Modeling wind speed with a long-term horizon and high-time interval with a hybrid fourier-neural network model

The limited availability of local climatological stations and the limitations to predict the wind speed (WS) accurately are significant barriers to the expansion of wind energy (WE) projects worldwide. A methodology to forecast accurately the WS at the local scale can be used to overcome these barri...

Full description

Autores:
Rueda-Bayona, Juan Gabriel
Cabello Eras, Juan José
Sagastume, Alexis
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8574
Acceso en línea:
https://hdl.handle.net/11323/8574
https://doi.org/10.18280/mmep.080313
https://repositorio.cuc.edu.co/
Palabra clave:
Fourier analysis
Nonlinear autoregressive network
Wind potential
Reanalysis
Wind-speed
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_1b10dea44f40d1c618499088981ccf00
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8574
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Modeling wind speed with a long-term horizon and high-time interval with a hybrid fourier-neural network model
title Modeling wind speed with a long-term horizon and high-time interval with a hybrid fourier-neural network model
spellingShingle Modeling wind speed with a long-term horizon and high-time interval with a hybrid fourier-neural network model
Fourier analysis
Nonlinear autoregressive network
Wind potential
Reanalysis
Wind-speed
title_short Modeling wind speed with a long-term horizon and high-time interval with a hybrid fourier-neural network model
title_full Modeling wind speed with a long-term horizon and high-time interval with a hybrid fourier-neural network model
title_fullStr Modeling wind speed with a long-term horizon and high-time interval with a hybrid fourier-neural network model
title_full_unstemmed Modeling wind speed with a long-term horizon and high-time interval with a hybrid fourier-neural network model
title_sort Modeling wind speed with a long-term horizon and high-time interval with a hybrid fourier-neural network model
dc.creator.fl_str_mv Rueda-Bayona, Juan Gabriel
Cabello Eras, Juan José
Sagastume, Alexis
dc.contributor.author.spa.fl_str_mv Rueda-Bayona, Juan Gabriel
Cabello Eras, Juan José
Sagastume, Alexis
dc.subject.spa.fl_str_mv Fourier analysis
Nonlinear autoregressive network
Wind potential
Reanalysis
Wind-speed
topic Fourier analysis
Nonlinear autoregressive network
Wind potential
Reanalysis
Wind-speed
description The limited availability of local climatological stations and the limitations to predict the wind speed (WS) accurately are significant barriers to the expansion of wind energy (WE) projects worldwide. A methodology to forecast accurately the WS at the local scale can be used to overcome these barriers. This study proposes a methodology to forecast the WS with high-resolution and long-term horizons, which combines a Fourier model and a nonlinear autoregressive network (NAR). Given the nonlinearities of the WS variations, a NAR model is used to forecast the WS based on the variability identified with the Fourier analysis. The NAR modelled successfully 1.7 years of windspeed with 3 hours of the time interval, what may be considered the longest forecasting horizon with high resolution at the moment.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-23T13:31:27Z
dc.date.available.none.fl_str_mv 2021-08-23T13:31:27Z
dc.date.issued.none.fl_str_mv 2021-05-18
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2369-0739
2369-0747
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8574
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.18280/mmep.080313
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2369-0739
2369-0747
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8574
https://doi.org/10.18280/mmep.080313
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] British Petroleum, Statistical review of world energy, 2017. https://www.bp.com/content/dam/bp/businesssites/en/global/corporate/pdfs/news-and insights/speeches/bp-statistical-review-of-world-energy2017-lamar-mckay.pdf.
[2] IPCC, Climate Change 2014: Mitigation of climate change, 3. Cambridge University Press, 2014.
[3] Sawin, K., Sverrisson, J., Seyboth, F., Adib, K., Murdock, R., Lins, H.E., Satzinger, C. (2017). Renewables 2017 Global Status Report.
[4] International Energy Agency, Renewables 2017. Analysis and forecasts to 2022., 2017. https://www.iea.org/reports/renewables-2017.
[5] Alkhalidi, M.A., Al-Dabbous, S.K., Neelamani, S., Aldashti, H.A. (2019). Wind energy potential at coastal and offshore locations in the state of Kuwait. Renewable Energy, 135: 529-539. https://doi.org/10.1016/j.renene.2018.12.039
[6] Wiser, R., Bolinger, M., Heath, G., Keyser, D., Lantz, E., Macknick, J., Millstein, D. (2016). Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts. Applied Energy, 179: 146-158. https://doi.org/10.1016/j.apenergy.2016.06.123
[7] Saidur, R., Rahim, N.A., Islam, M.R., Solangi, K.H. (2011). Environmental impact of wind energy. Renewable and Sustainable Energy Reviews, 15(5): 2423-2430. https://doi.org/10.1016/j.rser.2011.02.024.
[8] Global Wind Energy Council, Global wind energy outlook 2016, 2016. https://gwec.net/global-windenergy-outlook-2016/.
[9] Rueda-Bayona, J.G., Guzmán, A., Eras, J.J.C., SilvaCasarín, R., Bastidas-Arteaga, E., Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220: 529-543. https://doi.org/10.1016/j.jclepro.2019.02.174
[10] Perez-Arriaga, I.J. (2011). Managing large scale penetration of intermittent renewables. In MITEI Symposium on Managing Large-Scale Penetration of Intermittent Renewables, Cambridge/USA, 20(4): 2011.
[11] Jiang, P., Li, C. (2018). Research and application of an innovative combined model based on a modified optimization algorithm for wind speed forecasting. Measurement, 124: 395-412. https://doi.org/10.1016/j.measurement.2018.04.014
[12] Sweeney, C., Bessa, R.J., Browell, J., Pinson, P. (2020). The future of forecasting for renewable energy. Wiley Interdisciplinary Reviews: Energy and Environment, 9(2): e365. https://doi.org/10.1002/wene.365
[13] Skittides, C., Früh, W.G. (2014). Wind forecasting using principal component analysis. Renewable Energy, 69: 365-374. https://doi.org/10.1016/j.renene.2014.03.068
[14] Kavasseri, R.G., Seetharaman, K. (2009). Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy, 34(5): 1388-1393. https://doi.org/10.1016/j.renene.2008.09.006
[15] Wang, J., Song, Y., Liu, F., Hou, R. (2016). Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models. Renewable and Sustainable Energy Reviews, 60: 960-981. https://doi.org/10.1016/j.rser.2016.01.114
[16] Jaramillo, O.A., Borja, M.A. (2004). Wind speed analysis in La Ventosa, Mexico: A bimodal probability distribution case. Renewable Energy, 29(10): 1613-1630. https://doi.org/10.1016/j.renene.2004.02.001
[17] Segura-Heras, I., Escrivá-Escrivá, G., Alcázar-Ortega, M. (2011). Wind farm electrical power production model for load flow analysis. Renewable Energy, 36(3): 1008-1013. https://doi.org/10.1016/j.renene.2010.09.007
[18] Wang, X., Guo, P., Huang, X. (2011). A review of wind power forecasting models. Energy procedia, 12: 770-778. https://doi.org/10.1016/j.egypro.2011.10.103
[19] Zhang, Y., Wang, J., Wang, X. (2014). Review on probabilistic forecasting of wind power generation. Renewable and Sustainable Energy Reviews, 32: 255-270. https://doi.org/10.1016/j.rser.2014.01.033
[20] Chang, W.Y. (2014). A literature review of wind forecasting methods. Journal of Power and Energy Engineering, 2(04): 161. https://doi.org/10.4236/jpee.2014.24023
[21] Guo, W., Wu, G., Liang, B., Xu, T., Chen, X., Yang, Z., Jiang, M. (2016). The influence of surface wave on water exchange in the Bohai Sea. Continental Shelf Research, 118: 128-142. https://doi.org/10.1016/j.csr.2016.02.019
[22] Fertig, E. (2019). Simulating subhourly variability of wind power output. Wind Energy, 22(10): 1275-1287. https://doi.org/10.1002/we.2354
[23] Duran, M.J., Cros, D., Riquelme, J. (2007). Short-term wind power forecast based on ARX models. Journal of Energy Engineering, 133(3): 172-180. https://doi.org/10.1061/(ASCE)0733- 9402(2007)133:3(172)
[24] Rueda-bayona, J.G., Cabello, J., Schneider, I. (2018). Wind-speed modelling using fourier analysis and nonlinear autoregressive neural network (NAR). In: F. Giannetti, B.F.; Almeida, C.M.V.B.; Agostinho (Ed.), Adv. Clean. Prod. Proc. 7th Int. Work., Barranquilla, pp. 1-198. http://www.advancesincleanerproduction.net/7th/files/se ssoes/6A/8/rueda-bayona_et_al_abstract.pdf (accessed April 8, 2020).
[25] Eras, J.J.C. (2019). A look to the electricity generation from non-conventional renewable energy sources in Colombia. Int. J. Energy Econ. Policy. 9: 15-25. https://doi.org/10.32479/ijeep.7108
[26] NOAA, NCEP North American Regional Reanalysis: NARR, (2016). http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html, accessed on Jan. 5, 2016.
[27] Soman, S.S., Zareipour, H., Malik, O., Mandal, P. (2010). A review of wind power and wind speed forecasting methods with different time horizons. In North American Power Symposium 2010: 1-8. https://doi.org/10.1109/NAPS.2010.5619586
[28] Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., Feitosa, E. (2008). A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews, 12(6): 1725-1744. https://doi.org/10.1016/j.rser.2007.01.015
[29] Liu, H., Duan, Z., Wu, H., Li, Y., Dong, S. (2019). Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network. Measurement, 148: 106971. https://doi.org/10.1016/j.measurement.2019.106971
[30] Wang, H.Z., Li, G.Q., Wang, G.B., Peng, J.C., Jiang, H., Liu, Y.T. (2017). Deep learning based ensemble approach for probabilistic wind power forecasting. Applied Energy, 188: 56-70. https://doi.org/10.1016/j.apenergy.2016.11.111
[31] Carvalho, D., Rocha, A., Santos, C.S., Pereira, R. (2013). Wind resource modelling in complex terrain using different mesoscale-microscale coupling techniques. Applied Energy, 108: 493-504. https://doi.org/10.1016/j.apenergy.2013.03.074
[32] Kotroni, V., Lagouvardos, K., Lykoudis, S. (2014). High-resolution model-based wind atlas for Greece. Renewable and Sustainable Energy Reviews, 30: 479-489. https://doi.org/10.1016/j.rser.2013.10.016
[33] Han, Q., Ma, S., Wang, T., Chu, F. (2019). Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China. Renewable and Sustainable Energy Reviews, 115: 109387. https://doi.org/10.1016/j.rser.2019.109387
[34] Masseran, N. (2016). Modeling the fluctuations of wind speed data by considering their mean and volatility effects. Renewable and Sustainable Energy Reviews, 54: 777-784. https://doi.org/10.1016/j.rser.2015.10.071
[35] Zhao, J., Guo, Z.H., Su, Z.Y., Zhao, Z.Y., Xiao, X., Liu, F. (2016). An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Applied Energy, 162: 808-826. https://doi.org/10.1016/j.apenergy.2015.10.145
[36] Dhiman, H.S., Deb, D., Guerrero, J.M. (2019). Hybrid machine intelligent SVR variants for wind forecasting and ramp events. Renewable and Sustainable Energy Reviews, 108: 369-379. https://doi.org/10.1016/j.rser.2019.04.002
[37] Dong, Q., Sun, Y., Li, P. (2017). A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China. Renewable Energy, 102: 241-257. https://doi.org/10.1016/j.renene.2016.10.030
[38] Ziel, F., Croonenbroeck, C., Ambach, D. (2016). Forecasting wind power–modeling periodic and nonlinear effects under conditional heteroscedasticity. Applied Energy, 177: 285-297. https://doi.org/10.1016/j.apenergy.2016.05.111
[39] Meng, A., Ge, J., Yin, H., Chen, S. (2016). Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Conversion and Management, 114: 75-88. https://doi.org/10.1016/j.enconman.2016.02.013
[40] Zjavka, L. (2015). Wind speed forecast correction models using polynomial neural networks. Renewable Energy, 83: 998-1006. https://doi.org/10.1016/j.renene.2015.04.054
[41] Santamaría-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C. (2016). Wind speed forecasting for wind farms: A method based on support vector regression. Renewable Energy, 85: 790-809. https://doi.org/10.1016/j.renene.2015.07.004
[42] Doucoure, B., Agbossou, K., Cardenas, A. (2016). Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data. Renewable Energy, 92: 202-211. https://doi.org/10.1016/j.renene.2016.02.003
[43] Zendehboudi, A., Baseer, M.A., Saidur, R. (2018). Application of support vector machine models for forecasting solar and wind energy resources: A review. Journal of Cleaner Production, 199: 272-285. https://doi.org/10.1016/j.jclepro.2018.07.164
[44] Barbounis, T.G., Theocharis, J.B. (2006). Locally rec urrent neural networks for long-term wind speed and power prediction. Neurocomputing, 69(4-6): 466-496. https://doi.org/10.1016/j.neucom.2005.02.003
[45] Amjady, N., Keynia, F., Zareipour, H. (2011). Short-term wind power forecasting using ridgelet neural network. Electric Power Systems Research, 81(12): 2099-2107. https://doi.org/10.1016/j.epsr.2011.08.007
[46] Blonbou, R. (2011). Very short-term wind power forecasting with neural networks and adaptive Bayesian learning. Renewable Energy, 36(3): 1118-1124. https://doi.org/10.1016/j.renene.2010.08.026
[47] Azad, H.B., Mekhilef, S., Ganapathy, V.G. (2014). Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Transactions on Sustainable Energy, 5(2): 546-553. https://doi.org/10.1109/TSTE.2014.2300150
[48] Xiao, L., Wang, J., Dong, Y., Wu, J. (2015). Combined forecasting models for wind energy forecasting: A case study in China. Renewable and Sustainable Energy Reviews, 44: 271-288. https://doi.org/10.1016/j.rser.2014.12.012
[49] Wang, J., Hu, J., Ma, K., Zhang, Y. (2015). A selfadaptive hybrid approach for wind speed forecasting. Renewable Energy, 78: 374-385. https://doi.org/10.1016/j.renene.2014.12.074
[50] Carpinone, A., Giorgio, M., Langella, R., Testa, A. (2015). Markov chain modeling for very-short-term wind power forecasting. Electric Power Systems Research, 122: 152-158. https://doi.org/10.1016/j.epsr.2014.12.025
[51] Liu, H., Tian, H.Q., Liang, X.F., Li, Y.F. (2015). Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Applied Energy, 157: 183-194. https://doi.org/10.1016/j.apenergy.2015.08.014
[52] Shrivastava, N.A., Lohia, K., Panigrahi, B.K. (2016). A multiobjective framework for wind speed prediction interval forecasts. Renewable Energy, 87: 903-910. https://doi.org/10.1016/j.renene.2015.08.038
[53] Zhao, Y., Ye, L., Li, Z., Song, X., Lang, Y., Su, J. (2016). A novel bidirectional mechanism based on time series model for wind power forecasting. Applied Energy, 177: 793-803. https://doi.org/10.1016/j.apenergy.2016.03.096
[54] Zhao, W., Wei, Y.M., Su, Z. (2016). One day ahead wind speed forecasting: A resampling-based approach. Applied Energy, 178: 886-901. https://doi.org/10.1016/j.apenergy.2016.06.098
[55] Zhang, C., Wei, H., Zhao, J., Liu, T., Zhu, T., Zhang, K. (2016). Short-term wind speed forecasting using empirical mode decomposition and feature selection. Renewable Energy, 96: 727-737. https://doi.org/10.1016/j.renene.2016.05.023
[56] Wang, S., Zhang, N., Wu, L., Wang, Y. (2016). Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renewable Energy, 94: 629-636. https://doi.org/10.1016/j.renene.2016.03.103
[57] Lydia, M., Kumar, S.S., Selvakumar, A.I., Kumar, G.E. P. (2016). Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Conversion and Management, 112: 115-124. https://doi.org/10.1016/j.enconman.2016.01.007
[58] Jiang, P., Li, P. (2017). Research and application of a new hybrid wind speed forecasting model on BSO algorithm. Journal of Energy Engineering, 143(1): 04016019. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000362
[59] Beale, M., Hagan, M., Demuth, H. (2020). Deep Learning Toolbox™ Getting Started Guide. The MathWorks. Inc.: Natick, MA, USA.
[60] Rockmore, D.N. (2000). The FFT: An algorithm the whole family can use. Computing in Science & Engineering, 2(1): 60-64. https://doi.org/10.1109/5992.814659
[61] Chu, E., George, A. (1999). Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms. CRC Press.
[62] Rueda Bayona, J.G., Elles Pérez, C.J., Sánchez Cotte, E.H., González Ariza, Á.L., Rivillas Ospina, G.D. (2016). Identificación de patrones de variabilidad climática a partir de análisis de componentes principales, Fourier y clúster k-medias. Tecnura, 20(50): 55-68. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a04
[63] Brigham, E. (1988). Fast Fourier Transform and Its Applications.
[64] Zonst, A. (2000). Understanding the FFT, 2nd ed., 2000.
[65] Hewitt, E., Hewitt, R. (1979). Archive for History of Exact Sciences: An Episode in Fourier Analysis.
[66] Rasmussen, H.O. (1993). The wavelet Gibbs phenomenon. Wavelets, Fractals, and Fourier Transforms (M. Farge, JCR Hunt, and JC Vassilicos, eds.), 123-142.
[67] Kelly, S. (1995). Gibbs Phenomenon for Wavelets: Applied and Computational Harmonic Analysis, 1st ed., 1995.
[68] Chan, R.W., Yuen, J.K., Lee, E.W., Arashpour, M. (2015). Application of Nonlinear-AutoregressiveExogenous model to predict the hysteretic behaviour of passive control systems. Engineering Structures, 85: 1- 10. https://doi.org/10.1016/j.engstruct.2014.12.007
[69] Widrow, B., Hoff, M.E. (1989). Adaptive switching circuits, in: Wescon Conf. Rec., 1989.
[70] NOAA, NCEP North American Regional Reanalysis: NARR, (2016).
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Mathematical Modelling of Engineering Problems
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.iieta.org/journals/mmep/paper/10.18280/mmep.080313
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f69ff001-4ea6-4574-baea-c90c34b39e4b/download
https://repositorio.cuc.edu.co/bitstreams/fef888df-5bc0-441a-8292-c94b4ff1c2bc/download
https://repositorio.cuc.edu.co/bitstreams/62a09d0c-be90-4a2c-97fd-7204c290ffc6/download
https://repositorio.cuc.edu.co/bitstreams/fad603d9-8d34-494a-ab29-976bad12dff0/download
https://repositorio.cuc.edu.co/bitstreams/257f0775-a403-4b1e-9dba-db97bfe3c0e6/download
bitstream.checksum.fl_str_mv 11bc5f51b72cf49694b27b4da6eddc70
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
d90f08cb14b1c49c03a390d1b2002ba6
ff5611a797431e3227be4d3c157f621b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760755400245248
spelling Rueda-Bayona, Juan GabrielCabello Eras, Juan JoséSagastume, Alexis2021-08-23T13:31:27Z2021-08-23T13:31:27Z2021-05-182369-07392369-0747https://hdl.handle.net/11323/8574https://doi.org/10.18280/mmep.080313Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The limited availability of local climatological stations and the limitations to predict the wind speed (WS) accurately are significant barriers to the expansion of wind energy (WE) projects worldwide. A methodology to forecast accurately the WS at the local scale can be used to overcome these barriers. This study proposes a methodology to forecast the WS with high-resolution and long-term horizons, which combines a Fourier model and a nonlinear autoregressive network (NAR). Given the nonlinearities of the WS variations, a NAR model is used to forecast the WS based on the variability identified with the Fourier analysis. The NAR modelled successfully 1.7 years of windspeed with 3 hours of the time interval, what may be considered the longest forecasting horizon with high resolution at the moment.Rueda-Bayona, Juan Gabriel-will be generated-orcid-0000-0003-3806-2058-600Cabello Eras, Juan José-will be generated-orcid-0000-0003-0949-0862-600Sagastume, Alexis-will be generated-orcid-0000-0003-0188-7101-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mathematical Modelling of Engineering Problemshttps://www.iieta.org/journals/mmep/paper/10.18280/mmep.080313Fourier analysisNonlinear autoregressive networkWind potentialReanalysisWind-speedModeling wind speed with a long-term horizon and high-time interval with a hybrid fourier-neural network modelArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] British Petroleum, Statistical review of world energy, 2017. https://www.bp.com/content/dam/bp/businesssites/en/global/corporate/pdfs/news-and insights/speeches/bp-statistical-review-of-world-energy2017-lamar-mckay.pdf.[2] IPCC, Climate Change 2014: Mitigation of climate change, 3. Cambridge University Press, 2014.[3] Sawin, K., Sverrisson, J., Seyboth, F., Adib, K., Murdock, R., Lins, H.E., Satzinger, C. (2017). Renewables 2017 Global Status Report.[4] International Energy Agency, Renewables 2017. Analysis and forecasts to 2022., 2017. https://www.iea.org/reports/renewables-2017.[5] Alkhalidi, M.A., Al-Dabbous, S.K., Neelamani, S., Aldashti, H.A. (2019). Wind energy potential at coastal and offshore locations in the state of Kuwait. Renewable Energy, 135: 529-539. https://doi.org/10.1016/j.renene.2018.12.039[6] Wiser, R., Bolinger, M., Heath, G., Keyser, D., Lantz, E., Macknick, J., Millstein, D. (2016). Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts. Applied Energy, 179: 146-158. https://doi.org/10.1016/j.apenergy.2016.06.123[7] Saidur, R., Rahim, N.A., Islam, M.R., Solangi, K.H. (2011). Environmental impact of wind energy. Renewable and Sustainable Energy Reviews, 15(5): 2423-2430. https://doi.org/10.1016/j.rser.2011.02.024.[8] Global Wind Energy Council, Global wind energy outlook 2016, 2016. https://gwec.net/global-windenergy-outlook-2016/.[9] Rueda-Bayona, J.G., Guzmán, A., Eras, J.J.C., SilvaCasarín, R., Bastidas-Arteaga, E., Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220: 529-543. https://doi.org/10.1016/j.jclepro.2019.02.174[10] Perez-Arriaga, I.J. (2011). Managing large scale penetration of intermittent renewables. In MITEI Symposium on Managing Large-Scale Penetration of Intermittent Renewables, Cambridge/USA, 20(4): 2011.[11] Jiang, P., Li, C. (2018). Research and application of an innovative combined model based on a modified optimization algorithm for wind speed forecasting. Measurement, 124: 395-412. https://doi.org/10.1016/j.measurement.2018.04.014[12] Sweeney, C., Bessa, R.J., Browell, J., Pinson, P. (2020). The future of forecasting for renewable energy. Wiley Interdisciplinary Reviews: Energy and Environment, 9(2): e365. https://doi.org/10.1002/wene.365[13] Skittides, C., Früh, W.G. (2014). Wind forecasting using principal component analysis. Renewable Energy, 69: 365-374. https://doi.org/10.1016/j.renene.2014.03.068[14] Kavasseri, R.G., Seetharaman, K. (2009). Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy, 34(5): 1388-1393. https://doi.org/10.1016/j.renene.2008.09.006[15] Wang, J., Song, Y., Liu, F., Hou, R. (2016). Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models. Renewable and Sustainable Energy Reviews, 60: 960-981. https://doi.org/10.1016/j.rser.2016.01.114[16] Jaramillo, O.A., Borja, M.A. (2004). Wind speed analysis in La Ventosa, Mexico: A bimodal probability distribution case. Renewable Energy, 29(10): 1613-1630. https://doi.org/10.1016/j.renene.2004.02.001[17] Segura-Heras, I., Escrivá-Escrivá, G., Alcázar-Ortega, M. (2011). Wind farm electrical power production model for load flow analysis. Renewable Energy, 36(3): 1008-1013. https://doi.org/10.1016/j.renene.2010.09.007[18] Wang, X., Guo, P., Huang, X. (2011). A review of wind power forecasting models. Energy procedia, 12: 770-778. https://doi.org/10.1016/j.egypro.2011.10.103[19] Zhang, Y., Wang, J., Wang, X. (2014). Review on probabilistic forecasting of wind power generation. Renewable and Sustainable Energy Reviews, 32: 255-270. https://doi.org/10.1016/j.rser.2014.01.033[20] Chang, W.Y. (2014). A literature review of wind forecasting methods. Journal of Power and Energy Engineering, 2(04): 161. https://doi.org/10.4236/jpee.2014.24023[21] Guo, W., Wu, G., Liang, B., Xu, T., Chen, X., Yang, Z., Jiang, M. (2016). The influence of surface wave on water exchange in the Bohai Sea. Continental Shelf Research, 118: 128-142. https://doi.org/10.1016/j.csr.2016.02.019[22] Fertig, E. (2019). Simulating subhourly variability of wind power output. Wind Energy, 22(10): 1275-1287. https://doi.org/10.1002/we.2354[23] Duran, M.J., Cros, D., Riquelme, J. (2007). Short-term wind power forecast based on ARX models. Journal of Energy Engineering, 133(3): 172-180. https://doi.org/10.1061/(ASCE)0733- 9402(2007)133:3(172)[24] Rueda-bayona, J.G., Cabello, J., Schneider, I. (2018). Wind-speed modelling using fourier analysis and nonlinear autoregressive neural network (NAR). In: F. Giannetti, B.F.; Almeida, C.M.V.B.; Agostinho (Ed.), Adv. Clean. Prod. Proc. 7th Int. Work., Barranquilla, pp. 1-198. http://www.advancesincleanerproduction.net/7th/files/se ssoes/6A/8/rueda-bayona_et_al_abstract.pdf (accessed April 8, 2020).[25] Eras, J.J.C. (2019). A look to the electricity generation from non-conventional renewable energy sources in Colombia. Int. J. Energy Econ. Policy. 9: 15-25. https://doi.org/10.32479/ijeep.7108[26] NOAA, NCEP North American Regional Reanalysis: NARR, (2016). http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html, accessed on Jan. 5, 2016.[27] Soman, S.S., Zareipour, H., Malik, O., Mandal, P. (2010). A review of wind power and wind speed forecasting methods with different time horizons. In North American Power Symposium 2010: 1-8. https://doi.org/10.1109/NAPS.2010.5619586[28] Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., Feitosa, E. (2008). A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews, 12(6): 1725-1744. https://doi.org/10.1016/j.rser.2007.01.015[29] Liu, H., Duan, Z., Wu, H., Li, Y., Dong, S. (2019). Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network. Measurement, 148: 106971. https://doi.org/10.1016/j.measurement.2019.106971[30] Wang, H.Z., Li, G.Q., Wang, G.B., Peng, J.C., Jiang, H., Liu, Y.T. (2017). Deep learning based ensemble approach for probabilistic wind power forecasting. Applied Energy, 188: 56-70. https://doi.org/10.1016/j.apenergy.2016.11.111[31] Carvalho, D., Rocha, A., Santos, C.S., Pereira, R. (2013). Wind resource modelling in complex terrain using different mesoscale-microscale coupling techniques. Applied Energy, 108: 493-504. https://doi.org/10.1016/j.apenergy.2013.03.074[32] Kotroni, V., Lagouvardos, K., Lykoudis, S. (2014). High-resolution model-based wind atlas for Greece. Renewable and Sustainable Energy Reviews, 30: 479-489. https://doi.org/10.1016/j.rser.2013.10.016[33] Han, Q., Ma, S., Wang, T., Chu, F. (2019). Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China. Renewable and Sustainable Energy Reviews, 115: 109387. https://doi.org/10.1016/j.rser.2019.109387[34] Masseran, N. (2016). Modeling the fluctuations of wind speed data by considering their mean and volatility effects. Renewable and Sustainable Energy Reviews, 54: 777-784. https://doi.org/10.1016/j.rser.2015.10.071[35] Zhao, J., Guo, Z.H., Su, Z.Y., Zhao, Z.Y., Xiao, X., Liu, F. (2016). An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Applied Energy, 162: 808-826. https://doi.org/10.1016/j.apenergy.2015.10.145[36] Dhiman, H.S., Deb, D., Guerrero, J.M. (2019). Hybrid machine intelligent SVR variants for wind forecasting and ramp events. Renewable and Sustainable Energy Reviews, 108: 369-379. https://doi.org/10.1016/j.rser.2019.04.002[37] Dong, Q., Sun, Y., Li, P. (2017). A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China. Renewable Energy, 102: 241-257. https://doi.org/10.1016/j.renene.2016.10.030[38] Ziel, F., Croonenbroeck, C., Ambach, D. (2016). Forecasting wind power–modeling periodic and nonlinear effects under conditional heteroscedasticity. Applied Energy, 177: 285-297. https://doi.org/10.1016/j.apenergy.2016.05.111[39] Meng, A., Ge, J., Yin, H., Chen, S. (2016). Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Conversion and Management, 114: 75-88. https://doi.org/10.1016/j.enconman.2016.02.013[40] Zjavka, L. (2015). Wind speed forecast correction models using polynomial neural networks. Renewable Energy, 83: 998-1006. https://doi.org/10.1016/j.renene.2015.04.054[41] Santamaría-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C. (2016). Wind speed forecasting for wind farms: A method based on support vector regression. Renewable Energy, 85: 790-809. https://doi.org/10.1016/j.renene.2015.07.004[42] Doucoure, B., Agbossou, K., Cardenas, A. (2016). Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data. Renewable Energy, 92: 202-211. https://doi.org/10.1016/j.renene.2016.02.003[43] Zendehboudi, A., Baseer, M.A., Saidur, R. (2018). Application of support vector machine models for forecasting solar and wind energy resources: A review. Journal of Cleaner Production, 199: 272-285. https://doi.org/10.1016/j.jclepro.2018.07.164[44] Barbounis, T.G., Theocharis, J.B. (2006). Locally rec urrent neural networks for long-term wind speed and power prediction. Neurocomputing, 69(4-6): 466-496. https://doi.org/10.1016/j.neucom.2005.02.003[45] Amjady, N., Keynia, F., Zareipour, H. (2011). Short-term wind power forecasting using ridgelet neural network. Electric Power Systems Research, 81(12): 2099-2107. https://doi.org/10.1016/j.epsr.2011.08.007[46] Blonbou, R. (2011). Very short-term wind power forecasting with neural networks and adaptive Bayesian learning. Renewable Energy, 36(3): 1118-1124. https://doi.org/10.1016/j.renene.2010.08.026[47] Azad, H.B., Mekhilef, S., Ganapathy, V.G. (2014). Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Transactions on Sustainable Energy, 5(2): 546-553. https://doi.org/10.1109/TSTE.2014.2300150[48] Xiao, L., Wang, J., Dong, Y., Wu, J. (2015). Combined forecasting models for wind energy forecasting: A case study in China. Renewable and Sustainable Energy Reviews, 44: 271-288. https://doi.org/10.1016/j.rser.2014.12.012[49] Wang, J., Hu, J., Ma, K., Zhang, Y. (2015). A selfadaptive hybrid approach for wind speed forecasting. Renewable Energy, 78: 374-385. https://doi.org/10.1016/j.renene.2014.12.074[50] Carpinone, A., Giorgio, M., Langella, R., Testa, A. (2015). Markov chain modeling for very-short-term wind power forecasting. Electric Power Systems Research, 122: 152-158. https://doi.org/10.1016/j.epsr.2014.12.025[51] Liu, H., Tian, H.Q., Liang, X.F., Li, Y.F. (2015). Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Applied Energy, 157: 183-194. https://doi.org/10.1016/j.apenergy.2015.08.014[52] Shrivastava, N.A., Lohia, K., Panigrahi, B.K. (2016). A multiobjective framework for wind speed prediction interval forecasts. Renewable Energy, 87: 903-910. https://doi.org/10.1016/j.renene.2015.08.038[53] Zhao, Y., Ye, L., Li, Z., Song, X., Lang, Y., Su, J. (2016). A novel bidirectional mechanism based on time series model for wind power forecasting. Applied Energy, 177: 793-803. https://doi.org/10.1016/j.apenergy.2016.03.096[54] Zhao, W., Wei, Y.M., Su, Z. (2016). One day ahead wind speed forecasting: A resampling-based approach. Applied Energy, 178: 886-901. https://doi.org/10.1016/j.apenergy.2016.06.098[55] Zhang, C., Wei, H., Zhao, J., Liu, T., Zhu, T., Zhang, K. (2016). Short-term wind speed forecasting using empirical mode decomposition and feature selection. Renewable Energy, 96: 727-737. https://doi.org/10.1016/j.renene.2016.05.023[56] Wang, S., Zhang, N., Wu, L., Wang, Y. (2016). Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renewable Energy, 94: 629-636. https://doi.org/10.1016/j.renene.2016.03.103[57] Lydia, M., Kumar, S.S., Selvakumar, A.I., Kumar, G.E. P. (2016). Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Conversion and Management, 112: 115-124. https://doi.org/10.1016/j.enconman.2016.01.007[58] Jiang, P., Li, P. (2017). Research and application of a new hybrid wind speed forecasting model on BSO algorithm. Journal of Energy Engineering, 143(1): 04016019. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000362[59] Beale, M., Hagan, M., Demuth, H. (2020). Deep Learning Toolbox™ Getting Started Guide. The MathWorks. Inc.: Natick, MA, USA.[60] Rockmore, D.N. (2000). The FFT: An algorithm the whole family can use. Computing in Science & Engineering, 2(1): 60-64. https://doi.org/10.1109/5992.814659[61] Chu, E., George, A. (1999). Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms. CRC Press.[62] Rueda Bayona, J.G., Elles Pérez, C.J., Sánchez Cotte, E.H., González Ariza, Á.L., Rivillas Ospina, G.D. (2016). Identificación de patrones de variabilidad climática a partir de análisis de componentes principales, Fourier y clúster k-medias. Tecnura, 20(50): 55-68. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a04[63] Brigham, E. (1988). Fast Fourier Transform and Its Applications.[64] Zonst, A. (2000). Understanding the FFT, 2nd ed., 2000.[65] Hewitt, E., Hewitt, R. (1979). Archive for History of Exact Sciences: An Episode in Fourier Analysis.[66] Rasmussen, H.O. (1993). The wavelet Gibbs phenomenon. Wavelets, Fractals, and Fourier Transforms (M. Farge, JCR Hunt, and JC Vassilicos, eds.), 123-142.[67] Kelly, S. (1995). Gibbs Phenomenon for Wavelets: Applied and Computational Harmonic Analysis, 1st ed., 1995.[68] Chan, R.W., Yuen, J.K., Lee, E.W., Arashpour, M. (2015). Application of Nonlinear-AutoregressiveExogenous model to predict the hysteretic behaviour of passive control systems. Engineering Structures, 85: 1- 10. https://doi.org/10.1016/j.engstruct.2014.12.007[69] Widrow, B., Hoff, M.E. (1989). Adaptive switching circuits, in: Wescon Conf. Rec., 1989.[70] NOAA, NCEP North American Regional Reanalysis: NARR, (2016).PublicationORIGINALModeling Wind Speed with a Long-Term Horizon and High-Time Interval with a Hybrid Fourier-Neural Network Model.pdfModeling Wind Speed with a Long-Term Horizon and High-Time Interval with a Hybrid Fourier-Neural Network Model.pdfapplication/pdf1457197https://repositorio.cuc.edu.co/bitstreams/f69ff001-4ea6-4574-baea-c90c34b39e4b/download11bc5f51b72cf49694b27b4da6eddc70MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/fef888df-5bc0-441a-8292-c94b4ff1c2bc/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/62a09d0c-be90-4a2c-97fd-7204c290ffc6/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILModeling Wind Speed with a Long-Term Horizon and High-Time Interval with a Hybrid Fourier-Neural Network Model.pdf.jpgModeling Wind Speed with a Long-Term Horizon and High-Time Interval with a Hybrid Fourier-Neural Network Model.pdf.jpgimage/jpeg81443https://repositorio.cuc.edu.co/bitstreams/fad603d9-8d34-494a-ab29-976bad12dff0/downloadd90f08cb14b1c49c03a390d1b2002ba6MD54TEXTModeling Wind Speed with a Long-Term Horizon and High-Time Interval with a Hybrid Fourier-Neural Network Model.pdf.txtModeling Wind Speed with a Long-Term Horizon and High-Time Interval with a Hybrid Fourier-Neural Network Model.pdf.txttext/plain47530https://repositorio.cuc.edu.co/bitstreams/257f0775-a403-4b1e-9dba-db97bfe3c0e6/downloadff5611a797431e3227be4d3c157f621bMD5511323/8574oai:repositorio.cuc.edu.co:11323/85742024-09-17 10:59:45.256http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==