Aprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia

Fruit and vegetable residues (HR) represent sustainable and renewable resources that could be valorized in different applications providing alternatives thanks to the availability, high content of polysaccharides, micronutrients and moisture. The conversion of this biomass into energy and high value...

Full description

Autores:
Salgado Angulo, Kleyder José
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13597
Acceso en línea:
https://hdl.handle.net/11323/13597
https://repositorio.cuc.edu.co/
Palabra clave:
Digestión anaerobia
Residuos hortofrutícolas
Simulación
Potencial bioquímico de metano
Análisis económico
Anaerobic digestion
Horticultural wastes
Simulation
Biochemical methane potential
Economic analysis
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id RCUC2_1dc42a41240fb3a7ad4ec2bea6042fdf
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13597
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Aprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia
title Aprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia
spellingShingle Aprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia
Digestión anaerobia
Residuos hortofrutícolas
Simulación
Potencial bioquímico de metano
Análisis económico
Anaerobic digestion
Horticultural wastes
Simulation
Biochemical methane potential
Economic analysis
title_short Aprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia
title_full Aprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia
title_fullStr Aprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia
title_full_unstemmed Aprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia
title_sort Aprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia
dc.creator.fl_str_mv Salgado Angulo, Kleyder José
dc.contributor.advisor.none.fl_str_mv Cardenas Escorcia, Yulineth
Ospino, Adalberto
dc.contributor.author.none.fl_str_mv Salgado Angulo, Kleyder José
dc.contributor.jury.none.fl_str_mv Moreno Rocha, Christian Manuel
Nuñez Alvarez, José Ricardo
dc.subject.proposal.spa.fl_str_mv Digestión anaerobia
Residuos hortofrutícolas
Simulación
Potencial bioquímico de metano
Análisis económico
topic Digestión anaerobia
Residuos hortofrutícolas
Simulación
Potencial bioquímico de metano
Análisis económico
Anaerobic digestion
Horticultural wastes
Simulation
Biochemical methane potential
Economic analysis
dc.subject.proposal.eng.fl_str_mv Anaerobic digestion
Horticultural wastes
Simulation
Biochemical methane potential
Economic analysis
description Fruit and vegetable residues (HR) represent sustainable and renewable resources that could be valorized in different applications providing alternatives thanks to the availability, high content of polysaccharides, micronutrients and moisture. The conversion of this biomass into energy and high value by-products through anaerobic digestion (AD) is a promising alternative. In this study, the potential for energy use of HR from the Sincelejo marketplace by AD was evaluated. These wastes were classified and characterized taking into account international standards. Based on the above, a simulation was developed in Aspen Plus V14 using the CDM1 and CDM2 models. The Otto and Brayton thermodynamic cycles were included in the simulation to generate electricity from biogas. Greenhouse gas emissions were evaluated, and biochemical methane potential was determined using respirometric sensors. For the determination of the economic feasibility, two proposed scenarios were evaluated according to the simulated cycles. The results indicated that the HRs present a great heterogeneity in their classification, presenting a physicochemical composition suitable for methane production by AD. The simulation showed a 97% reliability between model and experimental data, yielding a value of 322.05 NmL CH4/gSV for the biochemical methane potential. It is concluded that scenario 1 representing the Brayton Cycle presented the best economic indicators with a positive NPV, an IRR of 10%, an IR of 1.05 and a BCR of 1.03, pointing to a relatively safe project.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-29T19:56:15Z
dc.date.available.none.fl_str_mv 2024-10-29T19:56:15Z
dc.date.issued.none.fl_str_mv 2024
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13597
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/13597
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Abanades, S., Abbaspour, H., Ahmadi, A., Das, B., Ehyaei, M. A., Esmaeilion, F., El Haj Assad, M., Hajilounezhad, T., Hmida, A., Rosen, M. A., Safari, S., Shabi, M. A., & Silveira, J. L. (2022). A conceptual review of sustainable electrical power generation from biogas. Energy Science and Engineering, 10(2), 630–655. https://doi.org/10.1002/ese3.1030
Abdeljaber, A., Zannerni, R., Masoud, W., Abdallah, M., & Rocha-Meneses, L. (2022). Eco-Efficiency Analysis of Integrated Waste Management Strategies Based on Gasification and Mechanical Biological Treatment. Sustainability (Switzerland), 14(7), 3899. https://doi.org/10.3390/SU14073899/S1
Adamu, H., Bello, U., Yuguda, A. U., Tafida, U. I., Jalam, A. M., Sabo, A., & Qamar, M. (2023). Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes. Renewable and Sustainable Energy Reviews, 186(November 2022), 113686. https://doi.org/10.1016/j.rser.2023.113686
Afsal, A., David, R., Baiju, V., Muhammed Suhail, N., Parvathy, U., & Rakhi, R. B. (2020). Experimental investigations on combustion characteristics of fuel briquettes made from vegetable market waste and saw dust. Materials Today: Proceedings, 33, 3826–3831. https://doi.org/10.1016/j.matpr.2020.06.222
Agrawal, A. V., Chaudhari, P. K., & Ghosh, P. (2023). Effect of mixing ratio on biomethane potential of anaerobic co-digestion of fruit and vegetable waste and food waste. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-023-03737-5
Agrawal, A. V., Parmesh, ·, Chaudhari, K., & Ghosh, · Prabir. (2023). Effect of mixing ratio on biomethane potential of anaerobic co-digestion of fruit and vegetable waste and food waste. Biomass Conversion and Biorefinery 2023, 1, 1–10. https://doi.org/10.1007/S13399-023-03737-5
Ahammad, S. Z., & Sreekrishnan, T. R. (2016). Energy from wastewater treatment. In Bioremediation and Bioeconomy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802830-8.00020-4
Ahlberg-Eliasson, K., Westerholm, M., Isaksson, S., & Schnürer, A. (2021). Anaerobic Digestion of Animal Manure and Influence of Organic Loading Rate and Temperature on Process Performance, Microbiology, and Methane Emission From Digestates. Frontiers in Energy Research, 9(December), 1–16. https://doi.org/10.3389/fenrg.2021.740314
AL-Huqail, A. A., Kumar, V., Kumar, R., Eid, E. M., Taher, M. A., Adelodun, B., Abou Fayssal, S., Mioč, B., Držaić, V., Goala, M., Kumar, P., & Širić, I. (2022). Sustainable Valorization of Four Types of Fruit Peel Waste for Biogas Recovery and Use of Digestate for Radish (Raphanus sativus L. cv. Pusa Himani) Cultivation. Sustainability (Switzerland), 14(16). https://doi.org/10.3390/su141610224
Al-Wahaibi, A., Osman, A. I., Al-Muhtaseb, A. H., Alqaisi, O., Baawain, M., Fawzy, S., & Rooney, D. W. (2020). Techno-economic evaluation of biogas production from food waste via anaerobic digestion. Scientific Reports, 10(1), 1–16. https://doi.org/10.1038/s41598-020-72897-5
Anderson, R. (1979). Biological paths to self-reliance: a guide to biological solar energy conversion. https://www.osti.gov/biblio/6319341
Angelidaki, I., & Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Biotechnology, 3(2), 117–129. https://doi.org/10.1007/s11157-004-2502-3
Anhuradha, S., & Arrrivukkarasan, S. (2020). Potentiality of fruit and vegetable waste by anaerobic co-digestion with municipal sewage sludge and biogas yield Potentiality of Fruit and Vegetable Waste by Anaerobic Co- digestion with Municipal Sewage Sludge and Biogas Yield. 070003(March).
Azarmanesh, R., Zarghami Qaretapeh, M., Hasani Zonoozi, M., Ghiasinejad, H., & Zhang, Y. (2023). Anaerobic co-digestion of sewage sludge with other organic wastes: A comprehensive review focusing on selection criteria, operational conditions, and microbiology. Chemical Engineering Journal Advances, 14(January), 100453. https://doi.org/10.1016/j.ceja.2023.100453
Azevedo, A., Lapa, N., Moldão, M., & Duarte, E. (2023). Opportunities and challenges in the anaerobic co-digestion of municipal sewage sludge and fruit and vegetable wastes: A review. Energy Nexus, 10(April). https://doi.org/10.1016/j.nexus.2023.100202
Banco de la República. (2024).
Barragán-Escandón, A., Ruiz, J. M. O., Tigre, J. D. C., & Zalamea-León, E. F. (2020). Assessment of power generation using biogas from landfills in an equatorial tropical context. Sustainability (Switzerland), 12(7), 1–18. https://doi.org/10.3390/su12072669
Basumatary, S., Das, S., Kalita, P., & Goswami, P. (2021). Effect of feedstock/water ratio on anaerobic digestion of cattle dung and vegetable waste under mesophilic and thermophilic conditions. Bioresource Technology Reports, 14(January), 100675. https://doi.org/10.1016/j.biteb.2021.100675
Beatriz H, Aristizábal Z.a, Estefanía Vanegas C.a, Juan Pablo Mariscal M.a, & Miller Alonso Camargo V.a, b. (2015). Digestión anaerobia de residuos de poda. 46, 29–36. https://www.redalyc.org/pdf/1470/147043932005.pdf
Bechara, R. (2022). Improvements to the ADM1 based Process Simulation Model: Reaction segregation, parameter estimation and process optimization. Heliyon, 8(12), e11793. https://doi.org/10.1016/j.heliyon.2022.e11793
Bentivoglio, D., Chiaraluce, G., & Finco, A. (2022). Economic assessment for vegetable waste valorization through the biogas-biomethane chain in Italy with a circular economy approach. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.1035357
Buswell, A. M., & Sollo, F. W. (1948). The Mechanism of the Methane Fermentation. Journal of the American Chemical Society, 70(5), 1778–1780. https://doi.org/10.1021/ja01185a034
Cabas, M. A., Duque, S., & Cadena, E. M. (2020). Optimization of Enzymatic Pretreatments to Obtain Fermentable Sugars from Fruit and Vegetable Waste. Waste and Biomass Valorization, 11, 5991–6002. https://doi.org/10.1007/s12649-019-00821-8
Caiza Constante, J. I. (2019). Evaluación de la solubilidad de la proteína presente en matrices vegetales: leguminosas, tubérculos y raíces. In Journal of Wind Engineering and Industrial Aerodynamics (Vol. 26, Issue 1). https://doi.org/10.1007/s11273-020-09706-3%0Ahttp://dx.doi.org/10.1016/j.jweia.2017.09.008%0Ahttps://doi.org/10.1016/j.energy.2020.117919%0Ahttps://doi.org/10.1016/j.coldregions.2020.103116%0Ahttp://dx.doi.org/10.1016/j.jweia.2010.12.004%0Ahttp://dx.doi.o
Cardona Alzate, C. A., Solarte Toro, J. C., & Peña, Á. G. (2018). Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries. Catalysis Today, 302, 61–72. https://doi.org/10.1016/j.cattod.2017.09.034
Carvalheira, M., Cassidy, J., Ribeiro, J. M., Oliveira, B. A., Freitas, E. B., Roca, C., Carvalho, G., Oehmen, A., & Reis, M. A. M. (2018). Performance of a two-stage anaerobic digestion system treating fruit pulp waste: The impact of substrate shift and operational conditions. Waste Management, 78, 434–445. https://doi.org/10.1016/j.wasman.2018.06.013
Cavalcante, W. A., de Menezes, C. A., da Silva Júnior, F. C. G., Gehring, T. A., Leitão, R. C., & Zaiat, M. (2023). From start-up to maximum loading: An approach for methane production in upflow anaerobic sludge blanket reactor fed with the liquid fraction of fruit and vegetable waste. Journal of Environmental Management, 335(January). https://doi.org/10.1016/j.jenvman.2023.117578
Chatterjee, B., & Mazumder, D. (2019). Role of stage-separation in the ubiquitous development of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste: A critical review. Renewable and Sustainable Energy Reviews, 104(November 2018), 439–469. https://doi.org/10.1016/j.rser.2019.01.026
Chatterjee, B., & Mazumder, D. (2020). New approach of characterizing fruit and vegetable waste (FVW) to ascertain its biological stabilization via two-stage anaerobic digestion (AD). Biomass and Bioenergy, 139(November 2019), 105594. https://doi.org/10.1016/j.biombioe.2020.105594
Corigliano, O., Florio, G., & Fragiacomo, P. (2016). Energy Valorization of Edible Organic Matter for Electrical, Thermal and Cooling Energy Generation: Part One. Energy Procedia, 101(September), 81–88. https://doi.org/10.1016/j.egypro.2016.11.011
D’Silva, T. C., Isha, A., Verma, S., Shirsath, G., Chandra, R., Vijay, V. K., Subbarao, P. M. V., & Kovács, K. L. (2022). Anaerobic co-digestion of dry fallen leaves, fruit/vegetable wastes and cow dung without an active inoculum – A biomethane potential study. Bioresource Technology Reports, 19(August). https://doi.org/10.1016/j.biteb.2022.101189
De Amarante, M. C. A., Guerreiro, P. E. G., Radmann, E. M., & de Souza, M. da R. A. Z. (2022). Effect of fruits and vegetables in the anaerobic digestion of food waste from university restaurant. Applied Biochemistry and Biotechnology, 194(8), 3365–3383. https://doi.org/10.1007/s12010-022-03895-8
De Quadros, T. C. F., Sicchieri, I. M., Perin, J. K. H., Challiol, A. Z., Bortoloti, M. A., Fernandes, F., & Kuroda, E. K. (2022). Valorization of Fruit and Vegetable Waste by Anaerobic Digestion: Definition of Co-substrates and Inoculum. Waste and Biomass Valorization, 14(2), 407–419. https://doi.org/10.1007/s12649-022-01887-7
Departamento NacionDhull, P., Kumar, S., Yadav, N., & Lohchab, R. K. (2024). A comprehensive review on anaerobic digestion with focus on potential feedstocks, limitations associated and recent advances for biogas production. In Environmental Science and Pollution Research (Issue Birol 2021). Springer Berlin Heidelberg. https://doi.org/10.1007/s11356-024-33736-6al de Planeación. (2022). Guía nacional para la adecuada separación de residuos sólidos.
Durán Hernandéz, D. M. (2020). Aprovechamiento energético de la codigestión anaeróbica de la fracción orgánica de residuos sólidos urbanos y residuos de cosecha de plátano para la producción de biogás. https://repositorio.unal.edu.co/handle/unal/79232
Edwiges, T., Frare, L. M., Alino, J., Lins, L., Flotats, X., Sarolli, M., Edwiges, T., Frare, L. M., Alino, J., Lins, L., Flotats, X., & Sarolli, M. (2017). Use of mathematical models to fast predict biochemical methane potential of fruit and vegetable waste. 15th World Congress on Anaerobic Digestion, Beijing, China, November, 2–6. papers3://publication/uuid/897BA738-7F42-4B2A-9275-
F96B3FF8C7DC%0Ahttps://www.researchgate.net/publication/320757102%0Apapers3://publication/uuid/23D492C3-12C6-461F-9FB8-EBD4DA9D93F3
Edwiges, T., Frare, L. M., Lima Alino, J. H., Triolo, J. M., Flotats, X., & Silva de Mendonça Costa, M. S. (2019). Methane potential of fruit and vegetable waste: an evaluation of the semi-continuous anaerobic mono-digestion. ENVIRONMENTAL TECHNOLOGY, 41(7), 921–930. https://doi.org/10.1080/09593330.2018.1515262
Edwiges, T., Frare, L. M., Lima Alino, J. H., Triolo, J. M., Flotats, X., & Silva de Mendonça Costa, M. S. (2020). Methane potential of fruit and vegetable waste: an evaluation of the semi-continuous anaerobic mono-digestion. Environmental Technology (United Kingdom), 41(7), 921–930. https://doi.org/10.1080/09593330.2018.1515262
Edwiges, T., Frare, L., Mayer, B., Lins, L., Mi Triolo, J., Flotats, X., & de Mendonça Costa, M. S. S. (2018). Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Management, 71, 618–625. https://doi.org/10.1016/j.wasman.2017.05.030
Eraky, M., Jin, K., Zhang, Q., Zhang, Z., Ai, P., & Elsayed, M. (2021). Acidogenic biorefinery of rice straw for volatile fatty acids production via sequential two-stage fermentation: Effects of pre-treatments. Environmental Technology and Innovation, 23, 101686. https://doi.org/10.1016/j.eti.2021.101686
Erlwein, A., & Sotomayor, E. (2020). Análisis técnico-económico de alternativas de gestión de digestato y producción de fertilizantes.
Fazzino, F., Folino, A., Mauriello, F., Pedullà, A., & Calabrò, P. S. (2021). Biofuel production from fruit and vegetable market waste and mature landfill leachate by an active filter-anaerobic digestion integrated system. Energy Conversion and Management: X, 12. https://doi.org/10.1016/j.ecmx.2021.100130
Fernández-Domínguez, D., Sourdon, L., Pérémé, M., Guilayn, F., Steyer, J. P., Patureau, D., & Jimenez, J. (2024). Retention time and organic loading rate as anaerobic co-digestion key-factors for better digestate valorization practices: C and N dynamics in soils. Waste Management, 181(April), 1–10. https://doi.org/10.1016/j.wasman.2024.03.031
Filho, W. L., & Surroop, D. (2017). The Nexus: Energy, Environment and Climate Change. https://books.google.co.uk/books?id=HW48DwAAQBAJ&dq=biomass+technologies+in+ghana+by+atakora+2000&source=gbs_navlinks_s
Foster, W., Azimov, U., Gauthier-Maradei, P., Molano, L. C., Combrinck, M., Munoz, J., Esteves, J. J., & Patino, L. (2021). Waste-to-energy conversion technologies in the UK: Processes and barriers – A review. Renewable and Sustainable Energy Reviews, 135(August 2020), 110226. https://doi.org/10.1016/j.rser.2020.110226
Ganesh, K. S., Sridhar, A., & Vishali, S. (2022). Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities-A review. Chemosphere, 287(P3), 132221. https://doi.org/10.1016/j.chemosphere.2021.132221
García, C. A., Betancourt, R., & Cardona, C. A. (2017). Stand-alone and biorefinery pathways to produce hydrogen through gasification and dark fermentation using Pinus Patula. Journal of Environmental Management, 203, 695–703. https://doi.org/10.1016/j.jenvman.2016.04.001
González, A. (2014). Estudio técnico-económico para la producción de biogás a partir de residuos agrícolas mediante digestión anaerobia. Universidad de Sevilla. Departamento de Ingeniería Química y Ambiental, 22–36. https://idus.us.es/bitstream/handle/11441/27048/TFM González Cabrera%2C Ana María - copia.pdf?sequence=1&isAllowed=y
González, R., Rosas, J. G., Blanco, D., Smith, R., Martínez, E. J., Pastor-bueis, R., & Gómez, X. (2020). Anaerobic digestion of fourth range fruit and vegetable products : comparison of three different scenarios for its valorisation by life cycle assessment and life cycle costing.
Grandas Tavera, C., Raab, T., & Holguin Trujillo, L. (2023). Valorization of biogas digestate as organic fertilizer for closing the loop on the economic viability to develop biogas projects in Colombia. Cleaner and Circular Bioeconomy, 4(January 2022). https://doi.org/10.1016/j.clcb.2022.100035
Guarino, G., Carotenuto, C., Di Cristofaro, F., Papa, S., Morrone, B., & Minale, M. (2016). Does the C/N ratio really affect the bio-methane yield? a three years investigation of buffalo manure digestion. Chemical Engineering Transactions, 49, 463–468. https://doi.org/10.3303/CET1649078
Guiné, J. B. (2007). Handbook on Life Cycle Assessment.
Hadidi, L. A., & Omer, M. M. (2017). A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia. Waste Management, 59, 90–101. https://doi.org/10.1016/J.WASMAN.2016.09.030
HajiHashemi, M. S., Mazhkoo, S., Dadfar, H., Livani, E., Naseri Varnosefaderani, A., Pourali, O., Najafi Nobar, S., & Dutta, A. (2023). Combined heat and power production in a pilot-scale biomass gasification system: Experimental study and kinetic simulation using ASPEN Plus. Energy, 276(January), 127506. https://doi.org/10.1016/j.energy.2023.127506
Helenas Perin, J. K., Biesdorf Borth, P. L., Torrecilhas, A. R., Santana da Cunha, L., Kuroda, E. K., & Fernandes, F. (2020). Optimization of methane production parameters during anaerobic co-digestion of food waste and garden waste. Journal of Cleaner Production, 272, 123130. https://doi.org/10.1016/j.jclepro.2020.123130
Hori, T., Sasaki, D., Haruta, S., Shigematsu, T., Ueno, Y., Ishii, M., & Igarashi, Y. (2011). Detection of active, potentially acetate-oxidizing syntrophs in an anaerobic digester by flux measurement and formyltetrahydrofolate synthetase (FTHFS) expression profiling. Microbiology, 157(7), 1980–1989. https://doi.org/10.1099/mic.0.049189-0
Interaseo S.A.S. E.S.P. (2020). COSTOS DEL SERVICIO DE ASEO. 73963.
Islam, M. R., Wang, Q., Guo, Y., Wang, W., Sharmin, S., & Ebere Enyoh, C. (2023). Physico-Chemical Characterization of Food Wastes for Potential Soil Application. Processes, 11(1), 1–19. https://doi.org/10.3390/pr11010250
Jones, R. E., Speight, R. E., Blinco, J. L., & O’Hara, I. M. (2022). Biorefining within food loss and waste frameworks: A review. Renewable and Sustainable Energy Reviews, 154(May 2021), 111781. https://doi.org/10.1016/j.rser.2021.111781
Kainthola, J., Kalamdhad, A. S., & Goud, V. V. (2020). Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste. Renewable Energy, 149, 1352–1359. https://doi.org/10.1016/j.renene.2019.10.124
Kapoor, R., Ghosh, P., Kumar, M., Sengupta, S., Gupta, A., Kumar, S. S., Vijay, V., Kumar, V., Kumar Vijay, V., & Pant, D. (2020). Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresource Technology, 304(December 2019), 123036. https://doi.org/10.1016/j.biortech.2020.123036
Kigozi, R., Aboyade, A., & Muzenda, E. (2014). Biogas Production Using the Organic Fraction of Municipal Solid Waste as Feedstock. 1(1).
Kumar, A., & Sharma, M. P. (2014). Estimation of GHG emission and energy recovery potential from MSW landfill sites. Sustainable Energy Technologies and Assessments, 5, 50–61. https://doi.org/10.1016/j.seta.2013.11.004
Laiq Ur Rehman, M., Iqbal, A., Chang, C. C., Li, W., & Ju, M. (2019). Anaerobic digestion. Water Environment Research, 91(10), 1253–1271. https://doi.org/10.1002/wer.1219
Leong, Y. K., & Chang, J. S. (2022). Valorization of fruit wastes for circular bioeconomy: Current advances, challenges, and opportunities. Bioresource Technology, 359(May), 127459. https://doi.org/10.1016/j.biortech.2022.127459
Li, W., Khalid, H., Zhu, Z., Zhang, R., Liu, G., Chen, C., & Thorin, E. (2018). Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin. Applied Energy, 226(January), 1219–1228. https://doi.org/10.1016/j.apenergy.2018.05.055
Li, X., Wang, Z., He, Y., Wang, Y., Wang, S., & Zheng, Z. (2024). A Comprehensive Review for Strategies to Promote Anaerobic Digestion : Focus on Their Mechanism and Digestion Performance. Pre Prints.Org, 1, 0391.
Lopez Servin, M. P. (2022). ANÁLISIS COSTO-BENEFICIO PARA LA INSTALACIÓN DE UN BIODIGESTOR MODELO RÚSTICO EN LA COMUNIDAD DE TOPILTEPEC, MUNICIPIO DE ZITLALA, GUERRERO [INSTITUTO POLITÉCNICO NACIONAL]. In Cic.Ipn.Mx. https://tesis.ipn.mx/bitstream/handle/123456789/30/Tesis Omar Campos.pdf?sequence=1&isAllowed=y
Lozano Ruíz, A. C., Sánchez Montealegre, C. A., & Ardila Marín, J. G. (2020). Evaluación del potencial de generación de biogás de un biodigestor de excremento vía simulación con el software SIMBA®. Ingeniería y Región, 24, 72–85. https://doi.org/10.25054/22161325.2779
Magama, P., Chiyanzu, I., & Mulopo, J. (2022). A systematic review of sustainable fruit and vegetable waste recycling alternatives and possibilities for anaerobic biorefinery. Bioresource Technology Reports, 18(February), 101031. https://doi.org/10.1016/j.biteb.2022.101031
Martínez-Mendoza, L. J., Lebrero, R., Muñoz, R., & García-Depraect, O. (2022). Influence of key operational parameters on biohydrogen production from fruit and vegetable waste via lactate-driven dark fermentation. Bioresource Technology, 364, 128070. https://doi.org/10.1016/J.BIORTECH.2022.128070
Martínez, V., & Fúquene, D. (2021). Diseño de un modelo de alternativas para el aprovechamiento de residuos orgánicos provenientes de plazas mercado. Estudio de casos: plazas de mercado de Fontibón, Las Ferias, Doce de Octubre y Restrepo [UNIVERSIDAD DE LA SALLE]. https://ciencia.lasalle.edu.co/ing_ambiental_sanitariahttps://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/1921
Masebinu, S. O., Akinlabi, E. T., Muzenda, E., Aboyade, A. O., & Mbohwa, C. (2018). Experimental and feasibility assessment of biogas production by anaerobic digestion of fruit and vegetable waste from Joburg Market. Waste Management, 75, 236–250. https://doi.org/10.1016/j.wasman.2018.02.011
Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. International Journal of Environmental Research and Public Health, 15(10). https://doi.org/10.3390/ijerph15102224
Metyouy, K., González, R., Gómez, X., González-Arias, J., Martínez, E. J., Chafik, T., Sánchez, M. E., & Cara-Jiménez, J. (2023). Hydrothermal carbonization vs. anaerobic digestion to valorize fruit and vegetable waste: A comparative technical and energy assessment. Journal of Environmental Chemical Engineering, 11(3). https://doi.org/10.1016/j.jece.2023.109925
Meza, D. D. O., Gutiérrez, A. S., Eras, J. J. C., Mendoza, J. S., & Ruydíaz, J. H. (2023). Techno-economic and environmental assessment of the landfill gas to energy potential of major Colombian cities. Energy Conversion and Management, 293, 117522. https://doi.org/10.1016/J.ENCONMAN.2023.117522
Miramontes-Martínez, L. R., Rivas-García, P., Albalate-Ramírez, A., Botello-Álvarez, J. E., Escamilla-Alvarado, C., Gomez-Gonzalez, R., Alcalá-Rodríguez, M. M., Valencia-Vázquez, R., & Santos-López, I. A. (2021). Anaerobic co-digestion of fruit and vegetable waste: Synergy and process stability analysis. Journal of the Air and Waste Management Association, 71(5), 620–632. https://doi.org/10.1080/10962247.2021.1873206
Miramontes-Martínez, L. R., Rivas-García, P., Briones-Cristerna, R. A., Abel-Seabra, J. E., Padilla-Rivera, A., Botello-Álvarez, J. E., Alcalá-Rodríguez, M. M., & Levasseur, A. (2022). Potential of electricity generation by organic wastes in Latin America: a techno-economic-environmental analysis. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-022-03393-1
Mlaik, N., Sayadi, S., Masmoudi, M., Yaacoubi, D., Loukil, S., & Khoufi, S. (2022). Optimization of anaerobic co-digestion of fruit and vegetable waste with animal manure feedstocks using mixture design. Biomass Conversion and Biorefinery, 1, 3. https://doi.org/10.1007/s13399-022-02620-z
Mofijur, M., Masjuki, H. H., Kalam, M. A., Atabani, A. E., Fattah, I. M. R., & Mobarak, H. M. (2014). Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diesel engine. Industrial Crops and Products, 53, 78–84. https://doi.org/10.1016/j.indcrop.2013.12.011
Möslinger, M., Ulpiani, G., & Vetters, N. (2023). Circular economy and waste management to empower a climate-neutral urban future. Journal of Cleaner Production, 421(January). https://doi.org/10.1016/j.jclepro.2023.138454
Muhammad, G., Alam, M. A., Mofijur, M., Jahirul, M. I., Lv, Y., Xiong, W., Ong, H. C., & Xu, J. (2021a). Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renewable and Sustainable Energy Reviews, 135(August 2020), 110209. https://doi.org/10.1016/j.rser.2020.110209
Muhammad, G., Alam, M. A., Mofijur, M., Jahirul, M. I., Lv, Y., Xiong, W., Ong, H. C., & Xu, J. (2021b). Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renewable and Sustainable Energy Reviews, 135(July 2020), 110209. https://doi.org/10.1016/j.rser.2020.110209
Naciones Unidas ONU. (2015a). Objetivo 12: Garantizar modalidades de consumo y producción sostenibles. https://www.un.org/sustainabledevelopment/es/sustainable-consumption-production/
Naciones Unidas ONU. (2015b). Objetivo 13: Adoptar medidas urgentes para combatir el cambio climático y sus efectos. https://www.un.org/sustainabledevelopment/es/climate-change-2/
Naranjo, M. (2020). Plan de gestión integral de residuos plaza de mercado la 21. Fundación Universitaria los Libertadores.
Nixon, P. (2022). BIORREACTOR DE DIGESTIÓN ANAEROBIA PARA LA DETERMINACIÓN DEL POTENCIAL BIOQUÍMICO DE METANO (BMP). 8.5.2017, 2003–2005. www.aging-us.com
Noor, R. S. (2021). Enhanced biomethane production by 2-stage anaerobic co-digestion of animal manure with pretreated organic waste. 2833–2847.
Palmeros Parada, M., Osseweijer, P., & Posada Duque, J. A. (2017). Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. Industrial Crops and Products, 106, 105–123. https://doi.org/10.1016/j.indcrop.2016.08.052
Patra, B. R., Nanda, S., Dalai, A. K., & Meda, V. (2021). Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products. Chemosphere, 285(July), 131431. https://doi.org/10.1016/j.chemosphere.2021.131431
Pavi, S., Kramer, L. E., Gomes, L. P., Schiavo, L. A., & Kramer, L. E. (2017). Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.01.003
Peters, M., & Timmerhaus, K. (2003). Plant Design and Economics for Chemical Engineers (McGraw-Hil).
Rajendran, K., Kankanala, H. R., Lundin, M., & Taherzadeh, M. J. (2014). A novel process simulation model (PSM) for anaerobic digestion using Aspen Plus. Bioresource Technology, 168, 7–13. https://doi.org/10.1016/j.biortech.2014.01.051
Sahoo, A., Sarkar, S., Lal, B., Kumawat, P., Sharma, S., & De, K. (2021). Utilization of fruit and vegetable waste as an alternative feed resource for sustainable and eco-friendly sheep farming. Waste Management, 128, 232–242. https://doi.org/10.1016/J.WASMAN.2021.04.050
Saini, A., Panesar, P. S., & Bera, M. B. (2019). Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresources and Bioprocessing, 6(1). https://doi.org/10.1186/s40643-019-0261-9
Sakurai, K. (2000). Plan de Gestión ambiental de los residuos sólidos urbanos de la ciudad de Reque.
Salcedo, J., & Contreras, K. (2017). Agroindustria de productos amiláceos I : Yuca ( Manihot esculenta Crantz ) y ñame ( Dioscorea spp .).
Santos, L. A. dos, Valença, R. B., Silva, L. C. S. da, Holanda, S. H. de B., Silva, A. F. V. da, Jucá, J. F. T., & Santos, A. F. M. S. (2020). Methane generation potential through anaerobic digestion of fruit waste. Journal of Cleaner Production, 256. https://doi.org/10.1016/j.jclepro.2020.120389
Scano, E. A., Asquer, C., Pistis, A., Ortu, L., Demontis, V., & Cocco, D. (2014). Biogas from anaerobic digestion of fruit and vegetable wastes: Experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Conversion and Management, 77, 22–30. https://doi.org/10.1016/j.enconman.2013.09.004
Schirmer, W. N., dos Santos, L. A., Martins, K. G., Gueri, M. V. D., & Jucá, J. F. T. (2023). The effect of alkaline pretreatment on the anaerobic digestion of fruit and vegetable wastes from a central food distribution market. Journal of Material Cycles and Waste Management, 25(5), 2887–2899. https://doi.org/10.1007/s10163-023-01722-8
Shah, F. A., Mahmood, Q., Shah, M. M., Pervez, A., & Asad, S. A. (2017). Retracted: Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis. TheScientificWorldJournal, 2017, 3852369. https://doi.org/10.1155/2017/3852369
Siatoya, K. J., & Arce, Y. (2019). APROVECHAMIENTO DE LOS RESIDUOS GENERADOS EN LA PLAZA DE MERCADO DE CORABASTOS PARA LA ELABORACIÒN DE PRODUCTOS DE VALOR AGREGADO: CONTEXTO ACTUAL, PERSPECTIVA Y POSIBLES SOLUCIONES (Vol. 1, Issue 1). Universidad de Bogotà JorgeTadeo Lozano.
Sinergox.xm. (2024). Precio de bolsa de electricidad.
Solarte Toro, J. C. (2022). Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context : The Montes de Maria case Sustainability assessment of biorefinery schemes to enhance the development of post-conflict a.
Strazzera, G., Battista, F., Garcia, N. H., Frison, N., & Bolzonella, D. (2018). Volatile fatty acids production from food wastes for biorefinery platforms: A review. Journal of Environmental Management, 226(August), 278–288. https://doi.org/10.1016/j.jenvman.2018.08.039
Szuhaj, M., Ács, N., Tengölics, R., Bodor, A., Rákhely, G., Kovács, K. L., & Bagi, Z. (2016). Conversion of H2 and CO2 to CH4 and acetate in fed-batch biogas reactors by mixed biogas community: A novel route for the power-to-gas concept. Biotechnology for Biofuels, 9(1), 1–14. https://doi.org/10.1186/s13068-016-0515-0
Tarasova, N. P., Makarova, A. S., Vinokurov, S. F., Kuznetsov, V. A., & Shlyakhov, P. I. (2018). Green chemistry and sustainable development: Approaches to chemical footprint analysis. Pure and Applied Chemistry, 90(1), 143–155. https://doi.org/10.1515/pac-2017-0608
Tomei, M. C., & Carozza, N. A. (2015). Sequential anaerobic/anaerobic digestion for enhanced sludge stabilization: comparison of the process performance for mixed and waste sludge. Environmental Science and Pollution Research, 22(10), 7271–7279. https://doi.org/10.1007/s11356-014-3130-2
Word Bank. (2024). Carbon Pricing Dashboard.
Yaniris, L. A., Abreu, O., & Ma, C. (2005). La digestion anaerobia. Aspectos teoricos. Parte 1. Icidca, 0138–6204, 35–48. http://www.redalyc.org/articulo.oa?id=223120659006
Yen, H. W., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98(1), 130–134. https://doi.org/10.1016/j.biortech.2005.11.010
Zamri, M. F. M. A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A. H., Mofijur, M., Fattah, I. M. R., & Mahlia, T. M. I. (2021). A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 137(November 2020), 110637. https://doi.org/10.1016/j.rser.2020.110637
Zhang, R., El-Mashad, H. M., Hartman, K., Wang, F., Liu, G., Choate, C., & Gamble, P. (2007). Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4), 929–935. https://doi.org/10.1016/j.biortech.2006.02.039
Zheng, X., & Li, R. (2024). Critical Review on Two-Stage Anaerobic Digestion with H2 and CH4 Production from Various Wastes. Water (Switzerland), 16(11). https://doi.org/10.3390/w16111608
Zia, M., Ahmed, S., & Kumar, A. (2022a). Anaerobic digestion ( AD ) of fruit and vegetable market waste ( FVMW ): potential of FVMW , bioreactor performance , co-substrates , and pre-treatment techniques. Springer, 3573–3592.
Zia, M., Ahmed, S., & Kumar, A. (2022b). Anaerobic digestion (AD) of fruit and vegetable market waste (FVMW): potential of FVMW, bioreactor performance, co-substrates, and pre-treatment techniques. Biomass Conversion and Biorefinery, 12(8), 3573–3592. https://doi.org/10.1007/s13399-020-00979-5
dc.rights.license.none.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 104 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Sincelejo
dc.publisher.none.fl_str_mv Corporacion Universidad de la Costa
dc.publisher.department.none.fl_str_mv Energía
dc.publisher.place.none.fl_str_mv Barranquilla, Colombia
dc.publisher.program.none.fl_str_mv Maestría en Eficiencia Energética y Energía Renovable
publisher.none.fl_str_mv Corporacion Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f9b4c12a-1003-4e95-8a25-813277e94489/download
https://repositorio.cuc.edu.co/bitstreams/239e8119-7495-4aea-854f-e8f2fb823b05/download
https://repositorio.cuc.edu.co/bitstreams/19bef60b-94d5-4129-bcd5-4465f787a697/download
https://repositorio.cuc.edu.co/bitstreams/4252761b-35aa-41db-93f0-4e0f4e30709b/download
bitstream.checksum.fl_str_mv 4e5d6c621af23b4ba971db5ef0771867
73a5432e0b76442b22b026844140d683
2207ca91c28131480c9d0c26fa66c7a7
e037a1947f0ff9cf7a047300cee7154e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166643667173376
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cardenas Escorcia, YulinethOspino, AdalbertoSalgado Angulo, Kleyder JoséMoreno Rocha, Christian ManuelNuñez Alvarez, José Ricardo2024-10-29T19:56:15Z2024-10-29T19:56:15Z2024https://hdl.handle.net/11323/13597Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Fruit and vegetable residues (HR) represent sustainable and renewable resources that could be valorized in different applications providing alternatives thanks to the availability, high content of polysaccharides, micronutrients and moisture. The conversion of this biomass into energy and high value by-products through anaerobic digestion (AD) is a promising alternative. In this study, the potential for energy use of HR from the Sincelejo marketplace by AD was evaluated. These wastes were classified and characterized taking into account international standards. Based on the above, a simulation was developed in Aspen Plus V14 using the CDM1 and CDM2 models. The Otto and Brayton thermodynamic cycles were included in the simulation to generate electricity from biogas. Greenhouse gas emissions were evaluated, and biochemical methane potential was determined using respirometric sensors. For the determination of the economic feasibility, two proposed scenarios were evaluated according to the simulated cycles. The results indicated that the HRs present a great heterogeneity in their classification, presenting a physicochemical composition suitable for methane production by AD. The simulation showed a 97% reliability between model and experimental data, yielding a value of 322.05 NmL CH4/gSV for the biochemical methane potential. It is concluded that scenario 1 representing the Brayton Cycle presented the best economic indicators with a positive NPV, an IRR of 10%, an IR of 1.05 and a BCR of 1.03, pointing to a relatively safe project.Los residuos hortofrutícolas (RH) representan recursos sostenibles y renovables que podrían valorizarse en diferentes aplicaciones proporcionando alternativas gracias a la disponibilidad, el alto contenido de polisacáridos, micronutrientes y humedad. La conversión de esta biomasa en energía y subproductos de alto valor a través de digestión anaerobia (DA) es una alternativa promisoria. En este estudio se evaluó el potencial de aprovechamiento energético de los RH de la plaza de mercado de Sincelejo mediante DA. Estos residuos fueron clasificados y caracterizados teniendo en cuenta normas internacionales. Basado en lo anterior se desarrolló una simulación en Aspen Plus V14 utilizando los modelos MDL1 y MDL2. Se incluyeron en la simulación los ciclos termodinámicos Otto y Brayton para generar electricidad a partir del biogás. Se evaluaron las emisiones de gases de efecto invernadero y se determinó el potencial bioquímico de metano utilizando sensores respirométricos. Para la determinación de la factibilidad económica se evaluaron dos escenarios propuestos según los ciclos simulados. Los resultados indicaron que los RH presentan una gran heterogeneidad en su clasificación, presentando una composición fisicoquímica adecuada para la producción de metano mediante DA. La simulación realizada mostró una confiabilidad del 97% entre los datos del modelo y los experimentales, arrojando un valor de 322.05 NmL CH4/gSV para el potencial bioquímico de metano. Se concluye que el escenario 1 que representa al Ciclo Brayton presentó los mejores indicadores económicos con un VPN positivo, una TIR del 10%, un IR de 1.05 y una RCB de 1.03, apuntando a un proyecto relativamente seguro.Lista de figuras 8-- Lista de tablas 9-- Resumen11-- Abstract 12-- Capítulo 1 13--Introducción 13-- Objetivos 17-- General 17-- Específicos 17-- Capítulo 2 18-- Marco teórico 18-- Digestión anaerobia 18-- Antecedentes 23-- Capítulo 3 30-- Descripción de la metodología 30-- Materiales 30-- Residuos hortofrutícolas generados en la plaza de mercado de Sincelejo 30-- Clasificación de las muestras de residuos hortofrutícolas. 30-- Análisis último 31-- Análisis proximal. 31-- Análisis químico 31-- Potencial de biometano de la digestión anaeróbica. 32-- Simulación de la DA basado en los modelos de caracterización. 32-- Potencial de generación de energía eléctrica 37-- Potencial de reducción de emisiones de CO2.39-- Variables controlables del proceso de digestión anaerobia de los residuos hortofrutícolas usadas en la simulación 42-- Montaje experimental a escala de laboratorio de la digestión anaerobia de los residuos hortofrutícolas 42-- Determinación del potencial bioquímico de metano (PBM) 43-- Factibilidad económica de la producción de biometano de la digestión anaerobia de los residuos hortofrutícolas 44-- Análisis técnico de la planta de digestión anaerobia de los residuos hortofrutícolas 45-- Indicadores para evaluar el rendimiento del proceso de digestión anaerobia 45-- Análisis económico del proceso de digestión anaerobia 48-- Definición de escenarios 48-- Costos de inversión (Capex) y costos de operación (Opex) 48-- Cálculo de indicadores financieros 49-- Capítulo 4 51-- Resultados y discusión 51-- Residuos hortofrutícolas generados en la plaza de mercado de Sincelejo 51-- Clasificación de las muestras de los residuos hortofrutícolas 51--Análisis último 52---Análisis proximal 54-- Análisis químico 56-- Potencial de biometano de la digestión anaeróbica de los residuos hortofrutícolas 58 Simulación de digestión anaerobia basado en los modelos de caracterización de los residuos hortofrutícolas 58-- Potencial de generación de energía eléctrica. 60-- Potencial de reducción de emisiones de CO2 61-- Variables controlables para el desarrollo del proceso de digestión anaerobia de los residuos hortofrutícolas obtenidos en la simulación. 63-- Montaje experimental a escala de laboratorio de la digestión anaerobia de los residuos hortofrutícolas 64-- Determinación del potencial bioquímico de metano 64-- Factibilidad económica de la producción de biometano de la digestión anaerobia de residuos hortofrutícolas 67--- Análisis técnico de la planta de digestión anaerobia de los residuos hortofrutícolas. 67-- Indicadores para evaluar el rendimiento del proceso de digestión anaerobia 67-- Análisis económico del proceso de digestión anaerobia 70-- Costos de inversión (Capex) y costos de operación (Opex) 70-- Análisis de indicadores financieros 75-- Conclusiones78-- Recomendaciones 80-- Referencias 81-- Anexos100Magíster en Eficiencia Energética y Energía RenovableMaestría104 páginasapplication/pdfspaCorporacion Universidad de la CostaEnergíaBarranquilla, ColombiaMaestría en Eficiencia Energética y Energía RenovableAprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobiaTrabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/acceptedVersionSincelejoAbanades, S., Abbaspour, H., Ahmadi, A., Das, B., Ehyaei, M. A., Esmaeilion, F., El Haj Assad, M., Hajilounezhad, T., Hmida, A., Rosen, M. A., Safari, S., Shabi, M. A., & Silveira, J. L. (2022). A conceptual review of sustainable electrical power generation from biogas. Energy Science and Engineering, 10(2), 630–655. https://doi.org/10.1002/ese3.1030Abdeljaber, A., Zannerni, R., Masoud, W., Abdallah, M., & Rocha-Meneses, L. (2022). Eco-Efficiency Analysis of Integrated Waste Management Strategies Based on Gasification and Mechanical Biological Treatment. Sustainability (Switzerland), 14(7), 3899. https://doi.org/10.3390/SU14073899/S1Adamu, H., Bello, U., Yuguda, A. U., Tafida, U. I., Jalam, A. M., Sabo, A., & Qamar, M. (2023). Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes. Renewable and Sustainable Energy Reviews, 186(November 2022), 113686. https://doi.org/10.1016/j.rser.2023.113686Afsal, A., David, R., Baiju, V., Muhammed Suhail, N., Parvathy, U., & Rakhi, R. B. (2020). Experimental investigations on combustion characteristics of fuel briquettes made from vegetable market waste and saw dust. Materials Today: Proceedings, 33, 3826–3831. https://doi.org/10.1016/j.matpr.2020.06.222Agrawal, A. V., Chaudhari, P. K., & Ghosh, P. (2023). Effect of mixing ratio on biomethane potential of anaerobic co-digestion of fruit and vegetable waste and food waste. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-023-03737-5Agrawal, A. V., Parmesh, ·, Chaudhari, K., & Ghosh, · Prabir. (2023). Effect of mixing ratio on biomethane potential of anaerobic co-digestion of fruit and vegetable waste and food waste. Biomass Conversion and Biorefinery 2023, 1, 1–10. https://doi.org/10.1007/S13399-023-03737-5Ahammad, S. Z., & Sreekrishnan, T. R. (2016). Energy from wastewater treatment. In Bioremediation and Bioeconomy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802830-8.00020-4Ahlberg-Eliasson, K., Westerholm, M., Isaksson, S., & Schnürer, A. (2021). Anaerobic Digestion of Animal Manure and Influence of Organic Loading Rate and Temperature on Process Performance, Microbiology, and Methane Emission From Digestates. Frontiers in Energy Research, 9(December), 1–16. https://doi.org/10.3389/fenrg.2021.740314AL-Huqail, A. A., Kumar, V., Kumar, R., Eid, E. M., Taher, M. A., Adelodun, B., Abou Fayssal, S., Mioč, B., Držaić, V., Goala, M., Kumar, P., & Širić, I. (2022). Sustainable Valorization of Four Types of Fruit Peel Waste for Biogas Recovery and Use of Digestate for Radish (Raphanus sativus L. cv. Pusa Himani) Cultivation. Sustainability (Switzerland), 14(16). https://doi.org/10.3390/su141610224Al-Wahaibi, A., Osman, A. I., Al-Muhtaseb, A. H., Alqaisi, O., Baawain, M., Fawzy, S., & Rooney, D. W. (2020). Techno-economic evaluation of biogas production from food waste via anaerobic digestion. Scientific Reports, 10(1), 1–16. https://doi.org/10.1038/s41598-020-72897-5Anderson, R. (1979). Biological paths to self-reliance: a guide to biological solar energy conversion. https://www.osti.gov/biblio/6319341Angelidaki, I., & Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Biotechnology, 3(2), 117–129. https://doi.org/10.1007/s11157-004-2502-3Anhuradha, S., & Arrrivukkarasan, S. (2020). Potentiality of fruit and vegetable waste by anaerobic co-digestion with municipal sewage sludge and biogas yield Potentiality of Fruit and Vegetable Waste by Anaerobic Co- digestion with Municipal Sewage Sludge and Biogas Yield. 070003(March).Azarmanesh, R., Zarghami Qaretapeh, M., Hasani Zonoozi, M., Ghiasinejad, H., & Zhang, Y. (2023). Anaerobic co-digestion of sewage sludge with other organic wastes: A comprehensive review focusing on selection criteria, operational conditions, and microbiology. Chemical Engineering Journal Advances, 14(January), 100453. https://doi.org/10.1016/j.ceja.2023.100453Azevedo, A., Lapa, N., Moldão, M., & Duarte, E. (2023). Opportunities and challenges in the anaerobic co-digestion of municipal sewage sludge and fruit and vegetable wastes: A review. Energy Nexus, 10(April). https://doi.org/10.1016/j.nexus.2023.100202Banco de la República. (2024).Barragán-Escandón, A., Ruiz, J. M. O., Tigre, J. D. C., & Zalamea-León, E. F. (2020). Assessment of power generation using biogas from landfills in an equatorial tropical context. Sustainability (Switzerland), 12(7), 1–18. https://doi.org/10.3390/su12072669Basumatary, S., Das, S., Kalita, P., & Goswami, P. (2021). Effect of feedstock/water ratio on anaerobic digestion of cattle dung and vegetable waste under mesophilic and thermophilic conditions. Bioresource Technology Reports, 14(January), 100675. https://doi.org/10.1016/j.biteb.2021.100675Beatriz H, Aristizábal Z.a, Estefanía Vanegas C.a, Juan Pablo Mariscal M.a, & Miller Alonso Camargo V.a, b. (2015). Digestión anaerobia de residuos de poda. 46, 29–36. https://www.redalyc.org/pdf/1470/147043932005.pdfBechara, R. (2022). Improvements to the ADM1 based Process Simulation Model: Reaction segregation, parameter estimation and process optimization. Heliyon, 8(12), e11793. https://doi.org/10.1016/j.heliyon.2022.e11793Bentivoglio, D., Chiaraluce, G., & Finco, A. (2022). Economic assessment for vegetable waste valorization through the biogas-biomethane chain in Italy with a circular economy approach. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.1035357Buswell, A. M., & Sollo, F. W. (1948). The Mechanism of the Methane Fermentation. Journal of the American Chemical Society, 70(5), 1778–1780. https://doi.org/10.1021/ja01185a034Cabas, M. A., Duque, S., & Cadena, E. M. (2020). Optimization of Enzymatic Pretreatments to Obtain Fermentable Sugars from Fruit and Vegetable Waste. Waste and Biomass Valorization, 11, 5991–6002. https://doi.org/10.1007/s12649-019-00821-8Caiza Constante, J. I. (2019). Evaluación de la solubilidad de la proteína presente en matrices vegetales: leguminosas, tubérculos y raíces. In Journal of Wind Engineering and Industrial Aerodynamics (Vol. 26, Issue 1). https://doi.org/10.1007/s11273-020-09706-3%0Ahttp://dx.doi.org/10.1016/j.jweia.2017.09.008%0Ahttps://doi.org/10.1016/j.energy.2020.117919%0Ahttps://doi.org/10.1016/j.coldregions.2020.103116%0Ahttp://dx.doi.org/10.1016/j.jweia.2010.12.004%0Ahttp://dx.doi.oCardona Alzate, C. A., Solarte Toro, J. C., & Peña, Á. G. (2018). Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries. Catalysis Today, 302, 61–72. https://doi.org/10.1016/j.cattod.2017.09.034Carvalheira, M., Cassidy, J., Ribeiro, J. M., Oliveira, B. A., Freitas, E. B., Roca, C., Carvalho, G., Oehmen, A., & Reis, M. A. M. (2018). Performance of a two-stage anaerobic digestion system treating fruit pulp waste: The impact of substrate shift and operational conditions. Waste Management, 78, 434–445. https://doi.org/10.1016/j.wasman.2018.06.013Cavalcante, W. A., de Menezes, C. A., da Silva Júnior, F. C. G., Gehring, T. A., Leitão, R. C., & Zaiat, M. (2023). From start-up to maximum loading: An approach for methane production in upflow anaerobic sludge blanket reactor fed with the liquid fraction of fruit and vegetable waste. Journal of Environmental Management, 335(January). https://doi.org/10.1016/j.jenvman.2023.117578Chatterjee, B., & Mazumder, D. (2019). Role of stage-separation in the ubiquitous development of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste: A critical review. Renewable and Sustainable Energy Reviews, 104(November 2018), 439–469. https://doi.org/10.1016/j.rser.2019.01.026Chatterjee, B., & Mazumder, D. (2020). New approach of characterizing fruit and vegetable waste (FVW) to ascertain its biological stabilization via two-stage anaerobic digestion (AD). Biomass and Bioenergy, 139(November 2019), 105594. https://doi.org/10.1016/j.biombioe.2020.105594Corigliano, O., Florio, G., & Fragiacomo, P. (2016). Energy Valorization of Edible Organic Matter for Electrical, Thermal and Cooling Energy Generation: Part One. Energy Procedia, 101(September), 81–88. https://doi.org/10.1016/j.egypro.2016.11.011D’Silva, T. C., Isha, A., Verma, S., Shirsath, G., Chandra, R., Vijay, V. K., Subbarao, P. M. V., & Kovács, K. L. (2022). Anaerobic co-digestion of dry fallen leaves, fruit/vegetable wastes and cow dung without an active inoculum – A biomethane potential study. Bioresource Technology Reports, 19(August). https://doi.org/10.1016/j.biteb.2022.101189De Amarante, M. C. A., Guerreiro, P. E. G., Radmann, E. M., & de Souza, M. da R. A. Z. (2022). Effect of fruits and vegetables in the anaerobic digestion of food waste from university restaurant. Applied Biochemistry and Biotechnology, 194(8), 3365–3383. https://doi.org/10.1007/s12010-022-03895-8De Quadros, T. C. F., Sicchieri, I. M., Perin, J. K. H., Challiol, A. Z., Bortoloti, M. A., Fernandes, F., & Kuroda, E. K. (2022). Valorization of Fruit and Vegetable Waste by Anaerobic Digestion: Definition of Co-substrates and Inoculum. Waste and Biomass Valorization, 14(2), 407–419. https://doi.org/10.1007/s12649-022-01887-7Departamento NacionDhull, P., Kumar, S., Yadav, N., & Lohchab, R. K. (2024). A comprehensive review on anaerobic digestion with focus on potential feedstocks, limitations associated and recent advances for biogas production. In Environmental Science and Pollution Research (Issue Birol 2021). Springer Berlin Heidelberg. https://doi.org/10.1007/s11356-024-33736-6al de Planeación. (2022). Guía nacional para la adecuada separación de residuos sólidos.Durán Hernandéz, D. M. (2020). Aprovechamiento energético de la codigestión anaeróbica de la fracción orgánica de residuos sólidos urbanos y residuos de cosecha de plátano para la producción de biogás. https://repositorio.unal.edu.co/handle/unal/79232Edwiges, T., Frare, L. M., Alino, J., Lins, L., Flotats, X., Sarolli, M., Edwiges, T., Frare, L. M., Alino, J., Lins, L., Flotats, X., & Sarolli, M. (2017). Use of mathematical models to fast predict biochemical methane potential of fruit and vegetable waste. 15th World Congress on Anaerobic Digestion, Beijing, China, November, 2–6. papers3://publication/uuid/897BA738-7F42-4B2A-9275-F96B3FF8C7DC%0Ahttps://www.researchgate.net/publication/320757102%0Apapers3://publication/uuid/23D492C3-12C6-461F-9FB8-EBD4DA9D93F3Edwiges, T., Frare, L. M., Lima Alino, J. H., Triolo, J. M., Flotats, X., & Silva de Mendonça Costa, M. S. (2019). Methane potential of fruit and vegetable waste: an evaluation of the semi-continuous anaerobic mono-digestion. ENVIRONMENTAL TECHNOLOGY, 41(7), 921–930. https://doi.org/10.1080/09593330.2018.1515262Edwiges, T., Frare, L. M., Lima Alino, J. H., Triolo, J. M., Flotats, X., & Silva de Mendonça Costa, M. S. (2020). Methane potential of fruit and vegetable waste: an evaluation of the semi-continuous anaerobic mono-digestion. Environmental Technology (United Kingdom), 41(7), 921–930. https://doi.org/10.1080/09593330.2018.1515262Edwiges, T., Frare, L., Mayer, B., Lins, L., Mi Triolo, J., Flotats, X., & de Mendonça Costa, M. S. S. (2018). Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Management, 71, 618–625. https://doi.org/10.1016/j.wasman.2017.05.030Eraky, M., Jin, K., Zhang, Q., Zhang, Z., Ai, P., & Elsayed, M. (2021). Acidogenic biorefinery of rice straw for volatile fatty acids production via sequential two-stage fermentation: Effects of pre-treatments. Environmental Technology and Innovation, 23, 101686. https://doi.org/10.1016/j.eti.2021.101686Erlwein, A., & Sotomayor, E. (2020). Análisis técnico-económico de alternativas de gestión de digestato y producción de fertilizantes.Fazzino, F., Folino, A., Mauriello, F., Pedullà, A., & Calabrò, P. S. (2021). Biofuel production from fruit and vegetable market waste and mature landfill leachate by an active filter-anaerobic digestion integrated system. Energy Conversion and Management: X, 12. https://doi.org/10.1016/j.ecmx.2021.100130Fernández-Domínguez, D., Sourdon, L., Pérémé, M., Guilayn, F., Steyer, J. P., Patureau, D., & Jimenez, J. (2024). Retention time and organic loading rate as anaerobic co-digestion key-factors for better digestate valorization practices: C and N dynamics in soils. Waste Management, 181(April), 1–10. https://doi.org/10.1016/j.wasman.2024.03.031Filho, W. L., & Surroop, D. (2017). The Nexus: Energy, Environment and Climate Change. https://books.google.co.uk/books?id=HW48DwAAQBAJ&dq=biomass+technologies+in+ghana+by+atakora+2000&source=gbs_navlinks_sFoster, W., Azimov, U., Gauthier-Maradei, P., Molano, L. C., Combrinck, M., Munoz, J., Esteves, J. J., & Patino, L. (2021). Waste-to-energy conversion technologies in the UK: Processes and barriers – A review. Renewable and Sustainable Energy Reviews, 135(August 2020), 110226. https://doi.org/10.1016/j.rser.2020.110226Ganesh, K. S., Sridhar, A., & Vishali, S. (2022). Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities-A review. Chemosphere, 287(P3), 132221. https://doi.org/10.1016/j.chemosphere.2021.132221García, C. A., Betancourt, R., & Cardona, C. A. (2017). Stand-alone and biorefinery pathways to produce hydrogen through gasification and dark fermentation using Pinus Patula. Journal of Environmental Management, 203, 695–703. https://doi.org/10.1016/j.jenvman.2016.04.001González, A. (2014). Estudio técnico-económico para la producción de biogás a partir de residuos agrícolas mediante digestión anaerobia. Universidad de Sevilla. Departamento de Ingeniería Química y Ambiental, 22–36. https://idus.us.es/bitstream/handle/11441/27048/TFM González Cabrera%2C Ana María - copia.pdf?sequence=1&isAllowed=yGonzález, R., Rosas, J. G., Blanco, D., Smith, R., Martínez, E. J., Pastor-bueis, R., & Gómez, X. (2020). Anaerobic digestion of fourth range fruit and vegetable products : comparison of three different scenarios for its valorisation by life cycle assessment and life cycle costing.Grandas Tavera, C., Raab, T., & Holguin Trujillo, L. (2023). Valorization of biogas digestate as organic fertilizer for closing the loop on the economic viability to develop biogas projects in Colombia. Cleaner and Circular Bioeconomy, 4(January 2022). https://doi.org/10.1016/j.clcb.2022.100035Guarino, G., Carotenuto, C., Di Cristofaro, F., Papa, S., Morrone, B., & Minale, M. (2016). Does the C/N ratio really affect the bio-methane yield? a three years investigation of buffalo manure digestion. Chemical Engineering Transactions, 49, 463–468. https://doi.org/10.3303/CET1649078Guiné, J. B. (2007). Handbook on Life Cycle Assessment.Hadidi, L. A., & Omer, M. M. (2017). A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia. Waste Management, 59, 90–101. https://doi.org/10.1016/J.WASMAN.2016.09.030HajiHashemi, M. S., Mazhkoo, S., Dadfar, H., Livani, E., Naseri Varnosefaderani, A., Pourali, O., Najafi Nobar, S., & Dutta, A. (2023). Combined heat and power production in a pilot-scale biomass gasification system: Experimental study and kinetic simulation using ASPEN Plus. Energy, 276(January), 127506. https://doi.org/10.1016/j.energy.2023.127506Helenas Perin, J. K., Biesdorf Borth, P. L., Torrecilhas, A. R., Santana da Cunha, L., Kuroda, E. K., & Fernandes, F. (2020). Optimization of methane production parameters during anaerobic co-digestion of food waste and garden waste. Journal of Cleaner Production, 272, 123130. https://doi.org/10.1016/j.jclepro.2020.123130Hori, T., Sasaki, D., Haruta, S., Shigematsu, T., Ueno, Y., Ishii, M., & Igarashi, Y. (2011). Detection of active, potentially acetate-oxidizing syntrophs in an anaerobic digester by flux measurement and formyltetrahydrofolate synthetase (FTHFS) expression profiling. Microbiology, 157(7), 1980–1989. https://doi.org/10.1099/mic.0.049189-0Interaseo S.A.S. E.S.P. (2020). COSTOS DEL SERVICIO DE ASEO. 73963.Islam, M. R., Wang, Q., Guo, Y., Wang, W., Sharmin, S., & Ebere Enyoh, C. (2023). Physico-Chemical Characterization of Food Wastes for Potential Soil Application. Processes, 11(1), 1–19. https://doi.org/10.3390/pr11010250Jones, R. E., Speight, R. E., Blinco, J. L., & O’Hara, I. M. (2022). Biorefining within food loss and waste frameworks: A review. Renewable and Sustainable Energy Reviews, 154(May 2021), 111781. https://doi.org/10.1016/j.rser.2021.111781Kainthola, J., Kalamdhad, A. S., & Goud, V. V. (2020). Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste. Renewable Energy, 149, 1352–1359. https://doi.org/10.1016/j.renene.2019.10.124Kapoor, R., Ghosh, P., Kumar, M., Sengupta, S., Gupta, A., Kumar, S. S., Vijay, V., Kumar, V., Kumar Vijay, V., & Pant, D. (2020). Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresource Technology, 304(December 2019), 123036. https://doi.org/10.1016/j.biortech.2020.123036Kigozi, R., Aboyade, A., & Muzenda, E. (2014). Biogas Production Using the Organic Fraction of Municipal Solid Waste as Feedstock. 1(1).Kumar, A., & Sharma, M. P. (2014). Estimation of GHG emission and energy recovery potential from MSW landfill sites. Sustainable Energy Technologies and Assessments, 5, 50–61. https://doi.org/10.1016/j.seta.2013.11.004Laiq Ur Rehman, M., Iqbal, A., Chang, C. C., Li, W., & Ju, M. (2019). Anaerobic digestion. Water Environment Research, 91(10), 1253–1271. https://doi.org/10.1002/wer.1219Leong, Y. K., & Chang, J. S. (2022). Valorization of fruit wastes for circular bioeconomy: Current advances, challenges, and opportunities. Bioresource Technology, 359(May), 127459. https://doi.org/10.1016/j.biortech.2022.127459Li, W., Khalid, H., Zhu, Z., Zhang, R., Liu, G., Chen, C., & Thorin, E. (2018). Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin. Applied Energy, 226(January), 1219–1228. https://doi.org/10.1016/j.apenergy.2018.05.055Li, X., Wang, Z., He, Y., Wang, Y., Wang, S., & Zheng, Z. (2024). A Comprehensive Review for Strategies to Promote Anaerobic Digestion : Focus on Their Mechanism and Digestion Performance. Pre Prints.Org, 1, 0391.Lopez Servin, M. P. (2022). ANÁLISIS COSTO-BENEFICIO PARA LA INSTALACIÓN DE UN BIODIGESTOR MODELO RÚSTICO EN LA COMUNIDAD DE TOPILTEPEC, MUNICIPIO DE ZITLALA, GUERRERO [INSTITUTO POLITÉCNICO NACIONAL]. In Cic.Ipn.Mx. https://tesis.ipn.mx/bitstream/handle/123456789/30/Tesis Omar Campos.pdf?sequence=1&isAllowed=yLozano Ruíz, A. C., Sánchez Montealegre, C. A., & Ardila Marín, J. G. (2020). Evaluación del potencial de generación de biogás de un biodigestor de excremento vía simulación con el software SIMBA®. Ingeniería y Región, 24, 72–85. https://doi.org/10.25054/22161325.2779Magama, P., Chiyanzu, I., & Mulopo, J. (2022). A systematic review of sustainable fruit and vegetable waste recycling alternatives and possibilities for anaerobic biorefinery. Bioresource Technology Reports, 18(February), 101031. https://doi.org/10.1016/j.biteb.2022.101031Martínez-Mendoza, L. J., Lebrero, R., Muñoz, R., & García-Depraect, O. (2022). Influence of key operational parameters on biohydrogen production from fruit and vegetable waste via lactate-driven dark fermentation. Bioresource Technology, 364, 128070. https://doi.org/10.1016/J.BIORTECH.2022.128070Martínez, V., & Fúquene, D. (2021). Diseño de un modelo de alternativas para el aprovechamiento de residuos orgánicos provenientes de plazas mercado. Estudio de casos: plazas de mercado de Fontibón, Las Ferias, Doce de Octubre y Restrepo [UNIVERSIDAD DE LA SALLE]. https://ciencia.lasalle.edu.co/ing_ambiental_sanitariahttps://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/1921Masebinu, S. O., Akinlabi, E. T., Muzenda, E., Aboyade, A. O., & Mbohwa, C. (2018). Experimental and feasibility assessment of biogas production by anaerobic digestion of fruit and vegetable waste from Joburg Market. Waste Management, 75, 236–250. https://doi.org/10.1016/j.wasman.2018.02.011Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. International Journal of Environmental Research and Public Health, 15(10). https://doi.org/10.3390/ijerph15102224Metyouy, K., González, R., Gómez, X., González-Arias, J., Martínez, E. J., Chafik, T., Sánchez, M. E., & Cara-Jiménez, J. (2023). Hydrothermal carbonization vs. anaerobic digestion to valorize fruit and vegetable waste: A comparative technical and energy assessment. Journal of Environmental Chemical Engineering, 11(3). https://doi.org/10.1016/j.jece.2023.109925Meza, D. D. O., Gutiérrez, A. S., Eras, J. J. C., Mendoza, J. S., & Ruydíaz, J. H. (2023). Techno-economic and environmental assessment of the landfill gas to energy potential of major Colombian cities. Energy Conversion and Management, 293, 117522. https://doi.org/10.1016/J.ENCONMAN.2023.117522Miramontes-Martínez, L. R., Rivas-García, P., Albalate-Ramírez, A., Botello-Álvarez, J. E., Escamilla-Alvarado, C., Gomez-Gonzalez, R., Alcalá-Rodríguez, M. M., Valencia-Vázquez, R., & Santos-López, I. A. (2021). Anaerobic co-digestion of fruit and vegetable waste: Synergy and process stability analysis. Journal of the Air and Waste Management Association, 71(5), 620–632. https://doi.org/10.1080/10962247.2021.1873206Miramontes-Martínez, L. R., Rivas-García, P., Briones-Cristerna, R. A., Abel-Seabra, J. E., Padilla-Rivera, A., Botello-Álvarez, J. E., Alcalá-Rodríguez, M. M., & Levasseur, A. (2022). Potential of electricity generation by organic wastes in Latin America: a techno-economic-environmental analysis. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-022-03393-1Mlaik, N., Sayadi, S., Masmoudi, M., Yaacoubi, D., Loukil, S., & Khoufi, S. (2022). Optimization of anaerobic co-digestion of fruit and vegetable waste with animal manure feedstocks using mixture design. Biomass Conversion and Biorefinery, 1, 3. https://doi.org/10.1007/s13399-022-02620-zMofijur, M., Masjuki, H. H., Kalam, M. A., Atabani, A. E., Fattah, I. M. R., & Mobarak, H. M. (2014). Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diesel engine. Industrial Crops and Products, 53, 78–84. https://doi.org/10.1016/j.indcrop.2013.12.011Möslinger, M., Ulpiani, G., & Vetters, N. (2023). Circular economy and waste management to empower a climate-neutral urban future. Journal of Cleaner Production, 421(January). https://doi.org/10.1016/j.jclepro.2023.138454Muhammad, G., Alam, M. A., Mofijur, M., Jahirul, M. I., Lv, Y., Xiong, W., Ong, H. C., & Xu, J. (2021a). Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renewable and Sustainable Energy Reviews, 135(August 2020), 110209. https://doi.org/10.1016/j.rser.2020.110209Muhammad, G., Alam, M. A., Mofijur, M., Jahirul, M. I., Lv, Y., Xiong, W., Ong, H. C., & Xu, J. (2021b). Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renewable and Sustainable Energy Reviews, 135(July 2020), 110209. https://doi.org/10.1016/j.rser.2020.110209Naciones Unidas ONU. (2015a). Objetivo 12: Garantizar modalidades de consumo y producción sostenibles. https://www.un.org/sustainabledevelopment/es/sustainable-consumption-production/Naciones Unidas ONU. (2015b). Objetivo 13: Adoptar medidas urgentes para combatir el cambio climático y sus efectos. https://www.un.org/sustainabledevelopment/es/climate-change-2/Naranjo, M. (2020). Plan de gestión integral de residuos plaza de mercado la 21. Fundación Universitaria los Libertadores.Nixon, P. (2022). BIORREACTOR DE DIGESTIÓN ANAEROBIA PARA LA DETERMINACIÓN DEL POTENCIAL BIOQUÍMICO DE METANO (BMP). 8.5.2017, 2003–2005. www.aging-us.comNoor, R. S. (2021). Enhanced biomethane production by 2-stage anaerobic co-digestion of animal manure with pretreated organic waste. 2833–2847.Palmeros Parada, M., Osseweijer, P., & Posada Duque, J. A. (2017). Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. Industrial Crops and Products, 106, 105–123. https://doi.org/10.1016/j.indcrop.2016.08.052Patra, B. R., Nanda, S., Dalai, A. K., & Meda, V. (2021). Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products. Chemosphere, 285(July), 131431. https://doi.org/10.1016/j.chemosphere.2021.131431Pavi, S., Kramer, L. E., Gomes, L. P., Schiavo, L. A., & Kramer, L. E. (2017). Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.01.003Peters, M., & Timmerhaus, K. (2003). Plant Design and Economics for Chemical Engineers (McGraw-Hil).Rajendran, K., Kankanala, H. R., Lundin, M., & Taherzadeh, M. J. (2014). A novel process simulation model (PSM) for anaerobic digestion using Aspen Plus. Bioresource Technology, 168, 7–13. https://doi.org/10.1016/j.biortech.2014.01.051Sahoo, A., Sarkar, S., Lal, B., Kumawat, P., Sharma, S., & De, K. (2021). Utilization of fruit and vegetable waste as an alternative feed resource for sustainable and eco-friendly sheep farming. Waste Management, 128, 232–242. https://doi.org/10.1016/J.WASMAN.2021.04.050Saini, A., Panesar, P. S., & Bera, M. B. (2019). Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresources and Bioprocessing, 6(1). https://doi.org/10.1186/s40643-019-0261-9Sakurai, K. (2000). Plan de Gestión ambiental de los residuos sólidos urbanos de la ciudad de Reque.Salcedo, J., & Contreras, K. (2017). Agroindustria de productos amiláceos I : Yuca ( Manihot esculenta Crantz ) y ñame ( Dioscorea spp .).Santos, L. A. dos, Valença, R. B., Silva, L. C. S. da, Holanda, S. H. de B., Silva, A. F. V. da, Jucá, J. F. T., & Santos, A. F. M. S. (2020). Methane generation potential through anaerobic digestion of fruit waste. Journal of Cleaner Production, 256. https://doi.org/10.1016/j.jclepro.2020.120389Scano, E. A., Asquer, C., Pistis, A., Ortu, L., Demontis, V., & Cocco, D. (2014). Biogas from anaerobic digestion of fruit and vegetable wastes: Experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Conversion and Management, 77, 22–30. https://doi.org/10.1016/j.enconman.2013.09.004Schirmer, W. N., dos Santos, L. A., Martins, K. G., Gueri, M. V. D., & Jucá, J. F. T. (2023). The effect of alkaline pretreatment on the anaerobic digestion of fruit and vegetable wastes from a central food distribution market. Journal of Material Cycles and Waste Management, 25(5), 2887–2899. https://doi.org/10.1007/s10163-023-01722-8Shah, F. A., Mahmood, Q., Shah, M. M., Pervez, A., & Asad, S. A. (2017). Retracted: Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis. TheScientificWorldJournal, 2017, 3852369. https://doi.org/10.1155/2017/3852369Siatoya, K. J., & Arce, Y. (2019). APROVECHAMIENTO DE LOS RESIDUOS GENERADOS EN LA PLAZA DE MERCADO DE CORABASTOS PARA LA ELABORACIÒN DE PRODUCTOS DE VALOR AGREGADO: CONTEXTO ACTUAL, PERSPECTIVA Y POSIBLES SOLUCIONES (Vol. 1, Issue 1). Universidad de Bogotà JorgeTadeo Lozano.Sinergox.xm. (2024). Precio de bolsa de electricidad.Solarte Toro, J. C. (2022). Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context : The Montes de Maria case Sustainability assessment of biorefinery schemes to enhance the development of post-conflict a.Strazzera, G., Battista, F., Garcia, N. H., Frison, N., & Bolzonella, D. (2018). Volatile fatty acids production from food wastes for biorefinery platforms: A review. Journal of Environmental Management, 226(August), 278–288. https://doi.org/10.1016/j.jenvman.2018.08.039Szuhaj, M., Ács, N., Tengölics, R., Bodor, A., Rákhely, G., Kovács, K. L., & Bagi, Z. (2016). Conversion of H2 and CO2 to CH4 and acetate in fed-batch biogas reactors by mixed biogas community: A novel route for the power-to-gas concept. Biotechnology for Biofuels, 9(1), 1–14. https://doi.org/10.1186/s13068-016-0515-0Tarasova, N. P., Makarova, A. S., Vinokurov, S. F., Kuznetsov, V. A., & Shlyakhov, P. I. (2018). Green chemistry and sustainable development: Approaches to chemical footprint analysis. Pure and Applied Chemistry, 90(1), 143–155. https://doi.org/10.1515/pac-2017-0608Tomei, M. C., & Carozza, N. A. (2015). Sequential anaerobic/anaerobic digestion for enhanced sludge stabilization: comparison of the process performance for mixed and waste sludge. Environmental Science and Pollution Research, 22(10), 7271–7279. https://doi.org/10.1007/s11356-014-3130-2Word Bank. (2024). Carbon Pricing Dashboard.Yaniris, L. A., Abreu, O., & Ma, C. (2005). La digestion anaerobia. Aspectos teoricos. Parte 1. Icidca, 0138–6204, 35–48. http://www.redalyc.org/articulo.oa?id=223120659006Yen, H. W., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98(1), 130–134. https://doi.org/10.1016/j.biortech.2005.11.010Zamri, M. F. M. A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A. H., Mofijur, M., Fattah, I. M. R., & Mahlia, T. M. I. (2021). A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 137(November 2020), 110637. https://doi.org/10.1016/j.rser.2020.110637Zhang, R., El-Mashad, H. M., Hartman, K., Wang, F., Liu, G., Choate, C., & Gamble, P. (2007). Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4), 929–935. https://doi.org/10.1016/j.biortech.2006.02.039Zheng, X., & Li, R. (2024). Critical Review on Two-Stage Anaerobic Digestion with H2 and CH4 Production from Various Wastes. Water (Switzerland), 16(11). https://doi.org/10.3390/w16111608Zia, M., Ahmed, S., & Kumar, A. (2022a). Anaerobic digestion ( AD ) of fruit and vegetable market waste ( FVMW ): potential of FVMW , bioreactor performance , co-substrates , and pre-treatment techniques. Springer, 3573–3592.Zia, M., Ahmed, S., & Kumar, A. (2022b). Anaerobic digestion (AD) of fruit and vegetable market waste (FVMW): potential of FVMW, bioreactor performance, co-substrates, and pre-treatment techniques. Biomass Conversion and Biorefinery, 12(8), 3573–3592. https://doi.org/10.1007/s13399-020-00979-5Digestión anaerobiaResiduos hortofrutícolasSimulaciónPotencial bioquímico de metanoAnálisis económicoAnaerobic digestionHorticultural wastesSimulationBiochemical methane potentialEconomic analysisPublicationORIGINALAprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia (1).pdfAprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia (1).pdfapplication/pdf1834521https://repositorio.cuc.edu.co/bitstreams/f9b4c12a-1003-4e95-8a25-813277e94489/download4e5d6c621af23b4ba971db5ef0771867MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/239e8119-7495-4aea-854f-e8f2fb823b05/download73a5432e0b76442b22b026844140d683MD52TEXTAprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia (1).pdf.txtAprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia (1).pdf.txtExtracted texttext/plain102459https://repositorio.cuc.edu.co/bitstreams/19bef60b-94d5-4129-bcd5-4465f787a697/download2207ca91c28131480c9d0c26fa66c7a7MD53THUMBNAILAprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia (1).pdf.jpgAprovechamiento energético de los residuos hortofrutícolas de la plaza de mercado de Sincelejo mediante digestión anaerobia (1).pdf.jpgGenerated Thumbnailimage/jpeg7159https://repositorio.cuc.edu.co/bitstreams/4252761b-35aa-41db-93f0-4e0f4e30709b/downloade037a1947f0ff9cf7a047300cee7154eMD5411323/13597oai:repositorio.cuc.edu.co:11323/135972024-10-30 03:00:47.508https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K