Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network.

Leukocytes, also called White Blood Cells (WBCs) or leucocytes, are the cells that play a pivotal role in human health and are vital indicators of diseases such as malaria, leukemia, AIDS, and other viral infections. WBCs detection and classification in blood smears offers insights to pathologists,...

Full description

Autores:
Khan, Siraj
Sajjad, Muhammad
Abbas, Naveed
Escorcia Gutierrez, José
Gamarra, Margarita
Muhammad, Khan
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13592
Acceso en línea:
https://hdl.handle.net/11323/13592
https://repositorio.cuc.edu.co/
Palabra clave:
Blood smear images
Deep learning
Dual attention network
Image classification
Image detection
Leukocytes
WBC classification
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
Description
Summary:Leukocytes, also called White Blood Cells (WBCs) or leucocytes, are the cells that play a pivotal role in human health and are vital indicators of diseases such as malaria, leukemia, AIDS, and other viral infections. WBCs detection and classification in blood smears offers insights to pathologists, aiding diagnosis across medical conditions. Traditional techniques, including manual counting, detection, classification, and visual inspection of microscopic images by medical professionals, pose challenges due to their labor-intensive nature. However, traditional methods are time consuming and sometimes susceptible to errors. Here, we propose a high-performance convolutional neural network (CNN) coupled with a dual-attention network that efficiently detects and classifies WBCs in microscopic thick smear images. The main aim of this study was to enhance clinical hematology systems and expedite medical diagnostic processes. In the proposed technique, we utilized a deep convolutional generative adversarial network (DCGAN) to overcome the limitations imposed by limited training data and employed a dual attention mechanism to improve accuracy, efficiency, and generalization. The proposed technique achieved overall accuracy rates of 99.83%, 99.35%, and 99.60% for the peripheral blood cell (PBC), leukocyte images for segmentation and classification (LISC), and Raabin-WBC benchmark datasets, respectively. Our proposed approach outperforms state-of-the-art methods in terms of accuracy, highlighting the effectiveness of the strategies employed and their potential to enhance diagnostic capabilities and advance real-world healthcare practices and diagnostic systems.