Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar
Introducción— Las aguas residuales hospitalarias son consideradas peligrosas y dañinas para el medio ambiente y la salud pública, lo que exige la utilización de sistemas de tratamiento adecuados para controlar los contaminantes en ellas. Objetivos— Este estudio evaluó el desempeño de un reactor anae...
- Autores:
-
Rodriguez, Tatiana
Rueda Bayona, Juan Gabriel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/12278
- Palabra clave:
- anaerobic digestion
recalcitrant compounds
UASB
water treatment
digestión anaerobia
compuestos recalcitrantes
UASB
tratamiento de agua
- Rights
- openAccess
- License
- INGE CUC - 2020
id |
RCUC2_1def43c24d77ded7ebf7fa8ad0493a22 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/12278 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar |
dc.title.translated.eng.fl_str_mv |
Performance of an Upflow anaerobic sludge blanket reactor for hospitals’ wastewaters treatment in Colombia: A preliminary study |
title |
Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar |
spellingShingle |
Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar anaerobic digestion recalcitrant compounds UASB water treatment digestión anaerobia compuestos recalcitrantes UASB tratamiento de agua |
title_short |
Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar |
title_full |
Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar |
title_fullStr |
Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar |
title_full_unstemmed |
Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar |
title_sort |
Desempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminar |
dc.creator.fl_str_mv |
Rodriguez, Tatiana Rueda Bayona, Juan Gabriel |
dc.contributor.author.spa.fl_str_mv |
Rodriguez, Tatiana Rueda Bayona, Juan Gabriel |
dc.subject.eng.fl_str_mv |
anaerobic digestion recalcitrant compounds UASB water treatment |
topic |
anaerobic digestion recalcitrant compounds UASB water treatment digestión anaerobia compuestos recalcitrantes UASB tratamiento de agua |
dc.subject.spa.fl_str_mv |
digestión anaerobia compuestos recalcitrantes UASB tratamiento de agua |
description |
Introducción— Las aguas residuales hospitalarias son consideradas peligrosas y dañinas para el medio ambiente y la salud pública, lo que exige la utilización de sistemas de tratamiento adecuados para controlar los contaminantes en ellas. Objetivos— Este estudio evaluó el desempeño de un reactor anaerobio de Manto de Lodos y Flujo Ascendente (UASB) para tratar Aguas Residuales Hospitalarias reales (HMC). Metodología— El reactor operó durante 145 días variando los valores de la Carga Orgánica Volumétrica (COV). Resultados— Los resultados mostraron que para valores medios de carga de 0.950 Kg DQO/m3 ∙ d la eficiencia de remoción de materia orgánica fue 59% ± 14%, sin embargo, el proceso fue inestable y mostró una baja producción de gas metano. Conclusiones— Como resultado, esta investigación encontró que el reactor convencional tipo UASB no es una tecnología de tratamiento confiable y adecuada para el tratamiento de materia orgánica presente en las aguas residuales de los hospitales. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-10-28 00:00:00 2024-04-09T20:17:54Z |
dc.date.available.none.fl_str_mv |
2020-10-28 00:00:00 2024-04-09T20:17:54Z |
dc.date.issued.none.fl_str_mv |
2020-10-28 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-6517 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/12278 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/ingecuc.17.1.2020.04 |
dc.identifier.doi.none.fl_str_mv |
10.17981/ingecuc.17.1.2020.04 |
dc.identifier.eissn.none.fl_str_mv |
2382-4700 |
identifier_str_mv |
0122-6517 10.17981/ingecuc.17.1.2020.04 2382-4700 |
url |
https://hdl.handle.net/11323/12278 https://doi.org/10.17981/ingecuc.17.1.2020.04 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Inge Cuc |
dc.relation.references.spa.fl_str_mv |
P. Verlicchi, A. Galletti, M. Petrovic & D. Barceló, “Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options,” J Hydrol, vol. 389, no. 3–4, pp. 416–428, Aug. 2010. https://doi.org/10.1016/j.jhydrol.2010.06.005 P. Verlicchi, M. Al Aukidy & E. Zambello, “What have we learned from worldwide experiences on the management and treatment of hospital effluent? - An overview and a discussion on perspectives,” Sci Total Environ, vol. 514, pp. 467–491, May. 2015. https://doi.org/10.1016/j.scitotenv.2015.02.020 J. B. Palter, I. Marinov, J. L. Sarmiento & N. Gruber, “ Large-Scale, Persistent Nutrient Fronts of the World,” The Handbook of Environmental Chemistry. HDB: Springer, pp. 1–38, 2006. https://doi.org/10.1007/698_2013_241 P. Verlicchi, M. Al Aukidy, A. Galletti, M. Petrovic & D. Barceló, “Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment,” Sci Total Environ, vol. 430, pp. 109–118, Jul. 2012. https://doi.org/10.1016/j.scitotenv.2012.04.055 N. A.Khan, S. U. Khan, S. Ahmed, I. H. Farooqi, M. Yousefi, A. A. Mohammadi & F. Changani, “Recent trends in disposal and treatment technologies of emerging-pollutants- A critical review,” TrAC - Trends Anal Chem, vol. 122, 2020. https://doi.org/10.1016/j.trac.2019.115744 P. Gupta, N. Mathur, P. Bhatnagar, P. Nagar & S. Srivastava, “Genotoxicity evaluation of hospital wastewaters,” Ecotoxicol Environ Saf, vol. 72, no. 7, pp. 1925–1932, Oct. 2009. https://doi.org/10.1016/j.ecoenv.2009.05.012 X.W. Wang, J. Li, T. Guo, B. Zhen, Q. Kong, B. Yi, Z. Li, N. Song, M. Jin, W. Xiao, X. zhu, C. Gu, J. Yin, W. Wei, W. Yao, C. Liu, J. Li, G. Ou, M. Wang, T. Fang, G. Wang, Y. Qiu, H. Wu, F. Chao & J. Li, “Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan hospital and the 309th Hospital of the Chinese People’s Liberation Army,” Water Sci Technol, vol. 52, no. 8, pp. 213–221, 2005. https://doi.org/10.2166/wst.2005.0266 International Water Association -IWA, “Water utility managers, water professionals,” in COVID-19: A Water Professional’s Perspective. LDN, UK: IWA, 2020. S. Aydin, B. Ince & O. Ince, “Inhibitory effect of erythromycin, tetracycline and sulfamethoxazole antibiotics on anaerobic treatment of a pharmaceutical wastewater,” Water Sci Technol, vol. 71, no. 11, pp. 1620–1628, 2015. https://doi.org/10.2166/wst.2015.126 X. Shi, K. Y. Leong & H. Y. Ng, “Anaerobic treatment of pharmaceutical wastewater: A critical review,” Bioresour Technol, vol. 245, no. Part A, pp. 1238–1244, Dec. 2017. https://doi.org/10.1016/j.biortech.2017.08.150 S. Chelliapan & P. J. Sallis, “Removal of organic compound from pharmaceutical wastewater using advanced oxidation processes,,” J Sci Ind Res (India), vol. 72, no. 4, pp. 248–254, Apr. 2013. Available: http://hdl.handle.net/123456789/16874 C. E. M. Ortiz & T. R. Chaparro, “Combination of advanced oxidation process and anaerobic process for hospital wastewater treatment,” Afinidad, vol. 71, no. 565, pp. 63–67, 2014. Disponible en https://raco.cat/index.php/afinidad/index E. de Sousa & J.T and Foresti, “Domestic sewage treatment in an upflow anaerobic sludge blanket - sequencing batch reactor system,” Water Sci Technol, vol. 33, no. 3, pp. 73–84, 1996. https://doi.org/10.1016/0273-1223(96)00323-X APHA (American Public Health Association), Standard Methods for examination of water and wastewater, 22 ed, Wa, USA.: APHA, 2012. L. E. Ripley, W. C. Boyle & J. C. Converse , “Improved alkalimetric monitoring for anaerobic digestion of high-strebgth wastes,” J Water Pollut Control Fed, vol. 58, no. 5, pp. 406–411, 1986. Available: https://www.jstor.org/stable/25042933 C. Chernicharo, Anaerobic Reactors. LDN, UK: IWA Publishing, 2007. P. Verlicchi, M. A. Aukidy, A. Galletti, M. Petrovic & D. Barceló, “Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment,” Sci Total Environ, vol. 430, pp. 109–118, Jul. 15, 2012. https://doi.org/10.1016/J.SCITOTENV.2012.04.055 J. S. González, A. Rivera, R. Borja & E. Sánchez, “Influence of organic volumetric loading rate, nutrient balance and alkalinity: COD ratio on the anaerobic sludge granulation of an UASB reactor treating sugar cane molasses,” Int Biodeterior Biodegradation, vol. 41, no. 2, pp. 127–131, 1998. https://doi.org/10.1016/S0964-8305(98)00003-1 A. P. Buzzine & E. C. Pires, “Cellulose pulp mill effluent treatment in an upflow anaerobic sludge blanket reactor,” Process Biochem, vol. 38, no. 5, pp. 707–713, Dic. 2002. https://doi.org/10.1016/S0032-9592(02)00190-5 A. Rezaee, M. Ansari, A. Khavanin, A. Sabzali & M. M. Aryan, “Hospital Wastewater Treatment Using an Integrated Anaerobic Aerobic Fixed Film Bioreactor,” Am J Environ Sci, vol. 1, no. 4,pp. 259–263, Dec. 2005. https://doi.org/10.3844/ajessp.2005.259.263 E. Foresti, M. Zaiat & M. Vallero, “Anaerobic processes as the core technology for sustainable domestic wastewater treatment: Consolidated applications, new trends, perspectives, and challenges,” Rev Environ Sci Biotechnol, vol. 5, no. 1, pp. 3–19, Feb. 2006. https://doi.org/10.1007/s11157-005-4630-9 |
dc.relation.citationendpage.none.fl_str_mv |
48 |
dc.relation.citationstartpage.none.fl_str_mv |
41 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
17 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2926/3025 https://revistascientificas.cuc.edu.co/ingecuc/article/download/2926/3586 https://revistascientificas.cuc.edu.co/ingecuc/article/download/2926/3631 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2021 : (Enero - Junio) |
dc.rights.spa.fl_str_mv |
INGE CUC - 2020 |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
INGE CUC - 2020 http://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf text/html application/xml |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/2926 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/99b342ee-62d7-4a24-ab48-70b6c87da41e/download |
bitstream.checksum.fl_str_mv |
99181e93390f122c6024a76d3f589ae3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760701972152320 |
spelling |
Rodriguez, TatianaRueda Bayona, Juan Gabriel2020-10-28 00:00:002024-04-09T20:17:54Z2020-10-28 00:00:002024-04-09T20:17:54Z2020-10-280122-6517https://hdl.handle.net/11323/12278https://doi.org/10.17981/ingecuc.17.1.2020.0410.17981/ingecuc.17.1.2020.042382-4700Introducción— Las aguas residuales hospitalarias son consideradas peligrosas y dañinas para el medio ambiente y la salud pública, lo que exige la utilización de sistemas de tratamiento adecuados para controlar los contaminantes en ellas. Objetivos— Este estudio evaluó el desempeño de un reactor anaerobio de Manto de Lodos y Flujo Ascendente (UASB) para tratar Aguas Residuales Hospitalarias reales (HMC). Metodología— El reactor operó durante 145 días variando los valores de la Carga Orgánica Volumétrica (COV). Resultados— Los resultados mostraron que para valores medios de carga de 0.950 Kg DQO/m3 ∙ d la eficiencia de remoción de materia orgánica fue 59% ± 14%, sin embargo, el proceso fue inestable y mostró una baja producción de gas metano. Conclusiones— Como resultado, esta investigación encontró que el reactor convencional tipo UASB no es una tecnología de tratamiento confiable y adecuada para el tratamiento de materia orgánica presente en las aguas residuales de los hospitales.Introduction— The hospitals’ wastewater is considered harmful to the environment and public health, which demands the utilization of proper treatment systems to manage the pollutants in them. Objectives— This study evaluated the performance of an anaerobic reactor Upflow Sludge Blanket (UASB) to treat real Hospitals’ Wastewater (HWW). Methodology— The reactor operated for 145 days with variations of the amount of Organic Load Rate (OLR). Results— The results showed that for mean organic load rate (OLR) of 0.950 Kg COD/m3 ∙ d the removal efficiency of organic matter was 59% ± 14%, however, the process was unstable and showed low methane gas production. Conclusions— As a result, this research found that UASB standard systems are not reliable and proper treatment technologies y for treating organic pollutants of hospitals’ wastewater.application/pdftext/htmlapplication/xmlspaUniversidad de la CostaINGE CUC - 2020http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/2926anaerobic digestionrecalcitrant compoundsUASBwater treatmentdigestión anaerobiacompuestos recalcitrantesUASBtratamiento de aguaDesempeño de un reactor anaerobio de manto de lodos y flujo ascendente para tratamiento de aguas residuales hospitalarias en Colombia: Estudio preliminarPerformance of an Upflow anaerobic sludge blanket reactor for hospitals’ wastewaters treatment in Colombia: A preliminary studyArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucP. Verlicchi, A. Galletti, M. Petrovic & D. Barceló, “Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options,” J Hydrol, vol. 389, no. 3–4, pp. 416–428, Aug. 2010. https://doi.org/10.1016/j.jhydrol.2010.06.005P. Verlicchi, M. Al Aukidy & E. Zambello, “What have we learned from worldwide experiences on the management and treatment of hospital effluent? - An overview and a discussion on perspectives,” Sci Total Environ, vol. 514, pp. 467–491, May. 2015. https://doi.org/10.1016/j.scitotenv.2015.02.020J. B. Palter, I. Marinov, J. L. Sarmiento & N. Gruber, “ Large-Scale, Persistent Nutrient Fronts of the World,” The Handbook of Environmental Chemistry. HDB: Springer, pp. 1–38, 2006. https://doi.org/10.1007/698_2013_241P. Verlicchi, M. Al Aukidy, A. Galletti, M. Petrovic & D. Barceló, “Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment,” Sci Total Environ, vol. 430, pp. 109–118, Jul. 2012. https://doi.org/10.1016/j.scitotenv.2012.04.055N. A.Khan, S. U. Khan, S. Ahmed, I. H. Farooqi, M. Yousefi, A. A. Mohammadi & F. Changani, “Recent trends in disposal and treatment technologies of emerging-pollutants- A critical review,” TrAC - Trends Anal Chem, vol. 122, 2020. https://doi.org/10.1016/j.trac.2019.115744P. Gupta, N. Mathur, P. Bhatnagar, P. Nagar & S. Srivastava, “Genotoxicity evaluation of hospital wastewaters,” Ecotoxicol Environ Saf, vol. 72, no. 7, pp. 1925–1932, Oct. 2009. https://doi.org/10.1016/j.ecoenv.2009.05.012X.W. Wang, J. Li, T. Guo, B. Zhen, Q. Kong, B. Yi, Z. Li, N. Song, M. Jin, W. Xiao, X. zhu, C. Gu, J. Yin, W. Wei, W. Yao, C. Liu, J. Li, G. Ou, M. Wang, T. Fang, G. Wang, Y. Qiu, H. Wu, F. Chao & J. Li, “Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan hospital and the 309th Hospital of the Chinese People’s Liberation Army,” Water Sci Technol, vol. 52, no. 8, pp. 213–221, 2005. https://doi.org/10.2166/wst.2005.0266International Water Association -IWA, “Water utility managers, water professionals,” in COVID-19: A Water Professional’s Perspective. LDN, UK: IWA, 2020.S. Aydin, B. Ince & O. Ince, “Inhibitory effect of erythromycin, tetracycline and sulfamethoxazole antibiotics on anaerobic treatment of a pharmaceutical wastewater,” Water Sci Technol, vol. 71, no. 11, pp. 1620–1628, 2015. https://doi.org/10.2166/wst.2015.126X. Shi, K. Y. Leong & H. Y. Ng, “Anaerobic treatment of pharmaceutical wastewater: A critical review,” Bioresour Technol, vol. 245, no. Part A, pp. 1238–1244, Dec. 2017. https://doi.org/10.1016/j.biortech.2017.08.150S. Chelliapan & P. J. Sallis, “Removal of organic compound from pharmaceutical wastewater using advanced oxidation processes,,” J Sci Ind Res (India), vol. 72, no. 4, pp. 248–254, Apr. 2013. Available: http://hdl.handle.net/123456789/16874C. E. M. Ortiz & T. R. Chaparro, “Combination of advanced oxidation process and anaerobic process for hospital wastewater treatment,” Afinidad, vol. 71, no. 565, pp. 63–67, 2014. Disponible en https://raco.cat/index.php/afinidad/index E. de Sousa & J.T and Foresti, “Domestic sewage treatment in an upflow anaerobic sludge blanket - sequencing batch reactor system,” Water Sci Technol, vol. 33, no. 3, pp. 73–84, 1996. https://doi.org/10.1016/0273-1223(96)00323-X APHA (American Public Health Association), Standard Methods for examination of water and wastewater, 22 ed, Wa, USA.: APHA, 2012. L. E. Ripley, W. C. Boyle & J. C. Converse , “Improved alkalimetric monitoring for anaerobic digestion of high-strebgth wastes,” J Water Pollut Control Fed, vol. 58, no. 5, pp. 406–411, 1986. Available: https://www.jstor.org/stable/25042933 C. Chernicharo, Anaerobic Reactors. LDN, UK: IWA Publishing, 2007. P. Verlicchi, M. A. Aukidy, A. Galletti, M. Petrovic & D. Barceló, “Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment,” Sci Total Environ, vol. 430, pp. 109–118, Jul. 15, 2012. https://doi.org/10.1016/J.SCITOTENV.2012.04.055 J. S. González, A. Rivera, R. Borja & E. Sánchez, “Influence of organic volumetric loading rate, nutrient balance and alkalinity: COD ratio on the anaerobic sludge granulation of an UASB reactor treating sugar cane molasses,” Int Biodeterior Biodegradation, vol. 41, no. 2, pp. 127–131, 1998. https://doi.org/10.1016/S0964-8305(98)00003-1 A. P. Buzzine & E. C. Pires, “Cellulose pulp mill effluent treatment in an upflow anaerobic sludge blanket reactor,” Process Biochem, vol. 38, no. 5, pp. 707–713, Dic. 2002. https://doi.org/10.1016/S0032-9592(02)00190-5 A. Rezaee, M. Ansari, A. Khavanin, A. Sabzali & M. M. Aryan, “Hospital Wastewater Treatment Using an Integrated Anaerobic Aerobic Fixed Film Bioreactor,” Am J Environ Sci, vol. 1, no. 4,pp. 259–263, Dec. 2005. https://doi.org/10.3844/ajessp.2005.259.263 E. Foresti, M. Zaiat & M. Vallero, “Anaerobic processes as the core technology for sustainable domestic wastewater treatment: Consolidated applications, new trends, perspectives, and challenges,” Rev Environ Sci Biotechnol, vol. 5, no. 1, pp. 3–19, Feb. 2006. https://doi.org/10.1007/s11157-005-4630-94841117https://revistascientificas.cuc.edu.co/ingecuc/article/download/2926/3025https://revistascientificas.cuc.edu.co/ingecuc/article/download/2926/3586https://revistascientificas.cuc.edu.co/ingecuc/article/download/2926/3631Núm. 1 , Año 2021 : (Enero - Junio)PublicationOREORE.xmltext/xml2732https://repositorio.cuc.edu.co/bitstreams/99b342ee-62d7-4a24-ab48-70b6c87da41e/download99181e93390f122c6024a76d3f589ae3MD5111323/12278oai:repositorio.cuc.edu.co:11323/122782024-09-17 10:18:27.732http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2020metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |