.1016/j.ecoenv.2009.05.012X.W. Wang, J. Li, T. Guo, B. Zhen, Q. Kong, B. Yi, Z. Li, N. Song, M. Jin, W. Xiao, X. zhu, C. Gu, J. Yin, W. Wei, W. Yao, C. Liu, J. Li, G. Ou, M. Wang, T. Fang, G. Wang, Y. Qiu, H. Wu, F. Chao & J. Li, “Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan hospital and the 309th Hospital of the Chinese People’s Liberation Army,” Water Sci Technol, vol. 52, no. 8, pp. 213–221, 2005. https://doi.org/10.2166/wst.2005.0266International Water Association -IWA, “Water utility managers, water professionals,” in COVID-19: A Water Professional’s Perspective. LDN, UK: IWA, 2020.S. Aydin, B. Ince & O. Ince, “Inhibitory effect of erythromycin, tetracycline and sulfamethoxazole antibiotics on anaerobic treatment of a pharmaceutical wastewater,” Water Sci Technol, vol. 71, no. 11, pp. 1620–1628, 2015. https://doi.org/10.2166/wst.2015.126X. Shi, K. Y. Leong & H. Y. Ng, “Anaerobic treatment of pharmaceutical wastewater: A critical review,” Bioresour Technol, vol. 245, no. Part A, pp. 1238–1244, Dec. 2017. https://doi.org/10.1016/j.biortech.2017.08.150S. Chelliapan & P. J. Sallis, “Removal of organic compound from pharmaceutical wastewater using advanced oxidation processes,,” J Sci Ind Res (India), vol. 72, no. 4, pp. 248–254, Apr. 2013. Available: http://hdl.handle.net/123456789/16874C. E. M. Ortiz & T. R. Chaparro, “Combination of advanced oxidation process and anaerobic process for hospital wastewater treatment,” Afinidad, vol. 71, no. 565, pp. 63–67, 2014. Disponible en https://raco.cat/index.php/afinidad/index E. de Sousa & J.T and Foresti, “Domestic sewage treatment in an upflow anaerobic sludge blanket - sequencing batch reactor system,” Water Sci Technol, vol. 33, no. 3, pp. 73–84, 1996. https://doi.org/10.1016/0273-1223(96)00323-X APHA (American Public Health Association), Standard Methods for examination of water and wastewater, 22 ed, Wa, USA.: APHA, 2012. L. E. Ripley, W. C. Boyle & J. C. Converse , “Improved alkalimetric monitoring for anaerobic digestion of high-strebgth wastes,” J Water Pollut Control Fed, vol. 58, no. 5, pp. 406–411, 1986. Available: https://www.jstor.org/stable/25042933 C. Chernicharo, Anaerobic Reactors. LDN, UK: IWA Publishing, 2007. P. Verlicchi, M. A. Aukidy, A. Galletti, M. Petrovic & D. Barceló, “Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment,” Sci Total Environ, vol. 430, pp. 109–118, Jul. 15, 2012. https://doi.org/10.1016/J.SCITOTENV.2012.04.055 J. S. González, A. Rivera, R. Borja & E. Sánchez, “Influence of organic volumetric loading rate, nutrient balance and alkalinity: COD ratio on the anaerobic sludge granulation of an UASB reactor treating sugar cane molasses,” Int Biodeterior Biodegradation, vol. 41, no. 2, pp. 127–131, 1998. https://doi.org/10.1016/S0964-8305(98)00003-1 A. P. Buzzine & E. C. Pires, “Cellulose pulp mill effluent treatment in an upflow anaerobic sludge blanket reactor,” Process Biochem, vol. 38, no. 5, pp. 707–713, Dic. 2002. https://doi.org/10.1016/S0032-9592(02)00190-5 A. Rezaee, M. Ansari, A. Khavanin, A. Sabzali & M. M. Aryan, “Hospital Wastewater Treatment Using an Integrated Anaerobic Aerobic Fixed Film Bioreactor,” Am J Environ Sci, vol. 1, no. 4,pp. 259–263, Dec. 2005. https://doi.org/10.3844/ajessp.2005.259.263 E. Foresti, M. Zaiat & M. Vallero, “Anaerobic processes as the core technology for sustainable domestic wastewater treatment: Consolidated applications, new trends, perspectives, and challenges,” Rev Environ Sci Biotechnol, vol. 5, no. 1, pp. 3–19, Feb. 2006. https://doi.org/10.1007/s11157-005-4630-94841117https://revistascientificas.cuc.edu.co/ingecuc/article/download/2926/3025https://revistascientificas.cuc.edu.co/ingecuc/article/download/2926/3586https://revistascientificas.cuc.edu.co/ingecuc/article/download/2926/3631Núm. 1 , Año 2021 : (Enero - Junio)PublicationOREORE.xmltext/xml2732https://repositorio.cuc.edu.co/bitstreams/99b342ee-62d7-4a24-ab48-70b6c87da41e/download99181e93390f122c6024a76d3f589ae3MD5111323/12278oai:repositorio.cuc.edu.co:11323/122782024-09-17 10:18:27.732http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2020metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co