Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network.

Leukocytes, also called White Blood Cells (WBCs) or leucocytes, are the cells that play a pivotal role in human health and are vital indicators of diseases such as malaria, leukemia, AIDS, and other viral infections. WBCs detection and classification in blood smears offers insights to pathologists,...

Full description

Autores:
Khan, Siraj
Sajjad, Muhammad
Abbas, Naveed
Escorcia Gutierrez, José
Gamarra, Margarita
Muhammad, Khan
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13592
Acceso en línea:
https://hdl.handle.net/11323/13592
https://repositorio.cuc.edu.co/
Palabra clave:
Blood smear images
Deep learning
Dual attention network
Image classification
Image detection
Leukocytes
WBC classification
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_1db861d3cdff3897f4c1457f35fdc55f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13592
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network.
title Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network.
spellingShingle Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network.
Blood smear images
Deep learning
Dual attention network
Image classification
Image detection
Leukocytes
WBC classification
title_short Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network.
title_full Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network.
title_fullStr Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network.
title_full_unstemmed Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network.
title_sort Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network.
dc.creator.fl_str_mv Khan, Siraj
Sajjad, Muhammad
Abbas, Naveed
Escorcia Gutierrez, José
Gamarra, Margarita
Muhammad, Khan
dc.contributor.author.none.fl_str_mv Khan, Siraj
Sajjad, Muhammad
Abbas, Naveed
Escorcia Gutierrez, José
Gamarra, Margarita
Muhammad, Khan
dc.subject.proposal.eng.fl_str_mv Blood smear images
Deep learning
Dual attention network
Image classification
Image detection
Leukocytes
WBC classification
topic Blood smear images
Deep learning
Dual attention network
Image classification
Image detection
Leukocytes
WBC classification
description Leukocytes, also called White Blood Cells (WBCs) or leucocytes, are the cells that play a pivotal role in human health and are vital indicators of diseases such as malaria, leukemia, AIDS, and other viral infections. WBCs detection and classification in blood smears offers insights to pathologists, aiding diagnosis across medical conditions. Traditional techniques, including manual counting, detection, classification, and visual inspection of microscopic images by medical professionals, pose challenges due to their labor-intensive nature. However, traditional methods are time consuming and sometimes susceptible to errors. Here, we propose a high-performance convolutional neural network (CNN) coupled with a dual-attention network that efficiently detects and classifies WBCs in microscopic thick smear images. The main aim of this study was to enhance clinical hematology systems and expedite medical diagnostic processes. In the proposed technique, we utilized a deep convolutional generative adversarial network (DCGAN) to overcome the limitations imposed by limited training data and employed a dual attention mechanism to improve accuracy, efficiency, and generalization. The proposed technique achieved overall accuracy rates of 99.83%, 99.35%, and 99.60% for the peripheral blood cell (PBC), leukocyte images for segmentation and classification (LISC), and Raabin-WBC benchmark datasets, respectively. Our proposed approach outperforms state-of-the-art methods in terms of accuracy, highlighting the effectiveness of the strategies employed and their potential to enhance diagnostic capabilities and advance real-world healthcare practices and diagnostic systems.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-29T19:38:24Z
dc.date.available.none.fl_str_mv 2024-10-29T19:38:24Z
dc.date.issued.none.fl_str_mv 2024-02-13
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Siraj Khan, Muhammad Sajjad, Naveed Abbas, José Escorcia-Gutierrez, Margarita Gamarra, Khan Muhammad, Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network, Computers in Biology and Medicine, Volume 174, 2024, 108146, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2024.108146.
dc.identifier.issn.none.fl_str_mv 0010-4825
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13592
dc.identifier.doi.none.fl_str_mv 10.1016/j.compbiomed.2024.108146
dc.identifier.eissn.none.fl_str_mv 1879-0534
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Siraj Khan, Muhammad Sajjad, Naveed Abbas, José Escorcia-Gutierrez, Margarita Gamarra, Khan Muhammad, Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network, Computers in Biology and Medicine, Volume 174, 2024, 108146, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2024.108146.
0010-4825
10.1016/j.compbiomed.2024.108146
1879-0534
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13592
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Computers in Biology and Medicine
dc.relation.references.none.fl_str_mv M. Sajjad, et al. Leukocytes classification and segmentation in microscopic blood smear: a resource-aware healthcare service in smart cities IEEE Access, 5 (2016), pp. 3475-3489
S. Khan, M. Sajjad, T. Hussain, A. Ullah, A.S. Imran A review on traditional machine learning and deep learning models for WBCs classification in blood smear images IEEE Access, 9 (2020), pp. 10657-10673
L. Roland, M. Drillich, M. Iwersen Hematology as a diagnostic tool in bovine medicine J. Vet. Diagn. Invest., 26 (5) (2014), pp. 592-598
H. Kutlu, E. Avci, F. Özyurt White blood cells detection and classification based on regional convolutional neural networks Med. Hypotheses, 135 (2020), Article 109472
S. Hosseini, M.B. Khamesee Modeling and Simulation and Imaging of Blood Flow in the Human Body Nveo-Natural Volatiles & Essential Oils Journal| NVEO (2021), pp. 13235-13244
Y. Yan, et al. Life-course cumulative burden of body mass index and blood pressure on progression of left ventricular mass and geometry in midlife: the Bogalusa Heart Study Circ. Res., 126 (5) (2020), pp. 633-643
B.J. Bain Structure and function of red and white blood cells and platelets Medicine, 49 (4) (2021), pp. 183-188
R.A. McPherson, M.R. Pincus Henry's Clinical Diagnosis and Management by Laboratory Methods E-Book Elsevier Health Sciences (2021)
A.H. Alharbi, C. Aravinda, M. Lin, P. Venugopala, P. Reddicherla, M.A. Shah "Segmentation and classification of white blood cells using the UNet," Contrast Media Mol. Imaging, 2022 (2022)
L. Alzubaidi, M.A. Fadhel, O. Al-Shamma, J. Zhang, Y. Duan Deep learning models for classification of red blood cells in microscopy images to aid in sickle cell anemia diagnosis Electronics, 9 (3) (2020), p. 427
M. Zhou, et al. Development and evaluation of a leukemia diagnosis system using deep learning in real clinical scenarios Frontiers in Pediatrics, 9 (2021), Article 693676
Variability in white blood cell count during uncomplicated malaria and implications for parasite density estimation: a WorldWide Antimalarial Resistance Network individual patient data meta-analysis Malar. J., 22 (1) (2023), p. 174
E. Rivas-Posada, M.I. Chacon-Murguia Automatic base-model selection for white blood cell image classification using meta-learning Comput. Biol. Med., 163 (2023), Article 107200
K. AL-Dulaimi, T. Makki Blood cell microscopic image classification in computer aided diagnosis using machine learning: a review Iraqi Journal For Computer Science and Mathematics, 4 (2) (2023), pp. 43-55
A. HemaSri, M.D. Sreenidhi, V.V.K. Chaitanya, G. Vasanth, V.M. Mohan, T. Satish Detection of RBCs, WBCs, platelets count in blood sample by using deep learning 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), IEEE (2023), pp. 47-51
S. Saleem, J. Amin, M. Sharif, G.A. Mallah, S. Kadry, A.H. Gandomi Leukemia segmentation and classification: a comprehensive survey Comput. Biol. Med. (2022), Article 106028
P.K. Das, V. Diya, S. Meher, R. Panda, A. Abraham A Systematic Review on Recent Advancements in Deep and Machine Learning Based Detection and Classification of Acute Lymphoblastic Leukemia IEEE access (2022)
S. Khan, M. Sajjad, N. Abbas, A. Rehman A review on machine learning-based wbcs analysis in blood smear images: key challenges, datasets, and future directions Prognostic Models in Healthcare: AI and Statistical Approaches (2022), pp. 293-314
R.B. Hegde, K. Prasad, H. Hebbar, B.M.K. Singh Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images Biocybern. Biomed. Eng., 39 (2) (2019), pp. 382-392
H. Wu, C. Lin, J. Liu, Y. Song, Z. Wen, J. Qin Feature masking on non-overlapping regions for detecting dense cells in blood smear image IEEE Trans. Med. Imag. (2023)
S.K. Pandey, A.K. Bhandari A systematic review of modern approaches in healthcare systems for lung cancer detection and classification Arch. Comput. Methods Eng. (2023), pp. 1-20
R.B. Hegde, K. Prasad, H. Hebbar, B.M.K.J.B. Singh, B. Engineering Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images 39 (2) (2019), pp. 382-392
M.R. Reena, P. Ameer Localization and recognition of leukocytes in peripheral blood: a deep learning approach Comput. Biol. Med., 126 (2020), Article 104034
Z. Han, et al. One-stage and lightweight CNN detection approach with attention: application to WBC detection of microscopic images Comput. Biol. Med., 154 (2023), Article 106606
B. Leng, C. Wang, M. Leng, M. Ge, W. Dong Deep learning detection network for peripheral blood leukocytes based on improved detection transformer Biomed. Signal Process Control, 82 (2023), Article 104518
W. Liu, et al. Ssd: single shot multibox detector Computer Vision–ECCV 2016: 14th European Conference, Springer, Amsterdam, The Netherlands (2016), pp. 21-37 October 11–14, 2016, Proceedings, Part I 14
S. Kadry, V. Rajinikanth, D. Taniar, R. Damaševičius, X.P.B. Valencia Automated segmentation of leukocyte from hematological images—a study using various CNN schemes J. Supercomput. (2022), pp. 1-21
S. Khan, M. Sajjad, T. Hussain, A. Ullah, A.S.J.I.A. Imran A review on traditional machine learning and deep learning models for WBCs classification in blood smear images 9 (2020), pp. 10657-10673
M. Sajjad, et al. Computer aided system for leukocytes classification and segmentation in blood smear images 2016 International Conference on Frontiers of Information Technology (FIT), IEEE (2016), pp. 99-104
S.N.M. Safuan, M.R.M. Tomari, W.N.W. Zakaria White blood cell (WBC) counting analysis in blood smear images using various color segmentation methods Measurement, 116 (2018), pp. 543-555
Z. Tang, D. Quan, X. Wang, N. Jin, D. Zhang Radar signal recognition based on dual-channel model with HOG feature extraction IEEE Journal on Miniaturization for Air and Space Systems (2023)
M. Sajjad, et al. Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities Future Generat. Comput. Syst., 108 (2020), pp. 995-1007
R.B. Hegde, K. Prasad, H. Hebbar, B.M.K. Singh Development of a robust algorithm for detection of nuclei and classification of white blood cells in peripheral blood smear images J. Med. Syst., 42 (2018), pp. 1-8
P. Rastogi, K. Khanna, V. Singh LeuFeatx: deep learning–based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear Comput. Biol. Med., 142 (2022), Article 105236
M.E. Sahin, H. Ulutas, E. Yuce, M.F. Erkoc Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images Neural Comput. Appl., 35 (18) (2023), pp. 13597-13611
O. Katar, O. Yildirim An Explainable Vision Transformer Model Based White Blood Cells Classification and Localization (2023)
K. Balasubramanian, N. Ananthamoorthy, K. Ramya An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm Neural Comput. Appl., 34 (18) (2022), pp. 16089-16101
J. Xu, H. Ren, S. Cai, X. Zhang An improved faster R-CNN algorithm for assisted detection of lung nodules Comput. Biol. Med., 153 (2023), Article 106470
H. Li, Y. Luo, J. Zhao, X. Luo, T.T. Toe Resnet for classification of leukocyte: application and optimization 2023 8th International Conference on Computer and Communication Systems (ICCCS), IEEE (2023), pp. 932-937
H. Chen, et al. Accurate classification of white blood cells by coupling pre-trained ResNet and DenseNet with SCAM mechanism BMC Bioinf., 23 (1) (2022), pp. 1-20
W. Sae-Lim, W. Wettayaprasit, P. Aiyarak Convolutional neural networks using MobileNet for skin lesion classification 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), IEEE (2019), pp. 242-247
K. Barrera, A. Merino, A. Molina, J. Rodellar Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan) Comput. Methods Progr. Biomed., 229 (2023), Article 107314
K. Barrera, J. Rodellar, S. Alférez, A. Merino Automatic normalized digital color staining in the recognition of abnormal blood cells using generative adversarial networks Comput. Methods Progr. Biomed., 240 (2023), Article 107629
G.M. Devi, V. Neelambary Computer-aided diagnosis of white blood cell leukemia using VGG16 convolution neural network 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA), IEEE (2022), pp. 1064-1068
Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, M. Song Neural style transfer: a review IEEE Trans. Visual. Comput. Graph., 26 (11) (2019), pp. 3365-3385
T. Bai, J. Luo, J. Zhao, B. Wen, Q. Wang Recent advances in adversarial training for adversarial robustness arXiv preprint arXiv (2021) 2102.01356
L. Gonog, Y. Zhou A review: generative adversarial networks 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), IEEE (2019), pp. 505-510
H. Nozaka, K. Kamata, K. Yamagata The effectiveness of data augmentation for mature white blood cell image classification in deep learning—selection of an optimal technique for hematological morphology recognition IEICE Trans. Info Syst., 106 (5) (2023), pp. 707-714
C. Shorten, T.M. Khoshgoftaar A survey on image data augmentation for deep learning Journal of big data, 6 (1) (2019), pp. 1-48
X. Gao, F. Deng, X. Yue Data augmentation in fault diagnosis based on the Wasserstein generative adversarial network with gradient penalty Neurocomputing, 396 (2020), pp. 487-494
A. Bissoto, E. Valle, S. Avila Gan-based data augmentation and anonymization for skin-lesion analysis: a critical review Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), pp. 1847-1856
A. Mert Enhanced dataset synthesis using conditional generative adversarial networks Biomedical Engineering Letters, 13 (1) (2023), pp. 41-48
M. Mirza, S. Osindero Conditional generative adversarial nets arXiv preprint arXiv (2014) 1411.1784
C. Ledig, et al. Photo-realistic single image super-resolution using a generative adversarial network Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 4681-4690
J.-Y. Zhu, T. Park, P. Isola, A.A. Efros Unpaired image-to-image translation using cycle-consistent adversarial networks Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 2223-2232
X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, P. Abbeel Infogan: interpretable representation learning by information maximizing generative adversarial nets Adv. Neural Inf. Process. Syst., 29 (2016)
M. Arjovsky, S. Chintala, L. Bottou Wasserstein generative adversarial networks International Conference on Machine Learning, PMLR (2017), pp. 214-223
C. Hartanto, S. Kurniawan, D. Arianto, A. Arymurthy Dcgan-generated synthetic images effect on white blood cell classification IOP Conf. Ser. Mater. Sci. Eng., 1077 (1) (2021), Article 012033 IOP Publishing
Z. Qin, Z. Liu, P. Zhu, Y. Xue A GAN-based image synthesis method for skin lesion classification Comput. Methods Progr. Biomed., 195 (2020), Article 105568
Y. Liu, J. Zhang, T. Zhao, Z. Wang, Z. Wang Reconstruction of the meso-scale concrete model using a deep convolutional generative adversarial network (DCGAN) Construct. Build. Mater., 370 (2023), Article 130704
Z. Lyu, et al. A survey of model compression strategies for object detection Multimed. Tool. Appl. (2023), 10.1007/s11042-023-17192-x 2023/11/02
S. Ren, K. He, R. Girshick, J. Sun Faster r-cnn: towards real-time object detection with region proposal networks Adv. Neural Inf. Process. Syst., 28 (2015)
S. Ren, K. He, R. Girshick, J. Sun Faster R-CNN: towards real-time object detection with region proposal networks IEEE Trans. Pattern Anal. Mach. Intell., 28 (2015)
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen Mobilenetv2: inverted residuals and linear bottlenecks Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 4510-4520
H. Yar, T. Hussain, M. Agarwal, Z.A. Khan, S.K. Gupta, S.W. Baik Optimized dual fire attention network and medium-scale fire classification benchmark IEEE Trans. Image Process., 31 (2022), pp. 6331-6343
S. Woo, J. Park, J.-Y. Lee, I.S. Kweon Cbam: convolutional block attention module Proceedings of the European Conference on Computer Vision, ECCV) (2018), pp. 3-19
C. Sitaula, M.B. Hossain Attention-based VGG-16 model for COVID-19 chest X-ray image classification Appl. Intell., 51 (2021), pp. 2850-2863
B. Dinç, Y. Kaya A novel hybrid optic disc detection and fovea localization method integrating region-based convnet and mathematical approach Wireless Pers. Commun., 129 (4) (2023/04/01 2023), pp. 2727-2748, 10.1007/s11277-023-10255-0
A. Acevedo, A. Merino, S. Alférez, Á. Molina, L. Boldú, J. Rodellar A dataset of microscopic peripheral blood cell images for development of automatic recognition systems Data Brief, 30 (2020)
S.H. Rezatofighi, H. Soltanian-Zadeh Automatic recognition of five types of white blood cells in peripheral blood Comput. Med. Imag. Graph., 35 (4) (2011), pp. 333-343
Z.M. Kouzehkanan, et al. A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm Sci. Rep., 12 (1) (2022), p. 1123
D. Hazra, Y.-C. Byun, W.J. Kim, C.-U. Kang Synthesis of microscopic cell images obtained from bone marrow aspirate smears through generative adversarial networks Biology, 11 (2) (2022), p. 276
D. Hazra, Y.-C. Byun, W.J. Kim Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network Comput. Methods Progr. Biomed., 224 (2022), Article 107019
S.S.R. Bairaboina, S.R. Battula Ghost-ResNeXt: an effective deep learning based on mature and immature WBC classification Appl. Sci., 13 (6) (2023), p. 4054
R. Liu, W. Dai, T. Wu, M. Wang, S. Wan, J. Liu AIMIC: deep learning for microscopic image classification Comput. Methods Progr. Biomed., 226 (2022), Article 107162
R. Zhang, et al. RCMNet: a deep learning model assists CAR-T therapy for leukemia Comput. Biol. Med., 150 (2022), Article 106084
Q. Wang, S. Bi, M. Sun, Y. Wang, D. Wang, S. Yang Deep learning approach to peripheral leukocyte recognition PLoS One, 14 (6) (2019), Article e0218808
K. Kimura, et al. A novel automated image analysis system using deep convolutional neural networks can assist to differentiate MDS and AA Sci. Rep., 9 (1) (2019), Article 13385
C. Jung, M. Abuhamad, D. Mohaisen, K. Han, D. Nyang WBC image classification and generative models based on convolutional neural network BMC Med. Imag., 22 (1) (2022), pp. 1-16
K. Balasubramanian, K. Gayathri Devi, and K. Ramya, "Classification of white blood cells based on modified U‐Net and SVM," Concurrency Comput. Pract. Ex., p. e7862.
E. Rivas-Posada, M.I. Chacon-Murguia, J.A. Ramírez-Quintana, C. Arzate-Quintana Classification of leukocytes using meta-learning and color constancy methods Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 8 (4) (2022), pp. 486-499
B.S.S. Rao, B.S. Rao An effective WBC segmentation and classification using MobilenetV3–ShufflenetV2 based deep learning framework IEEE Access, 11 (2023), pp. 27739-27748
dc.relation.citationendpage.none.fl_str_mv 17
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationissue.none.fl_str_mv 108146
dc.relation.citationvolume.none.fl_str_mv 174
dc.rights.eng.fl_str_mv © 2024
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2024
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 17 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.place.none.fl_str_mv United Kingdom
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0010482524002300?via%3Dihub
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a341a8a2-0de1-4731-872f-486b4afbef37/download
https://repositorio.cuc.edu.co/bitstreams/7674122f-e904-400d-86f1-543687461e73/download
https://repositorio.cuc.edu.co/bitstreams/61949393-63fa-4191-a7fa-a41756e4521f/download
https://repositorio.cuc.edu.co/bitstreams/15a60c40-a231-426c-a07a-281d52768ccc/download
bitstream.checksum.fl_str_mv 7a4e4610c8d54ecd0d19a909b259eb15
73a5432e0b76442b22b026844140d683
6f138c06887040ebfa67a148dbfb5fac
ae9f786d6d497e799d03110e063ccbd1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166749573349376
spelling Atribución 4.0 Internacional (CC BY 4.0)© 2024https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Khan, SirajSajjad, MuhammadAbbas, NaveedEscorcia Gutierrez, JoséGamarra, MargaritaMuhammad, Khan2024-10-29T19:38:24Z2024-10-29T19:38:24Z2024-02-13Siraj Khan, Muhammad Sajjad, Naveed Abbas, José Escorcia-Gutierrez, Margarita Gamarra, Khan Muhammad, Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network, Computers in Biology and Medicine, Volume 174, 2024, 108146, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2024.108146.0010-4825https://hdl.handle.net/11323/1359210.1016/j.compbiomed.2024.1081461879-0534Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Leukocytes, also called White Blood Cells (WBCs) or leucocytes, are the cells that play a pivotal role in human health and are vital indicators of diseases such as malaria, leukemia, AIDS, and other viral infections. WBCs detection and classification in blood smears offers insights to pathologists, aiding diagnosis across medical conditions. Traditional techniques, including manual counting, detection, classification, and visual inspection of microscopic images by medical professionals, pose challenges due to their labor-intensive nature. However, traditional methods are time consuming and sometimes susceptible to errors. Here, we propose a high-performance convolutional neural network (CNN) coupled with a dual-attention network that efficiently detects and classifies WBCs in microscopic thick smear images. The main aim of this study was to enhance clinical hematology systems and expedite medical diagnostic processes. In the proposed technique, we utilized a deep convolutional generative adversarial network (DCGAN) to overcome the limitations imposed by limited training data and employed a dual attention mechanism to improve accuracy, efficiency, and generalization. The proposed technique achieved overall accuracy rates of 99.83%, 99.35%, and 99.60% for the peripheral blood cell (PBC), leukocyte images for segmentation and classification (LISC), and Raabin-WBC benchmark datasets, respectively. Our proposed approach outperforms state-of-the-art methods in terms of accuracy, highlighting the effectiveness of the strategies employed and their potential to enhance diagnostic capabilities and advance real-world healthcare practices and diagnostic systems.17 páginasapplication/pdfengElsevier LtdUnited Kingdomhttps://www.sciencedirect.com/science/article/pii/S0010482524002300?via%3DihubEfficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network.Artículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Computers in Biology and MedicineM. Sajjad, et al. Leukocytes classification and segmentation in microscopic blood smear: a resource-aware healthcare service in smart cities IEEE Access, 5 (2016), pp. 3475-3489S. Khan, M. Sajjad, T. Hussain, A. Ullah, A.S. Imran A review on traditional machine learning and deep learning models for WBCs classification in blood smear images IEEE Access, 9 (2020), pp. 10657-10673L. Roland, M. Drillich, M. Iwersen Hematology as a diagnostic tool in bovine medicine J. Vet. Diagn. Invest., 26 (5) (2014), pp. 592-598H. Kutlu, E. Avci, F. Özyurt White blood cells detection and classification based on regional convolutional neural networks Med. Hypotheses, 135 (2020), Article 109472S. Hosseini, M.B. Khamesee Modeling and Simulation and Imaging of Blood Flow in the Human Body Nveo-Natural Volatiles & Essential Oils Journal| NVEO (2021), pp. 13235-13244Y. Yan, et al. Life-course cumulative burden of body mass index and blood pressure on progression of left ventricular mass and geometry in midlife: the Bogalusa Heart Study Circ. Res., 126 (5) (2020), pp. 633-643B.J. Bain Structure and function of red and white blood cells and platelets Medicine, 49 (4) (2021), pp. 183-188R.A. McPherson, M.R. Pincus Henry's Clinical Diagnosis and Management by Laboratory Methods E-Book Elsevier Health Sciences (2021)A.H. Alharbi, C. Aravinda, M. Lin, P. Venugopala, P. Reddicherla, M.A. Shah "Segmentation and classification of white blood cells using the UNet," Contrast Media Mol. Imaging, 2022 (2022)L. Alzubaidi, M.A. Fadhel, O. Al-Shamma, J. Zhang, Y. Duan Deep learning models for classification of red blood cells in microscopy images to aid in sickle cell anemia diagnosis Electronics, 9 (3) (2020), p. 427M. Zhou, et al. Development and evaluation of a leukemia diagnosis system using deep learning in real clinical scenarios Frontiers in Pediatrics, 9 (2021), Article 693676Variability in white blood cell count during uncomplicated malaria and implications for parasite density estimation: a WorldWide Antimalarial Resistance Network individual patient data meta-analysis Malar. J., 22 (1) (2023), p. 174E. Rivas-Posada, M.I. Chacon-Murguia Automatic base-model selection for white blood cell image classification using meta-learning Comput. Biol. Med., 163 (2023), Article 107200K. AL-Dulaimi, T. Makki Blood cell microscopic image classification in computer aided diagnosis using machine learning: a review Iraqi Journal For Computer Science and Mathematics, 4 (2) (2023), pp. 43-55A. HemaSri, M.D. Sreenidhi, V.V.K. Chaitanya, G. Vasanth, V.M. Mohan, T. Satish Detection of RBCs, WBCs, platelets count in blood sample by using deep learning 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), IEEE (2023), pp. 47-51S. Saleem, J. Amin, M. Sharif, G.A. Mallah, S. Kadry, A.H. Gandomi Leukemia segmentation and classification: a comprehensive survey Comput. Biol. Med. (2022), Article 106028P.K. Das, V. Diya, S. Meher, R. Panda, A. Abraham A Systematic Review on Recent Advancements in Deep and Machine Learning Based Detection and Classification of Acute Lymphoblastic Leukemia IEEE access (2022)S. Khan, M. Sajjad, N. Abbas, A. Rehman A review on machine learning-based wbcs analysis in blood smear images: key challenges, datasets, and future directions Prognostic Models in Healthcare: AI and Statistical Approaches (2022), pp. 293-314R.B. Hegde, K. Prasad, H. Hebbar, B.M.K. Singh Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images Biocybern. Biomed. Eng., 39 (2) (2019), pp. 382-392H. Wu, C. Lin, J. Liu, Y. Song, Z. Wen, J. Qin Feature masking on non-overlapping regions for detecting dense cells in blood smear image IEEE Trans. Med. Imag. (2023)S.K. Pandey, A.K. Bhandari A systematic review of modern approaches in healthcare systems for lung cancer detection and classification Arch. Comput. Methods Eng. (2023), pp. 1-20R.B. Hegde, K. Prasad, H. Hebbar, B.M.K.J.B. Singh, B. Engineering Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images 39 (2) (2019), pp. 382-392M.R. Reena, P. Ameer Localization and recognition of leukocytes in peripheral blood: a deep learning approach Comput. Biol. Med., 126 (2020), Article 104034Z. Han, et al. One-stage and lightweight CNN detection approach with attention: application to WBC detection of microscopic images Comput. Biol. Med., 154 (2023), Article 106606B. Leng, C. Wang, M. Leng, M. Ge, W. Dong Deep learning detection network for peripheral blood leukocytes based on improved detection transformer Biomed. Signal Process Control, 82 (2023), Article 104518W. Liu, et al. Ssd: single shot multibox detector Computer Vision–ECCV 2016: 14th European Conference, Springer, Amsterdam, The Netherlands (2016), pp. 21-37 October 11–14, 2016, Proceedings, Part I 14S. Kadry, V. Rajinikanth, D. Taniar, R. Damaševičius, X.P.B. Valencia Automated segmentation of leukocyte from hematological images—a study using various CNN schemes J. Supercomput. (2022), pp. 1-21S. Khan, M. Sajjad, T. Hussain, A. Ullah, A.S.J.I.A. Imran A review on traditional machine learning and deep learning models for WBCs classification in blood smear images 9 (2020), pp. 10657-10673M. Sajjad, et al. Computer aided system for leukocytes classification and segmentation in blood smear images 2016 International Conference on Frontiers of Information Technology (FIT), IEEE (2016), pp. 99-104S.N.M. Safuan, M.R.M. Tomari, W.N.W. Zakaria White blood cell (WBC) counting analysis in blood smear images using various color segmentation methods Measurement, 116 (2018), pp. 543-555Z. Tang, D. Quan, X. Wang, N. Jin, D. Zhang Radar signal recognition based on dual-channel model with HOG feature extraction IEEE Journal on Miniaturization for Air and Space Systems (2023)M. Sajjad, et al. Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities Future Generat. Comput. Syst., 108 (2020), pp. 995-1007R.B. Hegde, K. Prasad, H. Hebbar, B.M.K. Singh Development of a robust algorithm for detection of nuclei and classification of white blood cells in peripheral blood smear images J. Med. Syst., 42 (2018), pp. 1-8P. Rastogi, K. Khanna, V. Singh LeuFeatx: deep learning–based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear Comput. Biol. Med., 142 (2022), Article 105236M.E. Sahin, H. Ulutas, E. Yuce, M.F. Erkoc Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images Neural Comput. Appl., 35 (18) (2023), pp. 13597-13611O. Katar, O. Yildirim An Explainable Vision Transformer Model Based White Blood Cells Classification and Localization (2023)K. Balasubramanian, N. Ananthamoorthy, K. Ramya An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm Neural Comput. Appl., 34 (18) (2022), pp. 16089-16101J. Xu, H. Ren, S. Cai, X. Zhang An improved faster R-CNN algorithm for assisted detection of lung nodules Comput. Biol. Med., 153 (2023), Article 106470H. Li, Y. Luo, J. Zhao, X. Luo, T.T. Toe Resnet for classification of leukocyte: application and optimization 2023 8th International Conference on Computer and Communication Systems (ICCCS), IEEE (2023), pp. 932-937H. Chen, et al. Accurate classification of white blood cells by coupling pre-trained ResNet and DenseNet with SCAM mechanism BMC Bioinf., 23 (1) (2022), pp. 1-20W. Sae-Lim, W. Wettayaprasit, P. Aiyarak Convolutional neural networks using MobileNet for skin lesion classification 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), IEEE (2019), pp. 242-247K. Barrera, A. Merino, A. Molina, J. Rodellar Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan) Comput. Methods Progr. Biomed., 229 (2023), Article 107314K. Barrera, J. Rodellar, S. Alférez, A. Merino Automatic normalized digital color staining in the recognition of abnormal blood cells using generative adversarial networks Comput. Methods Progr. Biomed., 240 (2023), Article 107629G.M. Devi, V. Neelambary Computer-aided diagnosis of white blood cell leukemia using VGG16 convolution neural network 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA), IEEE (2022), pp. 1064-1068Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, M. Song Neural style transfer: a review IEEE Trans. Visual. Comput. Graph., 26 (11) (2019), pp. 3365-3385T. Bai, J. Luo, J. Zhao, B. Wen, Q. Wang Recent advances in adversarial training for adversarial robustness arXiv preprint arXiv (2021) 2102.01356L. Gonog, Y. Zhou A review: generative adversarial networks 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), IEEE (2019), pp. 505-510H. Nozaka, K. Kamata, K. Yamagata The effectiveness of data augmentation for mature white blood cell image classification in deep learning—selection of an optimal technique for hematological morphology recognition IEICE Trans. Info Syst., 106 (5) (2023), pp. 707-714C. Shorten, T.M. Khoshgoftaar A survey on image data augmentation for deep learning Journal of big data, 6 (1) (2019), pp. 1-48X. Gao, F. Deng, X. Yue Data augmentation in fault diagnosis based on the Wasserstein generative adversarial network with gradient penalty Neurocomputing, 396 (2020), pp. 487-494A. Bissoto, E. Valle, S. Avila Gan-based data augmentation and anonymization for skin-lesion analysis: a critical review Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), pp. 1847-1856A. Mert Enhanced dataset synthesis using conditional generative adversarial networks Biomedical Engineering Letters, 13 (1) (2023), pp. 41-48M. Mirza, S. Osindero Conditional generative adversarial nets arXiv preprint arXiv (2014) 1411.1784C. Ledig, et al. Photo-realistic single image super-resolution using a generative adversarial network Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 4681-4690J.-Y. Zhu, T. Park, P. Isola, A.A. Efros Unpaired image-to-image translation using cycle-consistent adversarial networks Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 2223-2232X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, P. Abbeel Infogan: interpretable representation learning by information maximizing generative adversarial nets Adv. Neural Inf. Process. Syst., 29 (2016)M. Arjovsky, S. Chintala, L. Bottou Wasserstein generative adversarial networks International Conference on Machine Learning, PMLR (2017), pp. 214-223C. Hartanto, S. Kurniawan, D. Arianto, A. Arymurthy Dcgan-generated synthetic images effect on white blood cell classification IOP Conf. Ser. Mater. Sci. Eng., 1077 (1) (2021), Article 012033 IOP PublishingZ. Qin, Z. Liu, P. Zhu, Y. Xue A GAN-based image synthesis method for skin lesion classification Comput. Methods Progr. Biomed., 195 (2020), Article 105568Y. Liu, J. Zhang, T. Zhao, Z. Wang, Z. Wang Reconstruction of the meso-scale concrete model using a deep convolutional generative adversarial network (DCGAN) Construct. Build. Mater., 370 (2023), Article 130704Z. Lyu, et al. A survey of model compression strategies for object detection Multimed. Tool. Appl. (2023), 10.1007/s11042-023-17192-x 2023/11/02S. Ren, K. He, R. Girshick, J. Sun Faster r-cnn: towards real-time object detection with region proposal networks Adv. Neural Inf. Process. Syst., 28 (2015)S. Ren, K. He, R. Girshick, J. Sun Faster R-CNN: towards real-time object detection with region proposal networks IEEE Trans. Pattern Anal. Mach. Intell., 28 (2015)M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen Mobilenetv2: inverted residuals and linear bottlenecks Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 4510-4520H. Yar, T. Hussain, M. Agarwal, Z.A. Khan, S.K. Gupta, S.W. Baik Optimized dual fire attention network and medium-scale fire classification benchmark IEEE Trans. Image Process., 31 (2022), pp. 6331-6343S. Woo, J. Park, J.-Y. Lee, I.S. Kweon Cbam: convolutional block attention module Proceedings of the European Conference on Computer Vision, ECCV) (2018), pp. 3-19C. Sitaula, M.B. Hossain Attention-based VGG-16 model for COVID-19 chest X-ray image classification Appl. Intell., 51 (2021), pp. 2850-2863B. Dinç, Y. Kaya A novel hybrid optic disc detection and fovea localization method integrating region-based convnet and mathematical approach Wireless Pers. Commun., 129 (4) (2023/04/01 2023), pp. 2727-2748, 10.1007/s11277-023-10255-0A. Acevedo, A. Merino, S. Alférez, Á. Molina, L. Boldú, J. Rodellar A dataset of microscopic peripheral blood cell images for development of automatic recognition systems Data Brief, 30 (2020)S.H. Rezatofighi, H. Soltanian-Zadeh Automatic recognition of five types of white blood cells in peripheral blood Comput. Med. Imag. Graph., 35 (4) (2011), pp. 333-343Z.M. Kouzehkanan, et al. A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm Sci. Rep., 12 (1) (2022), p. 1123D. Hazra, Y.-C. Byun, W.J. Kim, C.-U. Kang Synthesis of microscopic cell images obtained from bone marrow aspirate smears through generative adversarial networks Biology, 11 (2) (2022), p. 276D. Hazra, Y.-C. Byun, W.J. Kim Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network Comput. Methods Progr. Biomed., 224 (2022), Article 107019S.S.R. Bairaboina, S.R. Battula Ghost-ResNeXt: an effective deep learning based on mature and immature WBC classification Appl. Sci., 13 (6) (2023), p. 4054R. Liu, W. Dai, T. Wu, M. Wang, S. Wan, J. Liu AIMIC: deep learning for microscopic image classification Comput. Methods Progr. Biomed., 226 (2022), Article 107162R. Zhang, et al. RCMNet: a deep learning model assists CAR-T therapy for leukemia Comput. Biol. Med., 150 (2022), Article 106084Q. Wang, S. Bi, M. Sun, Y. Wang, D. Wang, S. Yang Deep learning approach to peripheral leukocyte recognition PLoS One, 14 (6) (2019), Article e0218808K. Kimura, et al. A novel automated image analysis system using deep convolutional neural networks can assist to differentiate MDS and AA Sci. Rep., 9 (1) (2019), Article 13385C. Jung, M. Abuhamad, D. Mohaisen, K. Han, D. Nyang WBC image classification and generative models based on convolutional neural network BMC Med. Imag., 22 (1) (2022), pp. 1-16K. Balasubramanian, K. Gayathri Devi, and K. Ramya, "Classification of white blood cells based on modified U‐Net and SVM," Concurrency Comput. Pract. Ex., p. e7862.E. Rivas-Posada, M.I. Chacon-Murguia, J.A. Ramírez-Quintana, C. Arzate-Quintana Classification of leukocytes using meta-learning and color constancy methods Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 8 (4) (2022), pp. 486-499B.S.S. Rao, B.S. Rao An effective WBC segmentation and classification using MobilenetV3–ShufflenetV2 based deep learning framework IEEE Access, 11 (2023), pp. 27739-27748171108146174Blood smear imagesDeep learningDual attention networkImage classificationImage detectionLeukocytesWBC classificationPublicationORIGINALEfficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network..pdfEfficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network..pdfapplication/pdf8218923https://repositorio.cuc.edu.co/bitstreams/a341a8a2-0de1-4731-872f-486b4afbef37/download7a4e4610c8d54ecd0d19a909b259eb15MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/7674122f-e904-400d-86f1-543687461e73/download73a5432e0b76442b22b026844140d683MD52TEXTEfficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network..pdf.txtEfficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network..pdf.txtExtracted texttext/plain100409https://repositorio.cuc.edu.co/bitstreams/61949393-63fa-4191-a7fa-a41756e4521f/download6f138c06887040ebfa67a148dbfb5facMD53THUMBNAILEfficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network..pdf.jpgEfficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network..pdf.jpgGenerated Thumbnailimage/jpeg14247https://repositorio.cuc.edu.co/bitstreams/15a60c40-a231-426c-a07a-281d52768ccc/downloadae9f786d6d497e799d03110e063ccbd1MD5411323/13592oai:repositorio.cuc.edu.co:11323/135922024-10-30 03:01:24.866https://creativecommons.org/licenses/by/4.0/© 2024open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K