Caracterización de la calidad de la energía de un sistema eléctrico industrial con cargas eléctricas variables no Lineales

In the present study, the characterization of the quality of the energy of an electrical system of an industry specialized in metalworking with non-linear variable electrical loads is carried out, for the identification of problems that affect the operation of the equipment. The study was based on t...

Full description

Autores:
Guzmán Muñoz, Juan
Ortega Bolaños, Ramiro Hernán
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7495
Acceso en línea:
https://hdl.handle.net/11323/7495
https://repositorio.cuc.edu.co/
Palabra clave:
Harmonics
Power quality
Non-linear loads
Variable loads
Industrial electrical systems
Armónicos
Calidad de la energía
Cargas no lineales
Cargas variables
Sistemas eléctricos industriales
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_1c96b78e3c73a80fba98bcd8cfd6a57e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7495
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Caracterización de la calidad de la energía de un sistema eléctrico industrial con cargas eléctricas variables no Lineales
title Caracterización de la calidad de la energía de un sistema eléctrico industrial con cargas eléctricas variables no Lineales
spellingShingle Caracterización de la calidad de la energía de un sistema eléctrico industrial con cargas eléctricas variables no Lineales
Harmonics
Power quality
Non-linear loads
Variable loads
Industrial electrical systems
Armónicos
Calidad de la energía
Cargas no lineales
Cargas variables
Sistemas eléctricos industriales
title_short Caracterización de la calidad de la energía de un sistema eléctrico industrial con cargas eléctricas variables no Lineales
title_full Caracterización de la calidad de la energía de un sistema eléctrico industrial con cargas eléctricas variables no Lineales
title_fullStr Caracterización de la calidad de la energía de un sistema eléctrico industrial con cargas eléctricas variables no Lineales
title_full_unstemmed Caracterización de la calidad de la energía de un sistema eléctrico industrial con cargas eléctricas variables no Lineales
title_sort Caracterización de la calidad de la energía de un sistema eléctrico industrial con cargas eléctricas variables no Lineales
dc.creator.fl_str_mv Guzmán Muñoz, Juan
Ortega Bolaños, Ramiro Hernán
dc.contributor.advisor.spa.fl_str_mv Sousa Santos, Vladimir
Noriega Angarita, Eliana
dc.contributor.author.spa.fl_str_mv Guzmán Muñoz, Juan
Ortega Bolaños, Ramiro Hernán
dc.subject.spa.fl_str_mv Harmonics
Power quality
Non-linear loads
Variable loads
Industrial electrical systems
Armónicos
Calidad de la energía
Cargas no lineales
Cargas variables
Sistemas eléctricos industriales
topic Harmonics
Power quality
Non-linear loads
Variable loads
Industrial electrical systems
Armónicos
Calidad de la energía
Cargas no lineales
Cargas variables
Sistemas eléctricos industriales
description In the present study, the characterization of the quality of the energy of an electrical system of an industry specialized in metalworking with non-linear variable electrical loads is carried out, for the identification of problems that affect the operation of the equipment. The study was based on the implementation of sequential steps based on the characteristics of the electrical system and the requirements of power quality standards. Measurements were made in the transformer of the common connection point and in the twelve distribution transformers of the plant with class A network analyzers. As a result of the study, problems of voltage variation and power factor were identified in all transformers, and it was shown that in 11 distribution transformers, there are non-conformities in relation to the limits of total distortion of current demand. It was possible to show that the individual harmonic of the fifth order current (negative sequence) predominated in six transformers, the individual harmonics of the seventh order current (positive sequence) predominated in five transformers, and the individual harmonics of the third order current (zero sequence).), were the most recurrent in a transformer.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-25T20:07:27Z
dc.date.available.none.fl_str_mv 2020-11-25T20:07:27Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7495
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7495
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv AESoluciones. (2014). AESoAESoluciones. 2014. “AESoluciones. 2014. ‘Los Efectos De Los Armónicos Y Sus Soluciones.’ : 10. Aesoluciones@aes.Com.Los Efectos De Los Armónicos Y Sus Soluciones.” : 10. aesoluciones@aes.com.luciones. 2014. “Los Efectos De Los Armónicos Y Sus Solucio. 10. aesoluciones@aes.com
Aramwanid, P., & Boonyaroonate, I. (2015). Power quality impact study and analysis of electrical power efficacy in sugar industry. ECTI-CON 2015 - 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 9–12. https://doi.org/10.1109/ECTICon.2015.7206958
Bhagavathy, P., Latha, R., & Elango, S. (2018). A Case Study on the Impact of Power Quality Analysis in Textile Industry. 2018 13th International Conference on Industrial and Information Systems, ICIIS 2018 - Proceedings, 978, 453–456. https://doi.org/10.1109/ICIINFS.2018.8721407
Bishop, M. T. (1996). Evaluating harmonic-induced transformer heating. IEEE Power Engineering Review, 16(1), 56–57.
Boonseng, C., Chompoo-inwai, C., Kinnares, V., Nakawiwat, K., & Apiratikul, P. (2001). Failure analysis of dielectric of low voltage power capacitors due to related harmonic resonance effects. Proceedings Second International Conference on Properties and Applications, 3, 1003–1008.
Carrera, E., & Ordoñez, F. (2011). Análisis De Calidad De Energía En Tagsa.
Cervantes, O. (2014). METODOLOGÍA DE MEDICIÓN DE CALIDAD DE ENERGÍA ELÉCTRICA EN BASE A NORMAS NACIONALES E INTERNACIONALES PARA LA UNIVERSIDAD DE LA COSTA - CUC (Vol. 1, Issue 4).
Chen, W., & Cheng, Z. (1988). An experimental study of the damaging effects of harmonics in power networks on the capacitor dielectrics. Proceedings Second International Conference on Properties and Applications, 2, . 645-648.
Choi, W., Lee, W., Han, D., & Sarlioglu, B. (2018). New Configuration of Multifunctional Grid- Connected Inverter to Improve Both Current-Based and Voltage-Based Power Quality. IEEE Transactions on Industry Applications, 54(6), 6374–6382. https://doi.org/10.1109/TIA.2018.2861737
Churio Silvera, O., Vanegas Chamorro, M., & Valencia Ochoa, G. (2018). Estudio y diagnóstico de la calidad de la energía de un campus universitario en la costa norte de Colombia. AVANCES: Investigación En Ingeniería, 15(1), 271–285. https://doi.org/10.18041/1794- 4953/avances.1.4739
Committee, D., Power, I., & Society, E. (2009). IEEE Std 1159 - IEEE Recommended Practice for Monitoring Electric Power Quality. IEEE Std 1159-2009 (Revision of IEEE Std 1159-1995), 2009(June), 1–81. https://doi.org/10.1109/IEEESTD.2009.5154067
Committee, D., Power, I., & Society, E. (2014). IEEE Std 519 - IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems IEEE Power and Energy Society Sponsored by the Transmission and Distribution Committee I. 2014. https://doi.org/10.1109/IEEESTD.2014.6826459
Committee, T., & Society, I. P. E. (1986). An American National Standard IEEE Recommended Practice for Establishing Transformer Capability When Supplying Nonsinusoidal Load Currents. ANSI/IEEE Std C57.110-1986, December, 0_1. https://doi.org/10.1109/IEEESTD.1988.81682
CREG. (2018). Metodología para la remuneración de la actividad de distribución de energía electrica en el Sistema Interconectado Nacional. In Resolución 015 (p. 239). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/65f1aaf1d5772 6a90525822900064dac?OpenDocument
De Abreu, J. P. G., & Emanuel, A. E. (2002). Induction motor thermal aging caused by voltage distortion and imbalance: Loss of useful life and its estimated cost. IEEE Transactions on Industry Applications, 38(1), 12–20. https://doi.org/10.1109/28.980339
Digalovski, M., Najdenkoski, K., & Rafajlovski, G. (2013). Impact of current high order harmonic to core losses of three-phase distribution transformer. IEEE EuroCon 2013, July, 1531– 1535. https://doi.org/10.1109/EUROCON.2013.6625181
Donolo, P., Bosio, G., De Angelo, C., Castellino, A., & Garcia, G. (2016). Effects of voltage unbalance on IM power, torque and vibrations. 140, 866–873.
Dranetz. (2020). Dranetz HDPQ Visa Plus.
Enríquez Harper, G. (2013). EL ABC de la calidad de la ENERGIA ELECTRICA. In Profesor titular de la ESIME-IPN (Vol. 0). https://doi.org/10.1017/CBO9781107415324.004
ICONTEC. (2008). NTC 5001: Calidad de la potencia eléctrica. Límites y metodología de evaluación en punto de conexión común (Issue 571).
ICONTEC. (2013). NTC 1340: Electrotecnia. Tensiones y frecuencia nominales en sistemas de energía eléctrica en redes de servicio público (Issue 571).
IEC. (2015). Electromagnetic compatibility (EMC) – Part 4-30: Testing and measurement techniques – Power quality measurement methods.
Inan, A., & Attar, F. (2000). Life Expectancy Analysis for an Electric Motor. Proceedings Electrotechnical Conference, 2, 997–999.
Ingale, V. P., Jadhav, A. D., Takawale, N. K., & Mangate, S. D. (2018). Power Quality Analysis for Sugar Industry with Cogeneration. Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018, Icicct, 776–781. https://doi.org/10.1109/ICICCT.2018.8472949
Jafari Aghbolaghi, A., Mahdavi Tabatabaei, N., Boushehri, N. S., & Hojjati Parast, F. (2017). Reactive Power Control in AC Power Systems. In Power Systems (pp. 345–409). https://doi.org/10.1007/978-3-319-51118-4
Jasinski, M., Sikorski, T., & Borkowski, K. (2018). Clusteringa tool to support the assessment of power quality in electrical power networks with distributed generation in the mining industry. Electric Power Systems Research. https://doi.org/https://doi.org/10.101/j.epsr.2018.09.020
Jiménez, A. F. S. (2015). Guía metodológica para el análisis de hundimientos de tensión en el sistema de distribución de la CHEC.
Massey, G. W. (1994). Estimation Methods for Power System Harmonic Effects on Power Distribution Transformers. IEEE Transactions on Industry Applications, 30(2), 485–489. https://doi.org/10.1109/28.287505
Metrel, 2017. (2017). Calidad de la energía Análisis de potencia , armónicos y perturbaciones de red en sistemas trifásicos de distribución. 20. https://doi.org/20 750 958
Metrel d.d. (2020). MI 2892 Power Master Analizadores de la calidad de la energía.
Miguel Torres, Guianella Ibarra, E. B. (2004). ESCUELA SUPERIOR POLITECNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación.
Miron, A., Chindriş, M., & Cziker, A. (2012). Impact of unbalance in harmonic polluted power networks. SPEEDAM 2012 - 21st International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 674–678. https://doi.org/10.1109/SPEEDAM.2012.6264475
Monzón, M. (2013). Calidad De Suministro Eléctrico: Huecos De Tensión. Mitigación De Sus Efectos En Las Plantas Industriales.
Movahed, S. R., Oraee Mirzamani, S. H., Rajabi, A., & Daneshvar, H. (2010). Estimation of insulation life of inverter-fed induction motors. PEDSTC 2010 - 1st Power Electronics and Drive Systems and Technologies Conference, 335–339. https://doi.org/10.1109/PEDSTC.2010.5471797
Noriega, E., Cabello, J. J., Hernández, H., Sousa, V., Balbis, M., Silva, J. I., & Sagastume, A. (2019). Energy planning and management during battery manufacturing. Gestao e Producao, 26(4), 1–14. https://doi.org/10.1590/0104-530X3928-19
Nuñez, J. R., Pérez, Y., Benítez, I., & Noriega, E. (2021). Demilitarized network to secure the data stored in industrial networks. International Journal of Electrical and Computer Engineering, 11(1), 611–619. https://doi.org/10.11591/ijece.v11i1.pp611-619
Oraee, H. (2000). A quantative approach to estimate the life expectancy of motor insulation systems. IEEE Transactions on Dielectrics and Electrical Insulation, 7(6), 790–796. https://doi.org/10.1109/94.891990
Pierce, L. W. (1996). Transformer design and application considerations for nonsinusoidal load currents. IEEE Transactions on Industry Applications, 32(3), 633–645. https://doi.org/10.1109/28.502176
Raja, R., Yash, S., Shubham, S., Indragandhi, V., Vijayakmar, V., Saravanan, P., & Subramaniyaswamy, V. (2020). IoT embedded cloud-based intelligent power quality monitoring system for industrial drive application. www.elsevier.com/locaate/fgcs
Rajarajan, R., & Prakash, R. (2020). A reformed adaptive frequency passivness control for unified power quality compensator with model parametrer ability to improve power quality. Micropocessors and Microsystems. www.elsevier.com/locate/micpro
Rawa, M. J. H., Thomas, D. W. P., & Sumner, M. (2013). Power quality monitoring and simulation of a personal computer based on IEEE 1459-2010. IEEE International Symposium on Electromagnetic Compatibility, 671–675.
Rönnberg, S., & Bollen, M. (2016). Power quality issues in the electric power system of the future. Electricity Journal, 29(10), 49–61. https://doi.org/10.1016/j.tej.2016.11.006
Said, D. M., Nor, K. M., & Majid, M. S. (2010). Analysis of distribution transformer losses and life expectancy using measured harmonic data. ICHQP 2010 - 14th International Conference on Harmonics and Quality of Power, 0–5. https://doi.org/10.1109/ICHQP.2010.5625403
SECOVI. (2006). Estudio de Calidad de Energía ® SECOVI.
Shah, P., Hussain, I., Singh, B., Chandra, A., & Al-Haddad, K. (2019). GI-Based control scheme for single-stage grid interfaced SECS for power quality improvement. IEEE Transactions on Industry Applications, 55(1), 869–881. https://doi.org/10.1109/TIA.2018.2866375
Singh, G. K. (2005). A research survey of induction motor operation with non-sinusoidal supply wave forms. Power Generation and Propulsion, Electrical Vehicles, 75, (2 3). https://doi.org/10.1016/s0140-6701(03)80027-9
Souli, A., & Hellal, A. (2014). Design of a computer code to evaluate the influence of the harmonics in the Transient Stability studies of electrical networks. 2014 IEEE 11th International Multi-Conference on Systems, Signals and Devices, SSD 2014, 107–112. https://doi.org/10.1109/SSD.2014.6808804
Sousa, V., Herrera, H. H., Quispe, E. C., Viego, P. R., & Gómez, J. R. (2017). Harmonic distortion evaluation generated by PWM motor drives in electrical industrial systems. International Journal of Electrical and Computer Engineering, 7(6), 3207–3216. https://doi.org/10.11591/ijece.v7i6.pp3207-3216
Sousa, V., Viego, P., Gómez, J., Lemozy, N., Jurado, A., & Quispe, E. (2015). Procedure for determining induction motor efficiency working under distorted grid voltages. IEEE Transactions on Energy Conversion, 30(1), 331–339. https://doi.org/10.1109/TEC.2014.2335994
Strandt, A., Hu, J., & Wei, L. (2014). No-load power losses and motor overheating effects versus PWM switching frequencies. 3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014, 280–283. https://doi.org/10.1109/ICRERA.2014.7016570
Wang, Y., Bai, B., & Liu, W. F. (2014). Research on discharging bearing currents of PWM inverter-fed variable frequency induction motor. 2014 17th International Conference on Electrical Machines and Systems, ICEMS 2014, 2945–2949. https://doi.org/10.1109/ICEMS.2014.7014000
Wang, Y., Liu, W., Chen, Z., & Bai, B. (2014). Calculation of high frequency bearing currents of PWM inverter-fed VF induction motor. Proceedings - 2014 International Power Electronics and Application Conference and Exposition, IEEE PEAC 2014, 51277122, 1428–1433. https://doi.org/10.1109/PEAC.2014.7038074
Yadav, J. R., Vasudevan, K., Kumar, D., & Shanmugam, P. (2019). Power quality assessment for industrial plants: A comparative study. Proceedings - 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering, CPE- POWERENG 2019. https://doi.org/10.1109/CPE.2019.8862321
Yaghoobi, J., Abdullah, A., Kumar, D., Zare, F., & Soltani, H. (2019). Power Quality Issues of Distorted and Weak Distribution Networks in Mining Industry: A Review. IEEE Access, 7, 162500–162518. https://doi.org/10.1109/ACCESS.2019.2950911
Zhu, B., Bai, B., & He, H. (2008). Effects of the inverter parameters on the eddy current losses in induction motor fed by PWM inverter. Proceedings of the 11th International Conference on Electrical Machines and Systems, ICEMS 2008, 1, 4240–4243.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.program.spa.fl_str_mv Ingeniería Eléctrica
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/0f440537-7cfc-43a7-9c8e-4d76081587f3/download
https://repositorio.cuc.edu.co/bitstreams/82dd480c-c33c-43cb-82d2-706fe5788d9b/download
https://repositorio.cuc.edu.co/bitstreams/55f947b2-b10f-47da-9288-633775c56510/download
https://repositorio.cuc.edu.co/bitstreams/6d09000e-3381-4e43-aaec-54280c0a99cb/download
https://repositorio.cuc.edu.co/bitstreams/4fca3be1-67b8-42e2-be9d-0c113877027a/download
bitstream.checksum.fl_str_mv 934f4ca17e109e0a05eaeaba504d7ce4
5dab80461e92dd44c854d0d4dbfb6c42
e30e9215131d99561d40d6b0abbe9bad
43762182775e592bb6b556ed21cc68aa
1b05f1d943c29680110756427c949676
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760783929901056
spelling Sousa Santos, VladimirNoriega Angarita, ElianaGuzmán Muñoz, JuanOrtega Bolaños, Ramiro Hernán2020-11-25T20:07:27Z2020-11-25T20:07:27Z2020https://hdl.handle.net/11323/7495Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In the present study, the characterization of the quality of the energy of an electrical system of an industry specialized in metalworking with non-linear variable electrical loads is carried out, for the identification of problems that affect the operation of the equipment. The study was based on the implementation of sequential steps based on the characteristics of the electrical system and the requirements of power quality standards. Measurements were made in the transformer of the common connection point and in the twelve distribution transformers of the plant with class A network analyzers. As a result of the study, problems of voltage variation and power factor were identified in all transformers, and it was shown that in 11 distribution transformers, there are non-conformities in relation to the limits of total distortion of current demand. It was possible to show that the individual harmonic of the fifth order current (negative sequence) predominated in six transformers, the individual harmonics of the seventh order current (positive sequence) predominated in five transformers, and the individual harmonics of the third order current (zero sequence).), were the most recurrent in a transformer.En el presente estudio, se realiza la caracterización de la calidad de la energía de un sistema eléctrico de una industria especializada en metalmecánica con cargas eléctricas variables no lineales, para la identificación de problemas que afectan la operación de los equipos. El estudio se basó en la implementación de unos pasos secuenciales basados en las características del sistema eléctrico y en los requerimientos de las normas de calidad de la energía. Se realizó mediciones en el transformador del punto de conexión común y en los doce transformadores de distribución de la planta con analizadores de redes de clase A. Como resultado del estudio, se identificaron problemas de variación de tensión y factor de potencia en todos los transformadores, y se pudo demostrar que, en 11 transformadores de distribución, existieron no conformidades en relación con los límites de distorsión total de demanda de corriente. Se pudo evidenciar que el armónico individual de corriente de quinto orden (secuencia negativa) predominó en seis transformadores, los armónicos individuales de corriente del séptimo orden (secuencia positiva) predominaron en cinco transformadores, y los armónicos individuales de corriente del tercer orden (secuencia cero), fueron los más recurrentes en un transformador.application/pdfspaCorporación Universidad de la CostaIngeniería EléctricaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2HarmonicsPower qualityNon-linear loadsVariable loadsIndustrial electrical systemsArmónicosCalidad de la energíaCargas no linealesCargas variablesSistemas eléctricos industrialesCaracterización de la calidad de la energía de un sistema eléctrico industrial con cargas eléctricas variables no LinealesTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionAESoluciones. (2014). AESoAESoluciones. 2014. “AESoluciones. 2014. ‘Los Efectos De Los Armónicos Y Sus Soluciones.’ : 10. Aesoluciones@aes.Com.Los Efectos De Los Armónicos Y Sus Soluciones.” : 10. aesoluciones@aes.com.luciones. 2014. “Los Efectos De Los Armónicos Y Sus Solucio. 10. aesoluciones@aes.comAramwanid, P., & Boonyaroonate, I. (2015). Power quality impact study and analysis of electrical power efficacy in sugar industry. ECTI-CON 2015 - 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 9–12. https://doi.org/10.1109/ECTICon.2015.7206958Bhagavathy, P., Latha, R., & Elango, S. (2018). A Case Study on the Impact of Power Quality Analysis in Textile Industry. 2018 13th International Conference on Industrial and Information Systems, ICIIS 2018 - Proceedings, 978, 453–456. https://doi.org/10.1109/ICIINFS.2018.8721407Bishop, M. T. (1996). Evaluating harmonic-induced transformer heating. IEEE Power Engineering Review, 16(1), 56–57.Boonseng, C., Chompoo-inwai, C., Kinnares, V., Nakawiwat, K., & Apiratikul, P. (2001). Failure analysis of dielectric of low voltage power capacitors due to related harmonic resonance effects. Proceedings Second International Conference on Properties and Applications, 3, 1003–1008.Carrera, E., & Ordoñez, F. (2011). Análisis De Calidad De Energía En Tagsa.Cervantes, O. (2014). METODOLOGÍA DE MEDICIÓN DE CALIDAD DE ENERGÍA ELÉCTRICA EN BASE A NORMAS NACIONALES E INTERNACIONALES PARA LA UNIVERSIDAD DE LA COSTA - CUC (Vol. 1, Issue 4).Chen, W., & Cheng, Z. (1988). An experimental study of the damaging effects of harmonics in power networks on the capacitor dielectrics. Proceedings Second International Conference on Properties and Applications, 2, . 645-648.Choi, W., Lee, W., Han, D., & Sarlioglu, B. (2018). New Configuration of Multifunctional Grid- Connected Inverter to Improve Both Current-Based and Voltage-Based Power Quality. IEEE Transactions on Industry Applications, 54(6), 6374–6382. https://doi.org/10.1109/TIA.2018.2861737Churio Silvera, O., Vanegas Chamorro, M., & Valencia Ochoa, G. (2018). Estudio y diagnóstico de la calidad de la energía de un campus universitario en la costa norte de Colombia. AVANCES: Investigación En Ingeniería, 15(1), 271–285. https://doi.org/10.18041/1794- 4953/avances.1.4739Committee, D., Power, I., & Society, E. (2009). IEEE Std 1159 - IEEE Recommended Practice for Monitoring Electric Power Quality. IEEE Std 1159-2009 (Revision of IEEE Std 1159-1995), 2009(June), 1–81. https://doi.org/10.1109/IEEESTD.2009.5154067Committee, D., Power, I., & Society, E. (2014). IEEE Std 519 - IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems IEEE Power and Energy Society Sponsored by the Transmission and Distribution Committee I. 2014. https://doi.org/10.1109/IEEESTD.2014.6826459Committee, T., & Society, I. P. E. (1986). An American National Standard IEEE Recommended Practice for Establishing Transformer Capability When Supplying Nonsinusoidal Load Currents. ANSI/IEEE Std C57.110-1986, December, 0_1. https://doi.org/10.1109/IEEESTD.1988.81682CREG. (2018). Metodología para la remuneración de la actividad de distribución de energía electrica en el Sistema Interconectado Nacional. In Resolución 015 (p. 239). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/65f1aaf1d5772 6a90525822900064dac?OpenDocumentDe Abreu, J. P. G., & Emanuel, A. E. (2002). Induction motor thermal aging caused by voltage distortion and imbalance: Loss of useful life and its estimated cost. IEEE Transactions on Industry Applications, 38(1), 12–20. https://doi.org/10.1109/28.980339Digalovski, M., Najdenkoski, K., & Rafajlovski, G. (2013). Impact of current high order harmonic to core losses of three-phase distribution transformer. IEEE EuroCon 2013, July, 1531– 1535. https://doi.org/10.1109/EUROCON.2013.6625181Donolo, P., Bosio, G., De Angelo, C., Castellino, A., & Garcia, G. (2016). Effects of voltage unbalance on IM power, torque and vibrations. 140, 866–873.Dranetz. (2020). Dranetz HDPQ Visa Plus.Enríquez Harper, G. (2013). EL ABC de la calidad de la ENERGIA ELECTRICA. In Profesor titular de la ESIME-IPN (Vol. 0). https://doi.org/10.1017/CBO9781107415324.004ICONTEC. (2008). NTC 5001: Calidad de la potencia eléctrica. Límites y metodología de evaluación en punto de conexión común (Issue 571).ICONTEC. (2013). NTC 1340: Electrotecnia. Tensiones y frecuencia nominales en sistemas de energía eléctrica en redes de servicio público (Issue 571).IEC. (2015). Electromagnetic compatibility (EMC) – Part 4-30: Testing and measurement techniques – Power quality measurement methods.Inan, A., & Attar, F. (2000). Life Expectancy Analysis for an Electric Motor. Proceedings Electrotechnical Conference, 2, 997–999.Ingale, V. P., Jadhav, A. D., Takawale, N. K., & Mangate, S. D. (2018). Power Quality Analysis for Sugar Industry with Cogeneration. Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018, Icicct, 776–781. https://doi.org/10.1109/ICICCT.2018.8472949Jafari Aghbolaghi, A., Mahdavi Tabatabaei, N., Boushehri, N. S., & Hojjati Parast, F. (2017). Reactive Power Control in AC Power Systems. In Power Systems (pp. 345–409). https://doi.org/10.1007/978-3-319-51118-4Jasinski, M., Sikorski, T., & Borkowski, K. (2018). Clusteringa tool to support the assessment of power quality in electrical power networks with distributed generation in the mining industry. Electric Power Systems Research. https://doi.org/https://doi.org/10.101/j.epsr.2018.09.020Jiménez, A. F. S. (2015). Guía metodológica para el análisis de hundimientos de tensión en el sistema de distribución de la CHEC.Massey, G. W. (1994). Estimation Methods for Power System Harmonic Effects on Power Distribution Transformers. IEEE Transactions on Industry Applications, 30(2), 485–489. https://doi.org/10.1109/28.287505Metrel, 2017. (2017). Calidad de la energía Análisis de potencia , armónicos y perturbaciones de red en sistemas trifásicos de distribución. 20. https://doi.org/20 750 958Metrel d.d. (2020). MI 2892 Power Master Analizadores de la calidad de la energía.Miguel Torres, Guianella Ibarra, E. B. (2004). ESCUELA SUPERIOR POLITECNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación.Miron, A., Chindriş, M., & Cziker, A. (2012). Impact of unbalance in harmonic polluted power networks. SPEEDAM 2012 - 21st International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 674–678. https://doi.org/10.1109/SPEEDAM.2012.6264475Monzón, M. (2013). Calidad De Suministro Eléctrico: Huecos De Tensión. Mitigación De Sus Efectos En Las Plantas Industriales.Movahed, S. R., Oraee Mirzamani, S. H., Rajabi, A., & Daneshvar, H. (2010). Estimation of insulation life of inverter-fed induction motors. PEDSTC 2010 - 1st Power Electronics and Drive Systems and Technologies Conference, 335–339. https://doi.org/10.1109/PEDSTC.2010.5471797Noriega, E., Cabello, J. J., Hernández, H., Sousa, V., Balbis, M., Silva, J. I., & Sagastume, A. (2019). Energy planning and management during battery manufacturing. Gestao e Producao, 26(4), 1–14. https://doi.org/10.1590/0104-530X3928-19Nuñez, J. R., Pérez, Y., Benítez, I., & Noriega, E. (2021). Demilitarized network to secure the data stored in industrial networks. International Journal of Electrical and Computer Engineering, 11(1), 611–619. https://doi.org/10.11591/ijece.v11i1.pp611-619Oraee, H. (2000). A quantative approach to estimate the life expectancy of motor insulation systems. IEEE Transactions on Dielectrics and Electrical Insulation, 7(6), 790–796. https://doi.org/10.1109/94.891990Pierce, L. W. (1996). Transformer design and application considerations for nonsinusoidal load currents. IEEE Transactions on Industry Applications, 32(3), 633–645. https://doi.org/10.1109/28.502176Raja, R., Yash, S., Shubham, S., Indragandhi, V., Vijayakmar, V., Saravanan, P., & Subramaniyaswamy, V. (2020). IoT embedded cloud-based intelligent power quality monitoring system for industrial drive application. www.elsevier.com/locaate/fgcsRajarajan, R., & Prakash, R. (2020). A reformed adaptive frequency passivness control for unified power quality compensator with model parametrer ability to improve power quality. Micropocessors and Microsystems. www.elsevier.com/locate/micproRawa, M. J. H., Thomas, D. W. P., & Sumner, M. (2013). Power quality monitoring and simulation of a personal computer based on IEEE 1459-2010. IEEE International Symposium on Electromagnetic Compatibility, 671–675.Rönnberg, S., & Bollen, M. (2016). Power quality issues in the electric power system of the future. Electricity Journal, 29(10), 49–61. https://doi.org/10.1016/j.tej.2016.11.006Said, D. M., Nor, K. M., & Majid, M. S. (2010). Analysis of distribution transformer losses and life expectancy using measured harmonic data. ICHQP 2010 - 14th International Conference on Harmonics and Quality of Power, 0–5. https://doi.org/10.1109/ICHQP.2010.5625403SECOVI. (2006). Estudio de Calidad de Energía ® SECOVI.Shah, P., Hussain, I., Singh, B., Chandra, A., & Al-Haddad, K. (2019). GI-Based control scheme for single-stage grid interfaced SECS for power quality improvement. IEEE Transactions on Industry Applications, 55(1), 869–881. https://doi.org/10.1109/TIA.2018.2866375Singh, G. K. (2005). A research survey of induction motor operation with non-sinusoidal supply wave forms. Power Generation and Propulsion, Electrical Vehicles, 75, (2 3). https://doi.org/10.1016/s0140-6701(03)80027-9Souli, A., & Hellal, A. (2014). Design of a computer code to evaluate the influence of the harmonics in the Transient Stability studies of electrical networks. 2014 IEEE 11th International Multi-Conference on Systems, Signals and Devices, SSD 2014, 107–112. https://doi.org/10.1109/SSD.2014.6808804Sousa, V., Herrera, H. H., Quispe, E. C., Viego, P. R., & Gómez, J. R. (2017). Harmonic distortion evaluation generated by PWM motor drives in electrical industrial systems. International Journal of Electrical and Computer Engineering, 7(6), 3207–3216. https://doi.org/10.11591/ijece.v7i6.pp3207-3216Sousa, V., Viego, P., Gómez, J., Lemozy, N., Jurado, A., & Quispe, E. (2015). Procedure for determining induction motor efficiency working under distorted grid voltages. IEEE Transactions on Energy Conversion, 30(1), 331–339. https://doi.org/10.1109/TEC.2014.2335994Strandt, A., Hu, J., & Wei, L. (2014). No-load power losses and motor overheating effects versus PWM switching frequencies. 3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014, 280–283. https://doi.org/10.1109/ICRERA.2014.7016570Wang, Y., Bai, B., & Liu, W. F. (2014). Research on discharging bearing currents of PWM inverter-fed variable frequency induction motor. 2014 17th International Conference on Electrical Machines and Systems, ICEMS 2014, 2945–2949. https://doi.org/10.1109/ICEMS.2014.7014000Wang, Y., Liu, W., Chen, Z., & Bai, B. (2014). Calculation of high frequency bearing currents of PWM inverter-fed VF induction motor. Proceedings - 2014 International Power Electronics and Application Conference and Exposition, IEEE PEAC 2014, 51277122, 1428–1433. https://doi.org/10.1109/PEAC.2014.7038074Yadav, J. R., Vasudevan, K., Kumar, D., & Shanmugam, P. (2019). Power quality assessment for industrial plants: A comparative study. Proceedings - 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering, CPE- POWERENG 2019. https://doi.org/10.1109/CPE.2019.8862321Yaghoobi, J., Abdullah, A., Kumar, D., Zare, F., & Soltani, H. (2019). Power Quality Issues of Distorted and Weak Distribution Networks in Mining Industry: A Review. IEEE Access, 7, 162500–162518. https://doi.org/10.1109/ACCESS.2019.2950911Zhu, B., Bai, B., & He, H. (2008). Effects of the inverter parameters on the eddy current losses in induction motor fed by PWM inverter. Proceedings of the 11th International Conference on Electrical Machines and Systems, ICEMS 2008, 1, 4240–4243.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/0f440537-7cfc-43a7-9c8e-4d76081587f3/download934f4ca17e109e0a05eaeaba504d7ce4MD52ORIGINALCARACTERIZACIÓN DE LA CALIDAD DE LA ENERGÍA DE UN SISTEMA ELÉCTRICO INDUSTRIAL CON CARGAS ELÉCTRICAS VARIABLES NO LINEALES.pdfCARACTERIZACIÓN DE LA CALIDAD DE LA ENERGÍA DE UN SISTEMA ELÉCTRICO INDUSTRIAL CON CARGAS ELÉCTRICAS VARIABLES NO LINEALES.pdfapplication/pdf2060730https://repositorio.cuc.edu.co/bitstreams/82dd480c-c33c-43cb-82d2-706fe5788d9b/download5dab80461e92dd44c854d0d4dbfb6c42MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/55f947b2-b10f-47da-9288-633775c56510/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILCARACTERIZACIÓN DE LA CALIDAD DE LA ENERGÍA DE UN SISTEMA ELÉCTRICO INDUSTRIAL CON CARGAS ELÉCTRICAS VARIABLES NO LINEALES.pdf.jpgCARACTERIZACIÓN DE LA CALIDAD DE LA ENERGÍA DE UN SISTEMA ELÉCTRICO INDUSTRIAL CON CARGAS ELÉCTRICAS VARIABLES NO LINEALES.pdf.jpgimage/jpeg27495https://repositorio.cuc.edu.co/bitstreams/6d09000e-3381-4e43-aaec-54280c0a99cb/download43762182775e592bb6b556ed21cc68aaMD54TEXTCARACTERIZACIÓN DE LA CALIDAD DE LA ENERGÍA DE UN SISTEMA ELÉCTRICO INDUSTRIAL CON CARGAS ELÉCTRICAS VARIABLES NO LINEALES.pdf.txtCARACTERIZACIÓN DE LA CALIDAD DE LA ENERGÍA DE UN SISTEMA ELÉCTRICO INDUSTRIAL CON CARGAS ELÉCTRICAS VARIABLES NO LINEALES.pdf.txttext/plain134458https://repositorio.cuc.edu.co/bitstreams/4fca3be1-67b8-42e2-be9d-0c113877027a/download1b05f1d943c29680110756427c949676MD5511323/7495oai:repositorio.cuc.edu.co:11323/74952024-09-17 11:08:23.314http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==