Evaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico

The deterioration of air quality resulting from biomass burning is one of the greatest concerns today, due to the emissions of some atmospheric pollutants, among which Black Carbon (BC) stands out, considered a pollutant with a strong contribution to radiative forcing and consequently altering the c...

Full description

Autores:
Reales López, Gabriel Jose
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10487
Acceso en línea:
https://hdl.handle.net/11323/10487
https://repositorio.cuc.edu.co/
Palabra clave:
Black Carbón
Quemas de biomasa
Exponente de absorción de Ångström
Etalómetro
Biomass burning
Ångström absorption exponent
Etalometer
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id RCUC2_1ad880a82fc108e63647069fc8fda9b3
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10487
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico
title Evaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico
spellingShingle Evaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico
Black Carbón
Quemas de biomasa
Exponente de absorción de Ångström
Etalómetro
Biomass burning
Ångström absorption exponent
Etalometer
title_short Evaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico
title_full Evaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico
title_fullStr Evaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico
title_full_unstemmed Evaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico
title_sort Evaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico
dc.creator.fl_str_mv Reales López, Gabriel Jose
dc.contributor.advisor.none.fl_str_mv Blanco Donado, Erica
Oliveira Silva, Luis
dc.contributor.author.none.fl_str_mv Reales López, Gabriel Jose
dc.subject.proposal.spa.fl_str_mv Black Carbón
Quemas de biomasa
Exponente de absorción de Ångström
Etalómetro
topic Black Carbón
Quemas de biomasa
Exponente de absorción de Ångström
Etalómetro
Biomass burning
Ångström absorption exponent
Etalometer
dc.subject.proposal.eng.fl_str_mv Biomass burning
Ångström absorption exponent
Etalometer
description The deterioration of air quality resulting from biomass burning is one of the greatest concerns today, due to the emissions of some atmospheric pollutants, among which Black Carbon (BC) stands out, considered a pollutant with a strong contribution to radiative forcing and consequently altering the climate. In this research, BC was monitored environmentally through an AE33 ethalometer, this instrument allowed the determination of concentrations and the identification of the contribution of burning and vehicular traffic, in addition to the Ångström absorption exponent, which is essential for the identification of burning. To relate the percentage contribution of the burns in the city of Barranquilla obtained by the AAE33 vs. those obtained by the modeling, a modeling was used in which the burning points were identified and then fed to the Hysplit trajectory dispersion model for the sampling period from June 1, 2019 to June 30, 2020. The results obtained were an ambient BC concentration of 0.80 ± 0.64 μg/m3, a biomass burning contribution percentage of 17.2% thus obtaining a remaining vehicle traffic contribution of 82.8% and a high correlation in the variables humidity, atmospheric pressure and solar radiation.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-18T15:12:11Z
dc.date.available.none.fl_str_mv 2023-09-18T15:12:11Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10487
dc.identifier.instname.spa.fl_str_mv Corporacion Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/10487
https://repositorio.cuc.edu.co/
identifier_str_mv Corporacion Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ambade, B., Sankar, T. K., Panicker, A. S., Gautam, A. S., & Gautam, S. (2021). Characterization, seasonal variation, source apportionment and health risk assessment of black carbon over an urban region of East India. Urban Climate, 38(November 2020), 100896. https://doi.org/10.1016/j.uclim.2021.100896
Anaya, J. A., Chuvieco, E., & Palacios-Orueta, A. (2009). Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecology and Management, 257(4), 1237–1246. https://doi.org/10.1016/j.foreco.2008.11.016
Babativa, C. L. (2018). Exploración de perfiles verticales de humedad relativa, temperatura y concentraciones de PM2. 5 y black carbon, en la localidad de puente aranda. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/733/%0Ahttps://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1732&context=ing_ambiental_sanitari
Badarinath, K. V. S., Latha, K. M., Chand, T. R. K., Reddy, R. R., Gopal, K. R., Reddy, L. S. S., Narasimhulu, K., & Kumar, K. R. (2007). Black carbon aerosols and gaseous pollutants in an urban area in North India during a fog period. Atmospheric Research, 85(2), 209–216. https://doi.org/10.1016/j.atmosres.2006.12.007
Balakrishnaiah, G., Raghavendra kumar, K., Suresh Kumar Reddy, B., Rama Gopal, K., Reddy, R. R., Reddy, L. S. S., Nazeer Ahammed, Y., Narasimhulu, K., Krishna Moorthy, K., & Suresh Babu, S. (2011). Analysis of optical properties of atmospheric aerosols inferred from spectral AODs and Ångström wavelength exponent. Atmospheric Environment, 45(6), 1275–1285. https://doi.org/10.1016/j.atmosenv.2010.12.002
Ballesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment, 739, 139755. https://doi.org/10.1016/j.scitotenv.2020.139755
Bibi, S., Alam, K., Chishtie, F., Bibi, H., & Rahman, S. (2017). Temporal variation of Black Carbon concentration using Aethalometer observations and its relationships with meteorological variables in Karachi, Pakistan. Journal of Atmospheric and Solar-Terrestrial Physics, 157–158(April), 67–77. https://doi.org/10.1016/j.jastp.2017.03.017
Blanco-Alegre, C., Calvo, A. I., Alves, C., Fialho, P., Nunes, T., Gomes, J., Castro, A., Oduber, F., Coz, E., & Fraile, R. (2020). Aethalometer measurements in a road tunnel: A step forward in the characterization of black carbon emissions from traffic. Science of the Total Environment, 703, 135483. https://doi.org/10.1016/j.scitotenv.2019.135483
Blanco-Donado, E. P., Schneider, I. L., Artaxo, P., Lozano-Osorio, J., Portz, L., & Oliveira, M. L. S. (2021). Source identification and global implications of black carbon. Geoscience Frontiers, xxxx, 101149. https://doi.org/10.1016/j.gsf.2021.101149
Bolaño-Truyol, J., Schneider, I. L., Cuadro, H. C., Bolaño-Truyol, J. D., & Oliveira, M. L. S. (2021). Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean. Geoscience Frontiers, xxxx, 101152. https://doi.org/10.1016/j.gsf.2021.101152
Bolaño-Truyol, J., Schneider, I. L., Cuadro, H. C., Bolaño-Truyol, J. D., & Oliveira, M. L. S. (2022). Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean. Geoscience Frontiers, 13(1), 0–6. https://doi.org/10.1016/j.gsf.2021.101152
Bounakhla, Y., Benchrif, A., Tahri, M., Costabile, F., Zahry, F., Bounakhla, M., & El Hassan, E. K. (2022). Black carbon aerosols at an urban site in North Africa (Kenitra, Morocco). Atmospheric Pollution Research, 13(8), 101489. https://doi.org/10.1016/j.apr.2022.101489
Brasseur, O., Declerck, P., Heene, B., & Vanderstraeten, P. (2015). Modelling black carbon concentrations in two busy street canyons in brussels using CANSBC. Atmospheric Environment, 101, 72–81. https://doi.org/10.1016/j.atmosenv.2014.10.049
Byčenkienė, S., Pashneva, D., Uogintė, I., Pauraitė, J., Minderytė, A., Davulienė, L., Plauškaitė, K., Skapas, M., Dudoitis, V., Touqeer, G., Andriejauskiene, J., Araminienė, V., Dzenajavičienė, E. F., Sicard, P., Gudynaitė-Franckevičienė, V., Varnagirytė-Kabašinskienė, I., Pedišius, N., Lemanas, E., & Vonžodas, T. (2022). Evaluation of the anthropogenic black carbon emissions and deposition on Norway spruce and silver birch foliage in the Baltic region. Environmental Research, 207(October 2021). https://doi.org/10.1016/j.envres.2021.112218
Casallas, A., Castillo-Camacho, M. P., Guevara-Luna, M. A., González, Y., Sanchez, E., & Belalcazar, L. C. (2022). Spatio-temporal analysis of PM2.5 and policies in Northwestern South America. Science of the Total Environment, 852(May). https://doi.org/10.1016/j.scitotenv.2022.158504
Casquero-Vera, J. A., Lyamani, H., Titos, G., Minguillón, M. C., Dada, L., Alastuey, A., Querol, X., Petäjä, T., Olmo, F. J., & Alados-Arboledas, L. (2021). Quantifying traffic, biomass burning and secondary source contributions to atmospheric particle number concentrations at urban and suburban sites. Science of the Total Environment, 768. https://doi.org/10.1016/j.scitotenv.2021.145282
Chen, P., Kang, S., Gan, Q., Yu, Y., Yuan, X., Liu, Y., Tripathee, L., Wang, X., & Li, C. (2022). Concentrations and light absorption properties of PM2.5 organic and black carbon based on online measurements in Lanzhou, China. Journal of Environmental Sciences, 131, 84–95. https://doi.org/10.1016/j.jes.2022.08.007
Cheng, Y. H., Huang, Y. C., Pipal, A. S., Jian, M. Y., & Liu, Z. S. (2022). Source apportionment of black carbon using light absorption measurement and impact of biomass burning smoke on air quality over rural central Taiwan: A yearlong study. Atmospheric Pollution Research, 13(1). https://doi.org/10.1016/j.apr.2021.101264
Chuvieco, E., Pettinari, M. L., Koutsias, N., Forkel, M., Hantson, S., & Turco, M. (2021). Human and climate drivers of global biomass burning variability. Science of the Total Environment, 779, 146361. https://doi.org/10.1016/j.scitotenv.2021.146361
Duarte, A. L., Schneider, I. L., Artaxo, P., & Oliveira, M. L. S. (2022). Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city. Geoscience Frontiers, 13(1), 101168. https://doi.org/10.1016/j.gsf.2021.101168
Dumka, U. C., Kaskaoutis, D. G., Tiwari, S., Safai, P. D., Attri, S. D., Soni, V. K., Singh, N., & Mihalopoulos, N. (2018). Assessment of biomass burning and fossil fuel contribution to black carbon concentrations in Delhi during winter. Atmospheric Environment, 194(August), 93–109. https://doi.org/10.1016/j.atmosenv.2018.09.033
Dutta, M., & Chatterjee, A. (2021). Assessment of the relative influences of long-range transport, fossil fuel and biomass burning from aerosol pollution under restricted anthropogenic emissions: A national scenario in India. Atmospheric Environment, 255(April), 118423. https://doi.org/10.1016/j.atmosenv.2021.118423
Galdos, M., Cavalett, O., Seabra, J. E. A., Nogueira, L. A. H., & Bonomi, A. (2013). Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Applied Energy, 104, 576–582. https://doi.org/10.1016/j.apenergy.2012.11.002
Garavito, G., Martinez, B., Builes, J. J., Aguirre, D., Mendoza, L., Afanador, C. H., Egea, E., & Marrugo, J. (2015). Indels markers set and ancestry estimates in a population sample from Atlantic Department of Colombia. Forensic Science International: Genetics Supplement Series, 5, e177–e178. https://doi.org/10.1016/j.fsigss.2015.09.071
Goel, V., Hazarika, N., Kumar, M., & Singh, V. (2021). Source apportionment of black carbon over Delhi: A case study of extreme biomass burning events and Diwali festival. Urban Climate, 39(March), 100926. https://doi.org/10.1016/j.uclim.2021.100926
Goel, V., Hazarika, N., Kumar, M., Singh, V., Thamban, N. M., & Tripathi, S. N. (2021). Variations in Black Carbon concentration and sources during COVID-19 lockdown in Delhi. Chemosphere, 270, 129435. https://doi.org/10.1016/j.chemosphere.2020.129435
González-álvarez, Á., Viloria-Marimón, O. M., Coronado-Hernández, Ó. E., Vélez-Pereira, A. M., Tesfagiorgis, K., & Coronado-Hernández, J. R. (2019). Isohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean Region. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020358
Hamilton, G. A., & Hartnett, H. E. (2013). Soot black carbon concentration and isotopic composition in soils from an arid urban ecosystem. Organic Geochemistry, 59, 87–94. https://doi.org/10.1016/j.orggeochem.2013.04.003
Harrison, R. M., Beddows, D. C. S., Jones, A. M., Calvo, A., Alves, C., & Pio, C. (2013). An evaluation of some issues regarding the use of aethalometers to measure woodsmoke concentrations. Atmospheric Environment, 80, 540–548. https://doi.org/10.1016/j.atmosenv.2013.08.026
He, C., Takano, Y., Liou, K. N., Yang, P., Li, Q., & Mackowski, D. W. (2016). Intercomparison of the GOS approach, superposition T-matrix method, and laboratory measurements for black carbon optical properties during aging. Journal of Quantitative Spectroscopy and Radiative Transfer, 184, 287–296. https://doi.org/10.1016/j.jqsrt.2016.08.004
He, Q., Guo, Q., Umeki, K., Ding, L., Wang, F., & Yu, G. (2021). Soot formation during biomass gasification: A critical review. Renewable and Sustainable Energy Reviews, 139(March 2020), 110710. https://doi.org/10.1016/j.rser.2021.110710
Healy, R. M., Sofowote, U., Su, Y., Debosz, J., Noble, M., Jeong, C. H., Wang, J. M., Hilker, N., Evans, G. J., Doerksen, G., Jones, K., & Munoz, A. (2017). Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario. Atmospheric Environment, 161, 34–47. https://doi.org/10.1016/j.atmosenv.2017.04.034
Hernandez, A. J., Morales-Rincon, L. A., Wu, D., Mallia, D., Lin, J. C., & Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45), 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051
Highwood, E. J., & Kinnersley, R. P. (2006). When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environment International, 32(4), 560–566. https://doi.org/10.1016/j.envint.2005.12.003 http://queimadas.dgi.inpe.br/queimadas/bdqueimadas
Ichoku, C., & Kaufman, Y. J. (2005). A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Transactions on Geoscience and Remote Sensing, 43(11), 2636–2649. https://doi.org/10.1109/TGRS.2005.857328
Iraji, F., Memarian, M. H., Joghataei, M., & Ghafarian Malamiri, H. R. (2021). Determining the source of dust storms with use of coupling WRF and HYSPLIT models: A case study of Yazd province in central desert of Iran. Dynamics of Atmospheres and Oceans, 93(December 2020), 101197. https://doi.org/10.1016/j.dynatmoce.2020.101197
Jeong, H., & Park, D. (2017). Characteristics of elementary school children’s daily exposure to black carbon (BC) in Korea. Atmospheric Environment, 154, 179–188. https://doi.org/10.1016/j.atmosenv.2017.01.045
Jiang, H., Li, J., Wang, J., Jiang, H., Mo, Y., Tang, J., Zhang, R., Pansak, W., Zhong, G., Zhao, S., Ning, J., Tian, C., & Zhang, G. (2022). Regional monitoring of biomass burning using passive air sampling technique reveals the importance of MODIS unresolved fires. Environment International, 170(July), 107582. https://doi.org/10.1016/j.envint.2022.107582
Jiang, K., Xing, R., Luo, Z., Huang, W., Yi, F., Men, Y., Zhao, N., Chang, Z., Zhao, J., Pan, B., & Shen, G. (2024). Particuology Pollutant emissions from biomass burning : A review on emission characteristics , environmental impacts , and research perspectives. Particuology, 85, 296–309. https://doi.org/10.1016/j.partic.2023.07.012
Kalisa, E., & Adams, M. (2022). Population-scale COVID-19 curfew effects on urban black carbon concentrations and sources in Kigali, Rwanda. Urban Climate, 46(October), 101312. https://doi.org/10.1016/j.uclim.2022.101312
Kalita, G., Kunchala, R. K., Fadnavis, S., & Kaskaoutis, D. G. (2020). Long term variability of carbonaceous aerosols over Southeast Asia via reanalysis: Association with changes in vegetation cover and biomass burning. Atmospheric Research, 245(December 2019), 105064. https://doi.org/10.1016/j.atmosres.2020.105064
Kang, Z., Ma, P., Quan, J., Jia, X., Liao, Z., & Pan, Y. (2023). Observational evidence of the regional transported black carbon in high layer over Beijing. Atmospheric Environment, 311(August), 120000. https://doi.org/10.1016/j.atmosenv.2023.120000
Kapoor, T. S., Venkataraman, C., Sarkar, C., Phuleria, H. C., Chatterjee, A., Habib, G., & Apte, J. S. (2022). Estimation of real-time brown carbon absorption: An observationally constrained Mie theory-based optimization method. Journal of Aerosol Science, 166(June), 106047. https://doi.org/10.1016/j.jaerosci.2022.106047
Kompalli, S. K., Babu, S. S., Ajith, T. C., Moorthy, K. K., Satheesh, S. K., Boopathy, R., Das, T., Liu, D., Allan, J., & Coe, H. (2023). Aging of biomass burning emissions in the Indo-Gangetic Plain outflow: Implications for black carbon light-absorption enhancement. Atmospheric Research, 294(July), 106949. https://doi.org/10.1016/j.atmosres.2023.106949
Lee, Y. C., Lam, Y. F., Kuhlmann, G., Wenig, M. O., Chan, K. L., Hartl, A., & Ning, Z. (2013). An integrated approach to identify the biomass burning sources contributing to black carbon episodes in Hong Kong. Atmospheric Environment, 80, 478–487. https://doi.org/10.1016/j.atmosenv.2013.08.030
Li, Fangjun, Zhang, X., Kondragunta, S., Lu, X., Csiszar, I., & Schmidt, C. C. (2022). Hourly biomass burning emissions product from blended geostationary and polar-orbiting satellites for air quality forecasting applications. Remote Sen
Li, Fangjun, Zhang, X., Kondragunta, S., Lu, X., Csiszar, I., & Schmidt, C. C. (2022). Hourly biomass burning emissions product from blended geostationary and polar-orbiting satellites for air quality forecasting applications. Remote Sensing of Environment, 281(April), 113237. https://doi.org/10.1016/j.rse.2022.113237
Li, Fangzhou, Luo, Q., Lin, W., Li, J., & Jiang, B. (2022). Simulating the impact of biomass burning aerosols on an intensive precipitation event in urban areas of the Pearl River Delta. Atmospheric Research, 266(December 2021), 105966. https://doi.org/10.1016/j.atmosres.2021.105966
Li, W., Liu, X., Duan, F., Qu, Y., & An, J. (2022). A one-year study on black carbon in urban Beijing: Concentrations, sources and implications on visibility. Atmospheric Pollution Research, 13(2). https://doi.org/10.1016/j.apr.2021.101307
Li, X., Sun, N., Jin, Q., Zhao, Z., Wang, L., Wang, Q., Gu, X., Li, Y., & Liu, X. (2022). Light absorption properties of black and brown carbon in winter over the North China Plain: Impacts of regional biomass burning. Atmospheric Environment, 278(February), 119100. https://doi.org/10.1016/j.atmosenv.2022.119100
Liang, G., Li, S., Yu, X., Bu, Q., Qu, H., Zhu, H., Yao, X., Lu, A., & Gong, W. (2022). Black carbon-mediated degradation of organic pollutants: A critical review. Process Safety and Environmental Protection, 160, 610–619. https://doi.org/10.1016/j.psep.2022.02.049
Liñán-Abanto, R. N., Salcedo, D., Arnott, P., Paredes-Miranda, G., Grutter, M., Peralta, O., Carabali, G., Serrano-Silva, N., Ruiz-Suárez, L. G., & Castro, T. (2021). Temporal variations of black carbon, carbon monoxide, and carbon dioxide in Mexico City: Mutual correlations and evaluation of emissions inventories. Urban Climate, 37(April). https://doi.org/10.1016/j.uclim.2021.100855
Liu, S., Luo, T., Zhou, L., Song, T., Wang, N., Luo, Q., Huang, G., Jiang, X., Zhou, S., Qiu, Y., & Yang, F. (2022). Vehicle exhausts contribute high near-UV absorption through carbonaceous aerosol during winter in a fast-growing city of Sichuan Basin, China. Environmental Pollution, 312(June), 119966. https://doi.org/10.1016/j.envpol.2022.119966
Liu, T., Mickley, L. J., Singh, S., Jain, M., DeFries, R. S., & Marlier, M. E. (2020). Crop residue burning practices across north India inferred from household survey data: Bridging gaps in satellite observations. Atmospheric Environment: X, 8(September), 100091. https://doi.org/10.1016/j.aeaoa.2020.100091
Liu, Xinhui, Zhu, R., Jin, B., Zu, L., Wang, Y., Wei, Y., & Zhang, R. (2023). Emission characteristics and light absorption apportionment of carbonaceous aerosols: A tunnel test conducted in an urban with fully enclosed use of E10 petrol. Environmental Research, 216(P3), 114701. https://doi.org/10.1016/j.envres.2022.114701
Liu, Xuyan, Wang, S., Zhang, Q., Jiang, C., Liang, L., Tang, S., Zhang, X., Han, X., & Zhu, L. (2023). Origins of black carbon from anthropogenic emissions and open biomass burning transported to Xishuangbanna, Southwest China. Journal of Environmental Sciences (China), 125, 277–289. https://doi.org/10.1016/j.jes.2021.12.020
Liu, Y., Liu, J., Yan, C., Xiao, J., Ye, J., Guo, L., & Zheng, M. (2023). Metrological traceability of black carbon measurement based on optical methods and its challenges in China : A review. Atmospheric Research, 292(February), 106854. https://doi.org/10.1016/j.atmosres.2023.106854
Lizundia-Loiola, J., Franquesa, M., Khairoun, A., & Chuvieco, E. (2022). Global burned area mapping from Sentinel-3 Synergy and VIIRS active fires. Remote Sensing of Environment, 282(March), 113298. https://doi.org/10.1016/j.rse.2022.113298
López-Caravaca, A., Crespo, J., Galindo, N., Yubero, E., Castañer, R., & Nicolás Aguilera, J. F. (2022). Characterization of aerosol absorption properties and PM1 at a mountain site located in the southeast of the Iberian Peninsula. Atmospheric Pollution Research, 13(10). https://doi.org/10.1016/j.apr.2022.101559
Lu, X., Zhang, X., Li, F., & Cochrane, M. A. (2022). Improved estimation of fire particulate emissions using a combination of VIIRS and AHI data for Indonesia during 2015–2020. Remote Sensing of Environment, 281(September), 113238. https://doi.org/10.1016/j.rse.2022.113238
Mani, S. A., Peltier, R. E., Le Mestre, M., Gunkel-Grillon, P., Shah, S., & Mani, F. S. (2022). Black carbon and elemental characterization of PM2.5 in dense traffic areas in two cities in Fiji, a Small Island Developing State. Science of the Total Environment, 845(June), 157136. https://doi.org/10.1016/j.scitotenv.2022.157136
Marinho, A. A. R., Gois, G. de, Oliveira-Júnior, J. F. de, Correia Filho, W. L. F., Santiago, D. de B., Silva Junior, C. A. da, Teodoro, P. E., de Souza, A., Capristo-Silva, G. F., Freitas, W. K. de, & Rogério, J. P. (2021). Temporal record and spatial distribution of fire foci in State of Minas Gerais, Brazil. Journal of Environmental Management, 280(April 2020). https://doi.org/10.1016/j.jenvman.2020.111707
Meena, G. S., Mukherjee, S., Buchunde, P., Safai, P. D., Singla, V., Aslam, M. Y., Sonbawne, S. M., Made, R., Anand, V., Dani, K. K., & Pandithurai, G. (2021). Seasonal variability and source apportionment of black carbon over a rural high-altitude and an urban site in western India. Atmospheric Pollution Research, 12(2), 32–45. https://doi.org/10.1016/j.apr.2020.10.006
Milinković, A., Gregorič, A., Grgičin, V. D., Vidič, S., Penezić, A., Kušan, A. C., Alempijević, S. B., Kasper-Giebl, A., & Frka, S. (2021). Variability of black carbon aerosol concentrations and sources at a Mediterranean coastal region. Atmospheric Pollution Research, 12(11). https://doi.org/10.1016/j.apr.2021.101221
Minderytė, A., Pauraite, J., Dudoitis, V., Plauškaitė, K., Kilikevičius, A., Matijošius, J., Rimkus, A., Kilikevičienė, K., Vainorius, D., & Byčenkienė, S. (2022). Carbonaceous aerosol source apportionment and assessment of transport-related pollution. Atmospheric Environment, 279(March), 119043. https://doi.org/10.1016/j.atmosenv.2022.119043
Morales Betancourt, R., Galvis, B., Balachandran, S., Ramos-Bonilla, J. P., Sarmiento, O. L., Gallo-Murcia, S. M., & Contreras, Y. (2017). Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmospheric Environment, 157(1), 135–145. https://doi.org/10.1016/j.atmosenv.2017.03.006
Mousavi, A., Sowlat, M. H., Hasheminassab, S., Polidori, A., & Sioutas, C. (2018). Spatio-temporal trends and source apportionment of fossil fuel and biomass burning black carbon (BC) in the Los Angeles Basin. Science of the Total Environment, 640–641, 1231–1240. https://doi.org/10.1016/j.scitotenv.2018.06.022
Mousavi, A., Sowlat, M. H., Lovett, C., Rauber, M., Szidat, S., Boffi, R., Borgini, A., De Marco, C., Ruprecht, A. A., & Sioutas, C. (2019). Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy. Atmospheric Environment, 203(September 2018), 252–261. https://doi.org/10.1016/j.atmosenv.2019.02.009
Mukherjee, S., Verma, A., Meena, G. S., Kodoli, S., Buchunde, P., Aslam, M. Y., Patil, R. D., Panicker, A., Safai, P. D., & Pandithurai, G. (2022). Compensatory effect of biomass burning on black carbon concentrations during COVID-19 lockdown at a high-altitude station in SW India. Atmospheric Pollution Research, 13(10), 101566. https://doi.org/10.1016/j.apr.2022.101566
Nam, J. J., Gustafsson, O., Kurt-Karakus, P., Breivik, K., Steinnes, E., & Jones, K. C. (2008). Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate. Environmental Pollution, 156(3), 809–817. https://doi.org/10.1016/j.envpol.2008.05.027
Ngan, F., Loughner, C. P., & Stein, A. (2019). The evaluation of mixing methods in HYSPLIT using measurements from controlled tracer experiments. Atmospheric Environment, 219(April), 117043. https://doi.org/10.1016/j.atmosenv.2019.117043
Nie, D., Qiu, Z., Wang, X., & Liu, Z. (2022). Characterizing the source apportionment of black carbon and ultrafine particles near urban roads in Xi’an, China. Environmental Research, 215(P1), 114209. https://doi.org/10.1016/j.envres.2022.114209
Ningombam, S. S., Khatri, P., Larson, E. J. L., Dumka, U. C., Sarangi, C., & Vineeth, R. (2023). Classification of MODIS fire emission data based on aerosol absorption Angstrom exponent retrieved from AERONET data. Science of the Total Environment, 858(August 2022), 159898. https://doi.org/10.1016/j.scitotenv.2022.159898
Olson, M. R., Yuqin, W., de Foy, B., Li, Z., Bergin, M. H., Zhang, Y., & Schauer, J. J. (2022). Source attribution of black and Brown carbon near-UV light absorption in Beijing, China and the impact of regional air-mass transport. Science of the Total Environment, 807, 150871. https://doi.org/10.1016/j.scitotenv.2021.150871
Pani, S. K., Wang, S. H., Lin, N. H., Chantara, S., Lee, C. Te, & Thepnuan, D. (2020). Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. Environmental Pollution, 259, 113871. https://doi.org/10.1016/j.envpol.2019.113871
Pei, C., Wu, Y., Tao, J., Zhang, L., Zhang, T., Zhang, R., & Li, S. (2022). Seasonal variations of mass absorption efficiency of elemental carbon in PM2.5 in urban Guangzhou of South China. Journal of Environmental Sciences, 133, 83–92. https://doi.org/10.1016/j.jes.2022.04.019
Pérez-Pastor, R., Salvador, P., García-Gómez, H., García-Alonso, S., Toro, M., Artíñano, B., & Alonso, R. (2023). Characterization of organic aerosols at the Natura 2000 remote environment of Sanabria Lake (Spain): Evaluating the influence of African dust and regional biomass burning smoke. Atmospheric Environment, 298(October 2022). https://doi.org/10.1016/j.atmosenv.2023.119634
Pirouzmand, A., Kowsar, Z., & Dehghani, P. (2018). Atmospheric dispersion assessment of radioactive materials during severe accident conditions for Bushehr nuclear power plant using HYSPLIT code. Progress in Nuclear Energy, 108(April), 169–178. https://doi.org/10.1016/j.pnucene.2018.05.015
Prabhu, V., Soni, A., Madhwal, S., Gupta, A., Sundriyal, S., Shridhar, V., Sreekanth, V., & Mahapatra, P. S. (2020). Black carbon and biomass burning associated high pollution episodes observed at Doon valley in the foothills of the Himalayas. Atmospheric Research, 243(December 2019), 105001. https://doi.org/10.1016/j.atmosres.2020.105001
Qiu, Y., Wu, X., Zhang, Y., Xu, L., Hong, Y., Chen, J., Chen, X., & Deng, J. (2019). Aerosol light absorption in a coastal city in Southeast China: Temporal variations and implications for brown carbon. Journal of Environmental Sciences (China), 80, 257–266. https://doi.org/10.1016/j.jes.2019.01.002
Qiu, Z., Wang, X., Liu, Z., & Luo, J. (2022). Quantitative assessment of cyclists’ exposure to PM and BC on different bike lanes. Atmospheric Pollution Research, 13(11), 101588. https://doi.org/10.1016/j.apr.2022.101588
Qu, Y., Liu, H., Zhou, Y., Dai, W., Shi, J., & Wang, N. (2023). Spectral dependence of light absorption and direct radiative forcing of the TSP , PM 10 , PM 2 . 5 and PM 0 . 1 in a rural region of northwestern China. Atmospheric Environment, 292(97), 119417. https://doi.org/10.1016/j.atmosenv.2022.119417
Rajesh, T. A., Ramachandran, S., & Dhaker, V. K. (2021). Black carbon aerosols: Relative source strengths of vehicular emissions and residential/open wood burning over an urban and a semi-urban environment. Atmospheric Pollution Research, 12(6), 101060. https://doi.org/10.1016/j.apr.2021.101060
Rangel-Buitrago, N., Gracia C., A., Vélez-Mendoza, A., Mantilla-Barbosa, E., Arana, V. A., Trilleras, J., & Arroyo-Olarte, H. (2018). Abundance and distribution of beach litter along the Atlantico Department, Caribbean coast of Colombia. Marine Pollution Bulletin, 136(August), 435–447. https://doi.org/10.1016/j.marpolbul.2018.09.040
Rangel-Buitrago, N., Mendoza, A. V., Gracia C, A., Mantilla-Barbosa, E., Arana, V. A., Trilleras, J., & Arroyo-Olarte, H. (2019). Litter impacts on cleanliness and environmental status of Atlantico department beaches, Colombian Caribbean coast. Ocean and Coastal Management, 179(March), 104835. https://doi.org/10.1016/j.ocecoaman.2019.104835
Rathod, T. D., Sahu, S. K., Tiwari, M., Bhangare, R. C., & Ajmal, P. Y. (2021). Light absorption enhancement due to mixing in black carbon and organic carbon generated during biomass burning. Atmospheric Pollution Research, 12(12), 101236. https://doi.org/10.1016/j.apr.2021.101236
Resquin, M. D., Santágata, D., Gallardo, L., Gómez, D., Rössler, C., & Dawidowski, L. (2018). Local and remote black carbon sources in the Metropolitan Area of Buenos Aires. Atmospheric Environment, 182(March), 105–114. https://doi.org/10.1016/j.atmosenv.2018.03.018
Reyna-Bensusan, N., Wilson, D. C., Davy, P. M., Fuller, G. W., Fowler, G. D., & Smith, S. R. (2019). Experimental measurements of black carbon emission factors to estimate the global impact of uncontrolled burning of waste. Atmospheric Environment, 213(January), 629–639. https://doi.org/10.1016/j.atmosenv.2019.06.047
Rodríguez, S., Cuevas, E., González, Y., Ramos, R., Romero, P. M., Pérez, N., Querol, X., & Alastuey, A. (2008). Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5-10 concentrations in a coastal city. Atmospheric Environment, 42(26), 6523–6534. https://doi.org/10.1016/j.atmosenv.2008.04.022
Roldan-Vargas, J. C., Toro-Gómez, M. V., & Marín-Sánchez, A. (2021). Estimación y modelización de la dispersión de black carbon en el Valle de Aburrá, Colombia. TecnoLógicas, 24(50), e1580. https://doi.org/10.22430/22565337.1580
Saha, A., & Despiau, S. (2009). Seasonal and diurnal variations of black carbon aerosols over a Mediterranean coastal zone. Atmospheric Research, 92(1), 27–41. https://doi.org/10.1016/j.atmosres.2008.07.007
Şahin, Ü. A., Onat, B., Akın, Ö., Ayvaz, C., Uzun, B., Mangır, N., Doğan, M., & Harrison, R. M. (2020). Temporal variations of atmospheric black carbon and its relation to other pollutants and meteorological factors at an urban traffic site in Istanbul. Atmospheric Pollution Research, 11(7), 1051–1062. https://doi.org/10.1016/j.apr.2020.03.009
Sandradewi, J., Prévôt, A. S. H., Weingartner, E., Schmidhauser, R., Gysel, M., & Baltensperger, U. (2008). A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmospheric Environment, 42(1), 101–112. https://doi.org/10.1016/j.atmosenv.2007.09.034
Schkolnik, G., Chand, D., Hoffer, A., Andreae, M. O., Erlick, C., Swietlicki, E., & Rudich, Y. (2007). Constraining the density and complex refractive index of elemental and organic carbon in biomass burning aerosol using optical and chemical measurements. Atmospheric Environment, 41(5), 1107–1118. https://doi.org/10.1016/j.atmosenv.2006.09.035
Shi, Y., Gong, S., Zang, S., Zhao, Y., Wang, W., Lv, Z., Matsunaga, T., Yamaguchi, Y., & Bai, Y. (2021). High-resolution and multi-year estimation of emissions from open biomass burning in Northeast China during 2001–2017. Journal of Cleaner Production, 310(January), 127496. https://doi.org/10.1016/j.jclepro.2021.127496
Silva, L. F. O., Schneider, I. L., Artaxo, P., Núñez-Blanco, Y., Pinto, D., Flores, É. M. M., Gómez-Plata, L., Ramírez, O., & Dotto, G. L. (2022). Particulate matter geochemistry of a highly industrialized region in the Caribbean: Basis for future toxicological studies. Geoscience Frontiers, 13(1). https://doi.org/10.1016/j.gsf.2020.11.012
Skrynyk, O., Voloshchuk, V., Budak, I., & Bubin, S. (2019). Regional HYSPLIT simulation of atmospheric transport and deposition of the Chernobyl 137Cs releases. Atmospheric Pollution Research, 10(6), 1953–1963. https://doi.org/10.1016/j.apr.2019.09.001
Srivastava, R., Asutosh, A., Sabu, P., & Anilkumar, N. (2021). Investigation of Black Carbon characteristics over southern ocean: Contribution of fossil fuel and biomass burning. Environmental Pollution, 276, 116645. https://doi.org/10.1016/j.envpol.2021.116645
Swarnkar, A., & Gurjar, B. R. (2023). GIS-based emission inventory of heavy metals from road transport and NMVOCs associated with biomass burning for megacity Delhi. Urban Climate, 51(December 2022), 101600. https://doi.org/10.1016/j.uclim.2023.101600
Targino, A. C., Krecl, P., Oukawa, G. Y., & Mollinedo, E. M. (2022). A short climatology of black and brown carbon and their sources at a suburban site impacted by smoke in Brazil. xxxx, 1–14. https://doi.org/10.1016/j.jes.2022.12.025 ul Haq, E., Alam, K., Bibi, S., & Roy, A. (2023). High concentration of black carbon in northern Pakistan: Characteristics, source apportionment and emission source regions. Atmospheric Environment, 293(October 2022), 119475. https://doi.org/10.1016/j.atmosenv.2022.119475
Healy, R. M., Sofowote, U., Su, Y., Debosz, J., Noble, M., Jeong, C. H., Wang, J. M., Hilker, N., Evans, G. J., Doerksen, G., Jones, K., & Munoz, A. (2017). Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario. Atmospheric Environment, 161, 34–47. https://doi.org/10.1016/j.atmosenv.2017.04.034
Hernandez, A. J., Morales-Rincon, L. A., Wu, D., Mallia, D., Lin, J. C., & Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45), 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051
Highwood, E. J., & Kinnersley, R. P. (2006). When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environment International, 32(4), 560–566. https://doi.org/10.1016/j.envint.2005.12.003 http://queimadas.dgi.inpe.br/queimadas/bdqueimadas
Ichoku, C., & Kaufman, Y. J. (2005). A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Transactions on Geoscience and Remote Sensing, 43(11), 2636–2649. https://doi.org/10.1109/TGRS.2005.857328
Iraji, F., Memarian, M. H., Joghataei, M., & Ghafarian Malamiri, H. R. (2021). Determining the source of dust storms with use of coupling WRF and HYSPLIT models: A case study of Yazd province in central desert of Iran. Dynamics of Atmospheres and Oceans, 93(December 2020), 101197. https://doi.org/10.1016/j.dynatmoce.2020.101197
Jeong, H., & Park, D. (2017). Characteristics of elementary school children’s daily exposure to black carbon (BC) in Korea. Atmospheric Environment, 154, 179–188. https://doi.org/10.1016/j.atmosenv.2017.01.045
Jiang, H., Li, J., Wang, J., Jiang, H., Mo, Y., Tang, J., Zhang, R., Pansak, W., Zhong, G., Zhao, S., Ning, J., Tian, C., & Zhang, G. (2022). Regional monitoring of biomass burning using passive air sampling technique reveals the importance of MODIS unresolved fires.
Jiang, H., Li, J., Wang, J., Jiang, H., Mo, Y., Tang, J., Zhang, R., Pansak, W., Zhong, G., Zhao, S., Ning, J., Tian, C., & Zhang, G. (2022). Regional monitoring of biomass burning using passive air sampling technique reveals the importance of MODIS unresolved fires. Environment International, 170(July), 107582. https://doi.org/10.1016/j.envint.2022.107582
Jiang, K., Xing, R., Luo, Z., Huang, W., Yi, F., Men, Y., Zhao, N., Chang, Z., Zhao, J., Pan, B., & Shen, G. (2024). Particuology Pollutant emissions from biomass burning : A review on emission characteristics , environmental impacts , and research perspectives. Particuology, 85, 296–309. https://doi.org/10.1016/j.partic.2023.07.012
Kalisa, E., & Adams, M. (2022). Population-scale COVID-19 curfew effects on urban black carbon concentrations and sources in Kigali, Rwanda. Urban Climate, 46(October), 101312. https://doi.org/10.1016/j.uclim.2022.101312
Kalita, G., Kunchala, R. K., Fadnavis, S., & Kaskaoutis, D. G. (2020). Long term variability of carbonaceous aerosols over Southeast Asia via reanalysis: Association with changes in vegetation cover and biomass burning. Atmospheric Research, 245(December 2019), 105064. https://doi.org/10.1016/j.atmosres.2020.105064
Kang, Z., Ma, P., Quan, J., Jia, X., Liao, Z., & Pan, Y. (2023). Observational evidence of the regional transported black carbon in high layer over Beijing. Atmospheric Environment, 311(August), 120000. https://doi.org/10.1016/j.atmosenv.2023.120000
Kapoor, T. S., Venkataraman, C., Sarkar, C., Phuleria, H. C., Chatterjee, A., Habib, G., & Apte, J. S. (2022). Estimation of real-time brown carbon absorption: An observationally constrained Mie theory-based optimization method. Journal of Aerosol Science, 166(June), 106047. https://doi.org/10.1016/j.jaerosci.2022.106047
Kompalli, S. K., Babu, S. S., Ajith, T. C., Moorthy, K. K., Satheesh, S. K., Boopathy, R., Das, T., Liu, D., Allan, J., & Coe, H. (2023). Aging of biomass burning emissions in the Indo-Gangetic Plain outflow: Implications for black carbon light-absorption enhancement. Atmospheric Research, 294(July), 106949. https://doi.org/10.1016/j.atmosres.2023.106949
Lack, D. A., Moosmüller, H., McMeeking, G. R., Chakrabarty, R. K., & Baumgardner, D. (2014). Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: A review of techniques, their limitations and uncertainties. Analytical and Bioanalytical Chemistry, 406(1), 99–122. https://doi.org/10.1007/s00216-013-7402-3
Lee, Y. C., Lam, Y. F., Kuhlmann, G., Wenig, M. O., Chan, K. L., Hartl, A., & Ning, Z. (2013). An integrated approach to identify the biomass burning sources contributing to black carbon episodes in Hong Kong. Atmospheric Environment, 80, 478–487. https://doi.org/10.1016/j.atmosenv.2013.08.030
Li, Fangjun, Zhang, X., Kondragunta, S., Lu, X., Csiszar, I., & Schmidt, C. C. (2022). Hourly biomass burning emissions product from blended geostationary and polar-orbiting satellites for air quality forecasting applications. Remote Sensing of Environment, 281(April), 113237. https://doi.org/10.1016/j.rse.2022.113237
Li, Fangzhou, Luo, Q., Lin, W., Li, J., & Jiang, B. (2022). Simulating the impact of biomass burning aerosols on an intensive precipitation event in urban areas of the Pearl River Delta. Atmospheric Research, 266(December 2021), 105966. https://doi.org/10.1016/j.atmosres.2021.105966
Li, W., Liu, X., Duan, F., Qu, Y., & An, J. (2022). A one-year study on black carbon in urban Beijing: Concentrations, sources and implications on visibility. Atmospheric Pollution Research, 13(2). https://doi.org/10.1016/j.apr.2021.101307
Li, X., Sun, N., Jin, Q., Zhao, Z., Wang, L., Wang, Q., Gu, X., Li, Y., & Liu, X. (2022). Light absorption properties of black and brown carbon in winter over the North China Plain: Impacts of regional biomass burning. Atmospheric Environment, 278(February), 119100. https://doi.org/10.1016/j.atmosenv.2022.119100
Li, X., Sun, N., Jin, Q., Zhao, Z., Wang, L., Wang, Q., Gu, X., Li, Y., & Liu, X. (2022). Light absorption properties of black and brown carbon in winter over the North China Plain: Impacts of regional biomass burning. Atmospheric Environment, 278(February), 119100. https://doi.org/10.1016/j.atmosenv.2022.119100
Liang, G., Li, S., Yu, X., Bu, Q., Qu, H., Zhu, H., Yao, X., Lu, A., & Gong, W. (2022). Black carbon-mediated degradation of organic pollutants: A critical review. Process Safety and Environmental Protection, 160, 610–619. https://doi.org/10.1016/j.psep.2022.02.049
Liñán-Abanto, R. N., Salcedo, D., Arnott, P., Paredes-Miranda, G., Grutter, M., Peralta, O., Carabali, G., Serrano-Silva, N., Ruiz-Suárez, L. G., & Castro, T. (2021). Temporal variations of black carbon, carbon monoxide, and carbon dioxide in Mexico City: Mutual correlations and evaluation of emissions inventories. Urban Climate, 37(April). https://doi.org/10.1016/j.uclim.2021.100855
Liu, S., Luo, T., Zhou, L., Song, T., Wang, N., Luo, Q., Huang, G., Jiang, X., Zhou, S., Qiu, Y., & Yang, F. (2022). Vehicle exhausts contribute high near-UV absorption through carbonaceous aerosol during winter in a fast-growing city of Sichuan Basin, China. Environmental Pollution, 312(June), 119966. https://doi.org/10.1016/j.envpol.2022.119966
Liu, T., Mickley, L. J., Singh, S., Jain, M., DeFries, R. S., & Marlier, M. E. (2020). Crop residue burning practices across north India inferred from household survey data: Bridging gaps in satellite observations. Atmospheric Environment: X, 8(September), 100091. https://doi.org/10.1016/j.aeaoa.2020.100091
Liu, Xinhui, Zhu, R., Jin, B., Zu, L., Wang, Y., Wei, Y., & Zhang, R. (2023). Emission characteristics and light absorption apportionment of carbonaceous aerosols: A tunnel test conducted in an urban with fully enclosed use of E10 petrol. Environmental Research, 216(P3), 114701. https://doi.org/10.1016/j.envres.2022.114701
Liu, Xuyan, Wang, S., Zhang, Q., Jiang, C., Liang, L., Tang, S., Zhang, X., Han, X., & Zhu, L. (2023). Origins of black carbon from anthropogenic emissions and open biomass burning transported to Xishuangbanna, Southwest China. Journal of Environmental Sciences (China), 125, 277–289. https://doi.org/10.1016/j.jes.2021.12.020
Liu, Y., Liu, J., Yan, C., Xiao, J., Ye, J., Guo, L., & Zheng, M. (2023). Metrological traceability of black carbon measurement based on optical methods and its challenges in China : A review. Atmospheric Research, 292(February), 106854. https://doi.org/10.1016/j.atmosres.2023.106854
Lizundia-Loiola, J., Franquesa, M., Khairoun, A., & Chuvieco, E. (2022). Global burned area mapping from Sentinel-3 Synergy and VIIRS active fires. Remote Sensing of Environment, 282(March), 113298. https://doi.org/10.1016/j.rse.2022.113298
López-Caravaca, A., Crespo, J., Galindo, N., Yubero, E., Castañer, R., & Nicolás Aguilera, J. F. (2022). Characterization of aerosol absorption properties and PM1 at a mountain site located in the southeast of the Iberian Peninsula. Atmospheric Pollution Research, 13(10). https://doi.org/10.1016/j.apr.2022.101559
Lu, X., Zhang, X., Li, F., & Cochrane, M. A. (2022). Improved estimation of fire particulate emissions using a combination of VIIRS and AHI data for Indonesia during 2015–2020. Remote Sensing of Environment, 281(September), 113238. https://doi.org/10.1016/j.rse.2022.113238
Mani, S. A., Peltier, R. E., Le Mestre, M., Gunkel-Grillon, P., Shah, S., & Mani, F. S. (2022). Black carbon and elemental characterization of PM2.5 in dense traffic areas in two cities in Fiji, a Small Island Developing State. Science of the Total Environment, 845(June), 157136. https://doi.org/10.1016/j.scitotenv.2022.157136
Marinho, A. A. R., Gois, G. de, Oliveira-Júnior, J. F. de, Correia Filho, W. L. F., Santiago, D. de B., Silva Junior, C. A. da, Teodoro, P. E., de Souza, A., Capristo-Silva, G. F., Freitas, W. K. de, & Rogério, J. P. (2021). Temporal record and spatial distribution of fire foci in State of Minas Gerais, Brazil. Journal of Environmental Management, 280(April 2020). https://doi.org/10.1016/j.jenvman.2020.111707
Meena, G. S., Mukherjee, S., Buchunde, P., Safai, P. D., Singla, V., Aslam, M. Y., Sonbawne, S. M., Made, R., Anand, V., Dani, K. K., & Pandithurai, G. (2021). Seasonal variability and source apportionment of black carbon over a rural high-altitude and an urban site in western India. Atmospheric Pollution Research, 12(2), 32–45. https://doi.org/10.1016/j.apr.2020.10.006
Milinković, A., Gregorič, A., Grgičin, V. D., Vidič, S., Penezić, A., Kušan, A. C., Alempijević, S. B., Kasper-Giebl, A., & Frka, S. (2021). Variability of black carbon aerosol concentrations and sources at a Mediterranean coastal region. Atmospheric Pollution Research, 12(11). https://doi.org/10.1016/j.apr.2021.101221
Minderytė, A., Pauraite, J., Dudoitis, V., Plauškaitė, K., Kilikevičius, A., Matijošius, J., Rimkus, A., Kilikevičienė, K., Vainorius, D., & Byčenkienė, S. (2022). Carbonaceous aerosol source apportionment and assessment of transport-related pollution. Atmospheric Environment, 279(March), 119043. https://doi.org/10.1016/j.atmosenv.2022.119043
Morales Betancourt, R., Galvis, B., Balachandran, S., Ramos-Bonilla, J. P., Sarmiento, O. L., Gallo-Murcia, S. M., & Contreras, Y. (2017). Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmospheric Environment, 157(1), 135–145. https://doi.org/10.1016/j.atmosenv.2017.03.006
Mousavi, A., Sowlat, M. H., Hasheminassab, S., Polidori, A., & Sioutas, C. (2018). Spatio-temporal trends and source apportionment of fossil fuel and biomass burning black carbon (BC) in the Los Angeles Basin. Science of the Total Environment, 640–641, 1231–1240. https://doi.org/10.1016/j.scitotenv.2018.06.022
Mousavi, A., Sowlat, M. H., Lovett, C., Rauber, M., Szidat, S., Boffi, R., Borgini, A., De Marco, C., Ruprecht, A. A., & Sioutas, C. (2019). Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy. Atmospheric Environment, 203(September 2018), 252–261. https://doi.org/10.1016/j.atmosenv.2019.02.009
Mukherjee, S., Verma, A., Meena, G. S., Kodoli, S., Buchunde, P., Aslam, M. Y., Patil, R. D., Panicker, A., Safai, P. D., & Pandithurai, G. (2022). Compensatory effect of biomass burning on black carbon concentrations during COVID-19 lockdown at a high-altitude station in SW India. Atmospheric Pollution Research, 13(10), 101566. https://doi.org/10.1016/j.apr.2022.101566
Nam, J. J., Gustafsson, O., Kurt-Karakus, P., Breivik, K., Steinnes, E., & Jones, K. C. (2008). Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate. Environmental Pollution, 156(3), 809–817. https://doi.org/10.1016/j.envpol.2008.05.027
Ngan, F., Loughner, C. P., & Stein, A. (2019). The evaluation of mixing methods in HYSPLIT using measurements from controlled tracer experiments. Atmospheric Environment, 219(April), 117043. https://doi.org/10.1016/j.atmosenv.2019.117043
Ngoc Trieu, T. T., Morino, I., Uchino, O., Tsutsumi, Y., Izumi, T., Sakai, T., Shibata, T., Ohyama, H., & Nagahama, T. (2023). Long-range transport of CO and aerosols from Siberian biomass burning over northern Japan during 18–20 May 2016. Environmental Pollution, 322(December 2022). https://doi.org/10.1016/j.envpol.2023.121129
Nie, D., Qiu, Z., Wang, X., & Liu, Z. (2022). Characterizing the source apportionment of black carbon and ultrafine particles near urban roads in Xi’an, China. Environmental Research, 215(P1), 114209. https://doi.org/10.1016/j.envres.2022.114209
Nielsen, I. E., Eriksson, A. C., Lindgren, R., Martinsson, J., Nyström, R., Nordin, E. Z., Sadiktsis, I., Boman, C., Nøjgaard, J. K., & Pagels, J. (2017). Time-resolved analysis of particle emissions from residential biomass combustion – Emissions of refractory black carbon, PAHs and organic tracers. Atmospheric Environment, 165, 179–190. https://doi.org/10.1016/j.atmosenv.2017.06.033
Ningombam, S. S., Khatri, P., Larson, E. J. L., Dumka, U. C., Sarangi, C., & Vineeth, R. (2023). Classification of MODIS fire emission data based on aerosol absorption Angstrom exponent retrieved from AERONET data. Science of the Total Environment, 858(August 2022), 159898. https://doi.org/10.1016/j.scitotenv.2022.159898
Olson, M. R., Yuqin, W., de Foy, B., Li, Z., Bergin, M. H., Zhang, Y., & Schauer, J. J. (2022). Source attribution of black and Brown carbon near-UV light absorption in Beijing, China and the impact of regional air-mass transport. Science of the Total Environment, 807, 150871. https://doi.org/10.1016/j.scitotenv.2021.150871
Pani, S. K., Lin, N. H., Chantara, S., Wang, S. H., Khamkaew, C., Prapamontol, T., & Janjai, S. (2018). Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia. Science of the Total Environment, 633, 892–911. https://doi.org/10.1016/j.scitotenv.2018.03.204
Pani, S. K., Wang, S. H., Lin, N. H., Chantara, S., Lee, C. Te, & Thepnuan, D. (2020). Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. Environmental Pollution, 259, 113871. https://doi.org/10.1016/j.envpol.2019.113871
Pei, C., Wu, Y., Tao, J., Zhang, L., Zhang, T., Zhang, R., & Li, S. (2022). Seasonal variations of mass absorption efficiency of elemental carbon in PM2.5 in urban Guangzhou of South China. Journal of Environmental Sciences, 133, 83–92. https://doi.org/10.1016/j.jes.2022.04.019
Pérez-Pastor, R., Salvador, P., García-Gómez, H., García-Alonso, S., Toro, M., Artíñano, B., & Alonso, R. (2023). Characterization of organic aerosols at the Natura 2000 remote environment of Sanabria Lake (Spain): Evaluating the influence of African dust and regional biomass burning smoke. Atmospheric Environment, 298(October 2022). https://doi.org/10.1016/j.atmosenv.2023.119634
Pirouzmand, A., Kowsar, Z., & Dehghani, P. (2018). Atmospheric dispersion assessment of radioactive materials during severe accident conditions for Bushehr nuclear power plant using HYSPLIT code. Progress in Nuclear Energy, 108(April), 169–178. https://doi.org/10.1016/j.pnucene.2018.05.015
Prabhu, V., Soni, A., Madhwal, S., Gupta, A., Sundriyal, S., Shridhar, V., Sreekanth, V., & Mahapatra, P. S. (2020). Black carbon and biomass burning associated high pollution episodes observed at Doon valley in the foothills of the Himalayas. Atmospheric Research, 243(December 2019), 105001. https://doi.org/10.1016/j.atmosres.2020.105001
Qiu, Y., Wu, X., Zhang, Y., Xu, L., Hong, Y., Chen, J., Chen, X., & Deng, J. (2019). Aerosol light absorption in a coastal city in Southeast China: Temporal variations and implications for brown carbon. Journal of Environmental Sciences (China), 80, 257–266. https://doi.org/10.1016/j.jes.2019.01.002
Qiu, Z., Wang, X., Liu, Z., & Luo, J. (2022). Quantitative assessment of cyclists’ exposure to PM and BC on different bike lanes. Atmospheric Pollution Research, 13(11), 101588. https://doi.org/10.1016/j.apr.2022.101588
Qu, Y., Liu, H., Zhou, Y., Dai, W., Shi, J., & Wang, N. (2023). Spectral dependence of light absorption and direct radiative forcing of the TSP , PM 10 , PM 2 . 5 and PM 0 . 1 in a rural region of northwestern China. Atmospheric Environment, 292(97), 119417. https://doi.org/10.1016/j.atmosenv.2022.119417
Rajesh, T. A., Ramachandran, S., & Dhaker, V. K. (2021). Black carbon aerosols: Relative source strengths of vehicular emissions and residential/open wood burning over an urban and a semi-urban environment. Atmospheric Pollution Research, 12(6), 101060. https://doi.org/10.1016/j.apr.2021.101060
Rangel-Buitrago, N., Gracia C., A., Vélez-Mendoza, A., Mantilla-Barbosa, E., Arana, V. A., Trilleras, J., & Arroyo-Olarte, H. (2018). Abundance and distribution of beach litter along the Atlantico Department, Caribbean coast of Colombia. Marine Pollution Bulletin, 136(August), 435–447. https://doi.org/10.1016/j.marpolbul.2018.09.040
Rangel-Buitrago, N., Mendoza, A. V., Gracia C, A., Mantilla-Barbosa, E., Arana, V. A., Trilleras, J., & Arroyo-Olarte, H. (2019). Litter impacts on cleanliness and environmental status of Atlantico department beaches, Colombian Caribbean coast. Ocean and Coastal Management, 179(March), 104835. https://doi.org/10.1016/j.ocecoaman.2019.104835
Rathod, T. D., Sahu, S. K., Tiwari, M., Bhangare, R. C., & Ajmal, P. Y. (2021). Light absorption enhancement due to mixing in black carbon and organic carbon generated during biomass burning. Atmospheric Pollution Research, 12(12), 101236. https://doi.org/10.1016/j.apr.2021.101236
Resquin, M. D., Santágata, D., Gallardo, L., Gómez, D., Rössler, C., & Dawidowski, L. (2018). Local and remote black carbon sources in the Metropolitan Area of Buenos Aires. Atmospheric Environment, 182(March), 105–114. https://doi.org/10.1016/j.atmosenv.2018.03.018
Reyna-Bensusan, N., Wilson, D. C., Davy, P. M., Fuller, G. W., Fowler, G. D., & Smith, S. R. (2019). Experimental measurements of black carbon emission factors to estimate the global impact of uncontrolled burning of waste. Atmospheric Environment, 213(January), 629–639. https://doi.org/10.1016/j.atmosenv.2019.06.047
Rodríguez, S., Cuevas, E., González, Y., Ramos, R., Romero, P. M., Pérez, N., Querol, X., & Alastuey, A. (2008). Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5-10 concentrations in a coastal city. Atmospheric Environment, 42(26), 6523–6534. https://doi.org/10.1016/j.atmosenv.2008.04.022
Roldan-Vargas, J. C., Toro-Gómez, M. V., & Marín-Sánchez, A. (2021). Estimación y modelización de la dispersión de black carbon en el Valle de Aburrá, Colombia. TecnoLógicas, 24(50), e1580. https://doi.org/10.22430/22565337.1580
Saha, A., & Despiau, S. (2009). Seasonal and diurnal variations of black carbon aerosols over a Mediterranean coastal zone. Atmospheric Research, 92(1), 27–41. https://doi.org/10.1016/j.atmosres.2008.07.007
Şahin, Ü. A., Onat, B., Akın, Ö., Ayvaz, C., Uzun, B., Mangır, N., Doğan, M., & Harrison, R. M. (2020). Temporal variations of atmospheric black carbon and its relation to other pollutants and meteorological factors at an urban traffic site in Istanbul. Atmospheric Pollution Research, 11(7), 1051–1062. https://doi.org/10.1016/j.apr.2020.03.009
Sandradewi, J., Prévôt, A. S. H., Weingartner, E., Schmidhauser, R., Gysel, M., & Baltensperger, U. (2008). A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmospheric Environment, 42(1), 101–112. https://doi.org/10.1016/j.atmosenv.2007.09.034
Schkolnik, G., Chand, D., Hoffer, A., Andreae, M. O., Erlick, C., Swietlicki, E., & Rudich, Y. (2007). Constraining the density and complex refractive index of elemental and organic carbon in biomass burning aerosol using optical and chemical measurements. Atmospheric Environment, 41(5), 1107–1118. https://doi.org/10.1016/j.atmosenv.2006.09.035
Shi, Y., Gong, S., Zang, S., Zhao, Y., Wang, W., Lv, Z., Matsunaga, T., Yamaguchi, Y., & Bai, Y. (2021). High-resolution and multi-year estimation of emissions from open biomass burning in Northeast China during 2001–2017. Journal of Cleaner Production, 310(January), 127496. https://doi.org/10.1016/j.jclepro.2021.127496
Skrynyk, O., Voloshchuk, V., Budak, I., & Bubin, S. (2019). Regional HYSPLIT simulation of atmospheric transport and deposition of the Chernobyl 137Cs releases. Atmospheric Pollution Research, 10(6), 1953–1963. https://doi.org/10.1016/j.apr.2019.09.001
Srivastava, R., Asutosh, A., Sabu, P., & Anilkumar, N. (2021). Investigation of Black Carbon characteristics over southern ocean: Contribution of fossil fuel and biomass burning. Environmental Pollution, 276, 116645. https://doi.org/10.1016/j.envpol.2021.116645
Swarnkar, A., & Gurjar, B. R. (2023). GIS-based emission inventory of heavy metals from road transport and NMVOCs associated with biomass burning for megacity Delhi. Urban Climate, 51(December 2022), 101600. https://doi.org/10.1016/j.uclim.2023.101600
Targino, A. C., Krecl, P., Oukawa, G. Y., & Mollinedo, E. M. (2022). A short climatology of black and brown carbon and their sources at a suburban site impacted by smoke in Brazil. xxxx, 1–14. https://doi.org/10.1016/j.jes.2022.12.025
Ul Haq, E., Alam, K., Bibi, S., & Roy, A. (2023). High concentration of black carbon in northern Pakistan: Characteristics, source apportionment and emission source regions. Atmospheric Environment, 293(October 2022), 119475. https://doi.org/10.1016/j.atmosenv.2022.119475
Valenzuela, A., Olmo, F. J., Lyamani, H., Antón, M., Titos, G., Cazorla, A., & Alados-Arboledas, L. (2015). Aerosol scattering and absorption Angström exponents as indicators of dust and dust-free days over Granada (Spain). Atmospheric Research, 154, 1–13. https://doi.org/10.1016/j.atmosres.2014.10.015
Voinea, S., & Stefan, S. (2019). Study of the Ångström turbidity over Romanian Black Sea coast. Journal of Atmospheric and Solar-Terrestrial Physics, 182(November 2018), 67–78. https://doi.org/10.1016/j.jastp.2018.11.001
Wang, Q., Wang, L., Tao, M., Chen, N., Lei, Y., Sun, Y., Xin, J., Li, T., Zhou, J., Liu, J., Ji, D., & Wang, Y. (2021). Exploring the variation of black and brown carbon during COVID-19 lockdown in megacity Wuhan and its surrounding cities, China. Science of the Total Environment, 791, 148226. https://doi.org/10.1016/j.scitotenv.2021.148226
Wang, T., Zhao, G., Tan, T., Yu, Y., Tang, R., Dong, H., Chen, S., Li, X., Lu, K., Zeng, L., Gao, Y., Wang, H., Lou, S., Liu, D., Hu, M., Zhao, C., & Guo, S. (2021). Effects of biomass burning and photochemical oxidation on the black carbon mixing state and light absorption in summer season. Atmospheric Environment, 248, 118230. https://doi.org/10.1016/j.atmosenv.2021.118230
Wang, W., Khanna, N., Lin, J., & Liu, X. (2023). Black carbon emissions and reduction potential in China: 2015–2050. Journal of Environmental Management, 329(June 2022), 117087. https://doi.org/10.1016/j.jenvman.2022.117087
Wang, X., Li, J., Zhang, X., Cheng, Z., Jiang, H., Jiang, H., Lin, B., Zhu, S., Zhao, S., Liu, J., Tian, C., Zhang, R., & Zhang, G. (2023). An innovative passive sampler to reveal the high contribution of biomass burning to black carbon over Indo-China Peninsula: Radiocarbon constraints. Atmospheric Environment, 294(August 2022), 119522. https://doi.org/10.1016/j.atmosenv.2022.119522
Wyche, K. P., Cordell, R. L., Smith M, L., Smallbone, K. L., Lyons, P., Hama, S. M. L., Monks, P. S., Staelens, J., Hofman, J., Stroobants, C., Roekens, E., Kos, G. P. A., Weijers, E. P., Panteliadis, P., & Dijkema, M. B. A. (2020). The spatio-temporal evolution of black carbon in the North-West European ‘air pollution hotspot.’ Atmospheric Environment, 243(July), 117874. https://doi.org/10.1016/j.atmosenv.2020.117874
Xiao, H. W., Mao, D. Y., Huang, L. L., Xiao, H. Y., & Wu, J. F. (2021). Evaluation of black carbon source apportionment based on one year’s daily observations in Beijing. Science of the Total Environment, 773, 145668. https://doi.org/10.1016/j.scitotenv.2021.145668
Xiao, H. W., Mao, D. Y., Huang, L. L., Xiao, H. Y., & Wu, J. F. (2021). Evaluation of black carbon source apportionment based on one year’s daily observations in Beijing. Science of the Total Environment, 773, 145668. https://doi.org/10.1016/j.scitotenv.2021.145668
Xiao, H., Xu, Y., & Xiao, H. (2023). Source apportionment of black carbon aerosols in winter across China. 298(January). https://doi.org/10.1016/j.atmosenv.2023.119622
Xu, R., Tie, X., Li, G., Zhao, S., Cao, J., Feng, T., & Long, X. (2018). Effect of biomass burning on black carbon (BC) in South Asia and Tibetan Plateau: The analysis of WRF-Chem modeling. Science of the Total Environment, 645, 901–912. https://doi.org/10.1016/j.scitotenv.2018.07.165
Yang, J., Ji, Z., Kang, S., & Tripathee, L. (2021). Contribution of South Asian biomass burning to black carbon over the Tibetan Plateau and its climatic impact. Environmental Pollution, 270, 116195. https://doi.org/10.1016/j.envpol.2020.116195
Yang, Xiaoyang, Ji, D., Li, J., He, J., Gong, C., Xu, X., Wang, Z., Liu, Y., Bi, F., Zhang, Z., & Chen, Y. (2023). Impacts of springtime biomass burning in Southeast Asia on atmospheric carbonaceous components over the Beibu Gulf in China: Insights from aircraft observations. Science of the Total Environment, 857(August 2022), 159232. https://doi.org/10.1016/j.scitotenv.2022.159232
Yang, Xiuleng, Orjuela, J. P., McCoy, E., Vich, G., Anaya-Boig, E., Avila-Palencia, I., Brand, C., Carrasco-Turigas, G., Dons, E., Gerike, R., Götschi, T., Nieuwenhuijsen, M., Panis, L. I., Standaert, A., & de Nazelle, A. (2022). The impact of black carbon (BC) on mode-specific galvanic skin response (GSR) as a measure of stress in urban environments. Environmental Research, 214(June), 16–18. https://doi.org/10.1016/j.envres.2022.114083
Yu, R., Liu, X. C., Larson, T., & Wang, Y. (2015). Coherent approach for modeling and nowcasting hourly near-road Black Carbon concentrations in Seattle, Washington. Transportation Research Part D: Transport and Environment, 34, 104–115. https://doi.org/10.1016/j.trd.2014.10.009
Yuan, M., Wang, Q., Zhao, Z., Zhang, Y., Lin, Y., Wang, X., Chow, J. C., Watson, J. G., Tian, R., Liu, H., Tian, J., & Cao, J. (2022). Seasonal variation of optical properties and source apportionment of black and brown carbon in Xi’an, China. Atmospheric Pollution Research, 13(6), 101448. https://doi.org/10.1016/j.apr.2022.101448
Zeng, X., Li, S., Xing, J., Yang, J., Wang, Q., Song, G., Teng, M., Zhou, D., & Lu, J. (2023). CALIPSO-observed Southeast Asia biomass-burning influences on aerosol vertical structure in Guangdong-Hong Kong-Macao Greater Bay Area. Atmospheric Research, 289(April), 106755. https://doi.org/10.1016/j.atmosres.2023.106755
Zhang, Junmei, Qi, A., Wang, Q., Huang, Q., Yao, S., Li, J., Yu, H., & Yang, L. (2022). Characteristics of water-soluble organic carbon (WSOC) in PM2.5 in inland and coastal cities, China. Atmospheric Pollution Research, 13(6), 101447. https://doi.org/10.1016/j.apr.2022.101447
Zhang, L., Luo, Z., Du, W., Li, G., Shen, G., Cheng, H., & Tao, S. (2020). Light absorption properties and absorption emission factors for indoor biomass burning. Environmental Pollution, 267, 115652. https://doi.org/10.1016/j.envpol.2020.115652
Zhang, Y., Zhang, X., Fan, X., Ni, C., Sun, Z., Wang, S., Fan, J., & Zheng, C. (2020). Modifying effects of temperature on human mortality related to black carbon particulates in Beijing, China. Atmospheric Environment, 243(24), 117845. https://doi.org/10.1016/j.atmosenv.2020.117845
Zhu, C., Miyakawa, T., Irie, H., Choi, Y., Taketani, F., & Kanaya, Y. (2021). Light-absorption properties of brown carbon aerosols in the Asian outflow: Implications of a combination of filter and ground remote-sensing observations at Fukue Island, Japan. Science of the Total Environment, 797, 149155. https://doi.org/10.1016/j.scitotenv.2021.149155
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 125 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Barranquilla
dc.coverage.region.none.fl_str_mv Atlántico
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.department.spa.fl_str_mv Civil y Ambiental
dc.publisher.place.spa.fl_str_mv Barranquilla, Colombia
dc.publisher.program.spa.fl_str_mv Maestría de Investigación en Desarrollo Sostenible MIDES
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/84de49eb-55eb-477b-97af-1122a6c13833/download
https://repositorio.cuc.edu.co/bitstreams/02aa766a-4fc4-4b5d-9788-ce3ffc3829b0/download
https://repositorio.cuc.edu.co/bitstreams/79c2a2f7-ea48-485a-8bbf-c762abea97a3/download
https://repositorio.cuc.edu.co/bitstreams/0048731b-e3c5-47b8-a6d6-bf18d577b33e/download
bitstream.checksum.fl_str_mv 6759e7243ff92929b824647d25b1c267
2f9959eaf5b71fae44bbf9ec84150c7a
090a3daf9bc0bbb1c583fd3bc0eaca33
6fc7b492bf03188fdbbc7ed18828b343
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760851875528704
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Blanco Donado, EricaOliveira Silva, LuisReales López, Gabriel Jose2023-09-18T15:12:11Z2023-09-18T15:12:11Z2023https://hdl.handle.net/11323/10487Corporacion Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The deterioration of air quality resulting from biomass burning is one of the greatest concerns today, due to the emissions of some atmospheric pollutants, among which Black Carbon (BC) stands out, considered a pollutant with a strong contribution to radiative forcing and consequently altering the climate. In this research, BC was monitored environmentally through an AE33 ethalometer, this instrument allowed the determination of concentrations and the identification of the contribution of burning and vehicular traffic, in addition to the Ångström absorption exponent, which is essential for the identification of burning. To relate the percentage contribution of the burns in the city of Barranquilla obtained by the AAE33 vs. those obtained by the modeling, a modeling was used in which the burning points were identified and then fed to the Hysplit trajectory dispersion model for the sampling period from June 1, 2019 to June 30, 2020. The results obtained were an ambient BC concentration of 0.80 ± 0.64 μg/m3, a biomass burning contribution percentage of 17.2% thus obtaining a remaining vehicle traffic contribution of 82.8% and a high correlation in the variables humidity, atmospheric pressure and solar radiation.El deterioro de la calidad del aire producto de las quemas de biomasa constituye una de las mayores preocupaciones de la actualidad, debido a las emisiones de algunos contaminantes atmosféricos dentro de los que se destaca el Black Carbon (BC), considerado un contaminante con una fuerte contribución al forzamiento radiativo y consecuentemente alterando el clima. En esta investigación se monitoreo ambientalmente el BC a través de un etalómetro AE33, este instrumento permitió la determinación de las concentraciones y la identificación de la contribución de las quemas y tráfico vehicular además del exponente de absorción Ångström que es indispensable para la identificación de las quemas. Para relacionar el porcentaje de contribución de las quemas de la ciudad de Barranquilla obtenidas por el AAE33 vs las obtenidas por la modelación, se empleó una modelación en la que se identificaron los puntos de quemas y posteriormente se alimentaron al modelo de dispersión de trayectorias Hysplit para el periodo de muestreo de 1 de junio del 2019 hasta el 30 de junio del 2020. Los resultados obtenidos fueron una concentración de BC ambiental de 0.80 ± 0.64 μg/m3, un porcentaje de contribución de quemas de biomasa de 17.2% obteniendo así un restante de contribución de tráfico vehicular de 82.8% y una alta correlación en las variables humedad, presión atmosférica y radiación solarLista de tablas 9-- Lista de figuras 10-- Introducción 11-- Planteamiento del problema 20-- Hipótesis 25-- Objetivos 26-- Objetivo general 26-- Objetivos específicos 26-- Marco teórico y estado del arte 27 Antecedentes 39-- Materiales y métodos 45-- Métodos de medición de Black Carbon 45-- Herramientas de detección de incendios forestales 51-- Resultados 61-- Discusión 92-- Conclusiones 99-- Recomendaciones 101-- Referencias 102-- Anexos 121--Magíster en Investigación en Desarrollo Sostenible MIDESMaestría125 páginasapplication/pdfspaCorporación Universidad de la CostaCivil y AmbientalBarranquilla, ColombiaMaestría de Investigación en Desarrollo Sostenible MIDESEvaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, AtlánticoTrabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/acceptedVersionBarranquillaAtlánticoAmbade, B., Sankar, T. K., Panicker, A. S., Gautam, A. S., & Gautam, S. (2021). Characterization, seasonal variation, source apportionment and health risk assessment of black carbon over an urban region of East India. Urban Climate, 38(November 2020), 100896. https://doi.org/10.1016/j.uclim.2021.100896Anaya, J. A., Chuvieco, E., & Palacios-Orueta, A. (2009). Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecology and Management, 257(4), 1237–1246. https://doi.org/10.1016/j.foreco.2008.11.016Babativa, C. L. (2018). Exploración de perfiles verticales de humedad relativa, temperatura y concentraciones de PM2. 5 y black carbon, en la localidad de puente aranda. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/733/%0Ahttps://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1732&context=ing_ambiental_sanitariBadarinath, K. V. S., Latha, K. M., Chand, T. R. K., Reddy, R. R., Gopal, K. R., Reddy, L. S. S., Narasimhulu, K., & Kumar, K. R. (2007). Black carbon aerosols and gaseous pollutants in an urban area in North India during a fog period. Atmospheric Research, 85(2), 209–216. https://doi.org/10.1016/j.atmosres.2006.12.007Balakrishnaiah, G., Raghavendra kumar, K., Suresh Kumar Reddy, B., Rama Gopal, K., Reddy, R. R., Reddy, L. S. S., Nazeer Ahammed, Y., Narasimhulu, K., Krishna Moorthy, K., & Suresh Babu, S. (2011). Analysis of optical properties of atmospheric aerosols inferred from spectral AODs and Ångström wavelength exponent. Atmospheric Environment, 45(6), 1275–1285. https://doi.org/10.1016/j.atmosenv.2010.12.002Ballesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment, 739, 139755. https://doi.org/10.1016/j.scitotenv.2020.139755Bibi, S., Alam, K., Chishtie, F., Bibi, H., & Rahman, S. (2017). Temporal variation of Black Carbon concentration using Aethalometer observations and its relationships with meteorological variables in Karachi, Pakistan. Journal of Atmospheric and Solar-Terrestrial Physics, 157–158(April), 67–77. https://doi.org/10.1016/j.jastp.2017.03.017Blanco-Alegre, C., Calvo, A. I., Alves, C., Fialho, P., Nunes, T., Gomes, J., Castro, A., Oduber, F., Coz, E., & Fraile, R. (2020). Aethalometer measurements in a road tunnel: A step forward in the characterization of black carbon emissions from traffic. Science of the Total Environment, 703, 135483. https://doi.org/10.1016/j.scitotenv.2019.135483Blanco-Donado, E. P., Schneider, I. L., Artaxo, P., Lozano-Osorio, J., Portz, L., & Oliveira, M. L. S. (2021). Source identification and global implications of black carbon. Geoscience Frontiers, xxxx, 101149. https://doi.org/10.1016/j.gsf.2021.101149Bolaño-Truyol, J., Schneider, I. L., Cuadro, H. C., Bolaño-Truyol, J. D., & Oliveira, M. L. S. (2021). Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean. Geoscience Frontiers, xxxx, 101152. https://doi.org/10.1016/j.gsf.2021.101152Bolaño-Truyol, J., Schneider, I. L., Cuadro, H. C., Bolaño-Truyol, J. D., & Oliveira, M. L. S. (2022). Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean. Geoscience Frontiers, 13(1), 0–6. https://doi.org/10.1016/j.gsf.2021.101152Bounakhla, Y., Benchrif, A., Tahri, M., Costabile, F., Zahry, F., Bounakhla, M., & El Hassan, E. K. (2022). Black carbon aerosols at an urban site in North Africa (Kenitra, Morocco). Atmospheric Pollution Research, 13(8), 101489. https://doi.org/10.1016/j.apr.2022.101489Brasseur, O., Declerck, P., Heene, B., & Vanderstraeten, P. (2015). Modelling black carbon concentrations in two busy street canyons in brussels using CANSBC. Atmospheric Environment, 101, 72–81. https://doi.org/10.1016/j.atmosenv.2014.10.049Byčenkienė, S., Pashneva, D., Uogintė, I., Pauraitė, J., Minderytė, A., Davulienė, L., Plauškaitė, K., Skapas, M., Dudoitis, V., Touqeer, G., Andriejauskiene, J., Araminienė, V., Dzenajavičienė, E. F., Sicard, P., Gudynaitė-Franckevičienė, V., Varnagirytė-Kabašinskienė, I., Pedišius, N., Lemanas, E., & Vonžodas, T. (2022). Evaluation of the anthropogenic black carbon emissions and deposition on Norway spruce and silver birch foliage in the Baltic region. Environmental Research, 207(October 2021). https://doi.org/10.1016/j.envres.2021.112218Casallas, A., Castillo-Camacho, M. P., Guevara-Luna, M. A., González, Y., Sanchez, E., & Belalcazar, L. C. (2022). Spatio-temporal analysis of PM2.5 and policies in Northwestern South America. Science of the Total Environment, 852(May). https://doi.org/10.1016/j.scitotenv.2022.158504Casquero-Vera, J. A., Lyamani, H., Titos, G., Minguillón, M. C., Dada, L., Alastuey, A., Querol, X., Petäjä, T., Olmo, F. J., & Alados-Arboledas, L. (2021). Quantifying traffic, biomass burning and secondary source contributions to atmospheric particle number concentrations at urban and suburban sites. Science of the Total Environment, 768. https://doi.org/10.1016/j.scitotenv.2021.145282Chen, P., Kang, S., Gan, Q., Yu, Y., Yuan, X., Liu, Y., Tripathee, L., Wang, X., & Li, C. (2022). Concentrations and light absorption properties of PM2.5 organic and black carbon based on online measurements in Lanzhou, China. Journal of Environmental Sciences, 131, 84–95. https://doi.org/10.1016/j.jes.2022.08.007Cheng, Y. H., Huang, Y. C., Pipal, A. S., Jian, M. Y., & Liu, Z. S. (2022). Source apportionment of black carbon using light absorption measurement and impact of biomass burning smoke on air quality over rural central Taiwan: A yearlong study. Atmospheric Pollution Research, 13(1). https://doi.org/10.1016/j.apr.2021.101264Chuvieco, E., Pettinari, M. L., Koutsias, N., Forkel, M., Hantson, S., & Turco, M. (2021). Human and climate drivers of global biomass burning variability. Science of the Total Environment, 779, 146361. https://doi.org/10.1016/j.scitotenv.2021.146361Duarte, A. L., Schneider, I. L., Artaxo, P., & Oliveira, M. L. S. (2022). Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city. Geoscience Frontiers, 13(1), 101168. https://doi.org/10.1016/j.gsf.2021.101168Dumka, U. C., Kaskaoutis, D. G., Tiwari, S., Safai, P. D., Attri, S. D., Soni, V. K., Singh, N., & Mihalopoulos, N. (2018). Assessment of biomass burning and fossil fuel contribution to black carbon concentrations in Delhi during winter. Atmospheric Environment, 194(August), 93–109. https://doi.org/10.1016/j.atmosenv.2018.09.033Dutta, M., & Chatterjee, A. (2021). Assessment of the relative influences of long-range transport, fossil fuel and biomass burning from aerosol pollution under restricted anthropogenic emissions: A national scenario in India. Atmospheric Environment, 255(April), 118423. https://doi.org/10.1016/j.atmosenv.2021.118423Galdos, M., Cavalett, O., Seabra, J. E. A., Nogueira, L. A. H., & Bonomi, A. (2013). Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Applied Energy, 104, 576–582. https://doi.org/10.1016/j.apenergy.2012.11.002Garavito, G., Martinez, B., Builes, J. J., Aguirre, D., Mendoza, L., Afanador, C. H., Egea, E., & Marrugo, J. (2015). Indels markers set and ancestry estimates in a population sample from Atlantic Department of Colombia. Forensic Science International: Genetics Supplement Series, 5, e177–e178. https://doi.org/10.1016/j.fsigss.2015.09.071Goel, V., Hazarika, N., Kumar, M., & Singh, V. (2021). Source apportionment of black carbon over Delhi: A case study of extreme biomass burning events and Diwali festival. Urban Climate, 39(March), 100926. https://doi.org/10.1016/j.uclim.2021.100926Goel, V., Hazarika, N., Kumar, M., Singh, V., Thamban, N. M., & Tripathi, S. N. (2021). Variations in Black Carbon concentration and sources during COVID-19 lockdown in Delhi. Chemosphere, 270, 129435. https://doi.org/10.1016/j.chemosphere.2020.129435González-álvarez, Á., Viloria-Marimón, O. M., Coronado-Hernández, Ó. E., Vélez-Pereira, A. M., Tesfagiorgis, K., & Coronado-Hernández, J. R. (2019). Isohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean Region. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020358Hamilton, G. A., & Hartnett, H. E. (2013). Soot black carbon concentration and isotopic composition in soils from an arid urban ecosystem. Organic Geochemistry, 59, 87–94. https://doi.org/10.1016/j.orggeochem.2013.04.003Harrison, R. M., Beddows, D. C. S., Jones, A. M., Calvo, A., Alves, C., & Pio, C. (2013). An evaluation of some issues regarding the use of aethalometers to measure woodsmoke concentrations. Atmospheric Environment, 80, 540–548. https://doi.org/10.1016/j.atmosenv.2013.08.026He, C., Takano, Y., Liou, K. N., Yang, P., Li, Q., & Mackowski, D. W. (2016). Intercomparison of the GOS approach, superposition T-matrix method, and laboratory measurements for black carbon optical properties during aging. Journal of Quantitative Spectroscopy and Radiative Transfer, 184, 287–296. https://doi.org/10.1016/j.jqsrt.2016.08.004He, Q., Guo, Q., Umeki, K., Ding, L., Wang, F., & Yu, G. (2021). Soot formation during biomass gasification: A critical review. Renewable and Sustainable Energy Reviews, 139(March 2020), 110710. https://doi.org/10.1016/j.rser.2021.110710Healy, R. M., Sofowote, U., Su, Y., Debosz, J., Noble, M., Jeong, C. H., Wang, J. M., Hilker, N., Evans, G. J., Doerksen, G., Jones, K., & Munoz, A. (2017). Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario. Atmospheric Environment, 161, 34–47. https://doi.org/10.1016/j.atmosenv.2017.04.034Hernandez, A. J., Morales-Rincon, L. A., Wu, D., Mallia, D., Lin, J. C., & Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45), 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051Highwood, E. J., & Kinnersley, R. P. (2006). When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environment International, 32(4), 560–566. https://doi.org/10.1016/j.envint.2005.12.003 http://queimadas.dgi.inpe.br/queimadas/bdqueimadasIchoku, C., & Kaufman, Y. J. (2005). A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Transactions on Geoscience and Remote Sensing, 43(11), 2636–2649. https://doi.org/10.1109/TGRS.2005.857328Iraji, F., Memarian, M. H., Joghataei, M., & Ghafarian Malamiri, H. R. (2021). Determining the source of dust storms with use of coupling WRF and HYSPLIT models: A case study of Yazd province in central desert of Iran. Dynamics of Atmospheres and Oceans, 93(December 2020), 101197. https://doi.org/10.1016/j.dynatmoce.2020.101197Jeong, H., & Park, D. (2017). Characteristics of elementary school children’s daily exposure to black carbon (BC) in Korea. Atmospheric Environment, 154, 179–188. https://doi.org/10.1016/j.atmosenv.2017.01.045Jiang, H., Li, J., Wang, J., Jiang, H., Mo, Y., Tang, J., Zhang, R., Pansak, W., Zhong, G., Zhao, S., Ning, J., Tian, C., & Zhang, G. (2022). Regional monitoring of biomass burning using passive air sampling technique reveals the importance of MODIS unresolved fires. Environment International, 170(July), 107582. https://doi.org/10.1016/j.envint.2022.107582Jiang, K., Xing, R., Luo, Z., Huang, W., Yi, F., Men, Y., Zhao, N., Chang, Z., Zhao, J., Pan, B., & Shen, G. (2024). Particuology Pollutant emissions from biomass burning : A review on emission characteristics , environmental impacts , and research perspectives. Particuology, 85, 296–309. https://doi.org/10.1016/j.partic.2023.07.012Kalisa, E., & Adams, M. (2022). Population-scale COVID-19 curfew effects on urban black carbon concentrations and sources in Kigali, Rwanda. Urban Climate, 46(October), 101312. https://doi.org/10.1016/j.uclim.2022.101312Kalita, G., Kunchala, R. K., Fadnavis, S., & Kaskaoutis, D. G. (2020). Long term variability of carbonaceous aerosols over Southeast Asia via reanalysis: Association with changes in vegetation cover and biomass burning. Atmospheric Research, 245(December 2019), 105064. https://doi.org/10.1016/j.atmosres.2020.105064Kang, Z., Ma, P., Quan, J., Jia, X., Liao, Z., & Pan, Y. (2023). Observational evidence of the regional transported black carbon in high layer over Beijing. Atmospheric Environment, 311(August), 120000. https://doi.org/10.1016/j.atmosenv.2023.120000Kapoor, T. S., Venkataraman, C., Sarkar, C., Phuleria, H. C., Chatterjee, A., Habib, G., & Apte, J. S. (2022). Estimation of real-time brown carbon absorption: An observationally constrained Mie theory-based optimization method. Journal of Aerosol Science, 166(June), 106047. https://doi.org/10.1016/j.jaerosci.2022.106047Kompalli, S. K., Babu, S. S., Ajith, T. C., Moorthy, K. K., Satheesh, S. K., Boopathy, R., Das, T., Liu, D., Allan, J., & Coe, H. (2023). Aging of biomass burning emissions in the Indo-Gangetic Plain outflow: Implications for black carbon light-absorption enhancement. Atmospheric Research, 294(July), 106949. https://doi.org/10.1016/j.atmosres.2023.106949Lee, Y. C., Lam, Y. F., Kuhlmann, G., Wenig, M. O., Chan, K. L., Hartl, A., & Ning, Z. (2013). An integrated approach to identify the biomass burning sources contributing to black carbon episodes in Hong Kong. Atmospheric Environment, 80, 478–487. https://doi.org/10.1016/j.atmosenv.2013.08.030Li, Fangjun, Zhang, X., Kondragunta, S., Lu, X., Csiszar, I., & Schmidt, C. C. (2022). Hourly biomass burning emissions product from blended geostationary and polar-orbiting satellites for air quality forecasting applications. Remote SenLi, Fangjun, Zhang, X., Kondragunta, S., Lu, X., Csiszar, I., & Schmidt, C. C. (2022). Hourly biomass burning emissions product from blended geostationary and polar-orbiting satellites for air quality forecasting applications. Remote Sensing of Environment, 281(April), 113237. https://doi.org/10.1016/j.rse.2022.113237Li, Fangzhou, Luo, Q., Lin, W., Li, J., & Jiang, B. (2022). Simulating the impact of biomass burning aerosols on an intensive precipitation event in urban areas of the Pearl River Delta. Atmospheric Research, 266(December 2021), 105966. https://doi.org/10.1016/j.atmosres.2021.105966Li, W., Liu, X., Duan, F., Qu, Y., & An, J. (2022). A one-year study on black carbon in urban Beijing: Concentrations, sources and implications on visibility. Atmospheric Pollution Research, 13(2). https://doi.org/10.1016/j.apr.2021.101307Li, X., Sun, N., Jin, Q., Zhao, Z., Wang, L., Wang, Q., Gu, X., Li, Y., & Liu, X. (2022). Light absorption properties of black and brown carbon in winter over the North China Plain: Impacts of regional biomass burning. Atmospheric Environment, 278(February), 119100. https://doi.org/10.1016/j.atmosenv.2022.119100Liang, G., Li, S., Yu, X., Bu, Q., Qu, H., Zhu, H., Yao, X., Lu, A., & Gong, W. (2022). Black carbon-mediated degradation of organic pollutants: A critical review. Process Safety and Environmental Protection, 160, 610–619. https://doi.org/10.1016/j.psep.2022.02.049Liñán-Abanto, R. N., Salcedo, D., Arnott, P., Paredes-Miranda, G., Grutter, M., Peralta, O., Carabali, G., Serrano-Silva, N., Ruiz-Suárez, L. G., & Castro, T. (2021). Temporal variations of black carbon, carbon monoxide, and carbon dioxide in Mexico City: Mutual correlations and evaluation of emissions inventories. Urban Climate, 37(April). https://doi.org/10.1016/j.uclim.2021.100855Liu, S., Luo, T., Zhou, L., Song, T., Wang, N., Luo, Q., Huang, G., Jiang, X., Zhou, S., Qiu, Y., & Yang, F. (2022). Vehicle exhausts contribute high near-UV absorption through carbonaceous aerosol during winter in a fast-growing city of Sichuan Basin, China. Environmental Pollution, 312(June), 119966. https://doi.org/10.1016/j.envpol.2022.119966Liu, T., Mickley, L. J., Singh, S., Jain, M., DeFries, R. S., & Marlier, M. E. (2020). Crop residue burning practices across north India inferred from household survey data: Bridging gaps in satellite observations. Atmospheric Environment: X, 8(September), 100091. https://doi.org/10.1016/j.aeaoa.2020.100091Liu, Xinhui, Zhu, R., Jin, B., Zu, L., Wang, Y., Wei, Y., & Zhang, R. (2023). Emission characteristics and light absorption apportionment of carbonaceous aerosols: A tunnel test conducted in an urban with fully enclosed use of E10 petrol. Environmental Research, 216(P3), 114701. https://doi.org/10.1016/j.envres.2022.114701Liu, Xuyan, Wang, S., Zhang, Q., Jiang, C., Liang, L., Tang, S., Zhang, X., Han, X., & Zhu, L. (2023). Origins of black carbon from anthropogenic emissions and open biomass burning transported to Xishuangbanna, Southwest China. Journal of Environmental Sciences (China), 125, 277–289. https://doi.org/10.1016/j.jes.2021.12.020Liu, Y., Liu, J., Yan, C., Xiao, J., Ye, J., Guo, L., & Zheng, M. (2023). Metrological traceability of black carbon measurement based on optical methods and its challenges in China : A review. Atmospheric Research, 292(February), 106854. https://doi.org/10.1016/j.atmosres.2023.106854Lizundia-Loiola, J., Franquesa, M., Khairoun, A., & Chuvieco, E. (2022). Global burned area mapping from Sentinel-3 Synergy and VIIRS active fires. Remote Sensing of Environment, 282(March), 113298. https://doi.org/10.1016/j.rse.2022.113298López-Caravaca, A., Crespo, J., Galindo, N., Yubero, E., Castañer, R., & Nicolás Aguilera, J. F. (2022). Characterization of aerosol absorption properties and PM1 at a mountain site located in the southeast of the Iberian Peninsula. Atmospheric Pollution Research, 13(10). https://doi.org/10.1016/j.apr.2022.101559Lu, X., Zhang, X., Li, F., & Cochrane, M. A. (2022). Improved estimation of fire particulate emissions using a combination of VIIRS and AHI data for Indonesia during 2015–2020. Remote Sensing of Environment, 281(September), 113238. https://doi.org/10.1016/j.rse.2022.113238Mani, S. A., Peltier, R. E., Le Mestre, M., Gunkel-Grillon, P., Shah, S., & Mani, F. S. (2022). Black carbon and elemental characterization of PM2.5 in dense traffic areas in two cities in Fiji, a Small Island Developing State. Science of the Total Environment, 845(June), 157136. https://doi.org/10.1016/j.scitotenv.2022.157136Marinho, A. A. R., Gois, G. de, Oliveira-Júnior, J. F. de, Correia Filho, W. L. F., Santiago, D. de B., Silva Junior, C. A. da, Teodoro, P. E., de Souza, A., Capristo-Silva, G. F., Freitas, W. K. de, & Rogério, J. P. (2021). Temporal record and spatial distribution of fire foci in State of Minas Gerais, Brazil. Journal of Environmental Management, 280(April 2020). https://doi.org/10.1016/j.jenvman.2020.111707Meena, G. S., Mukherjee, S., Buchunde, P., Safai, P. D., Singla, V., Aslam, M. Y., Sonbawne, S. M., Made, R., Anand, V., Dani, K. K., & Pandithurai, G. (2021). Seasonal variability and source apportionment of black carbon over a rural high-altitude and an urban site in western India. Atmospheric Pollution Research, 12(2), 32–45. https://doi.org/10.1016/j.apr.2020.10.006Milinković, A., Gregorič, A., Grgičin, V. D., Vidič, S., Penezić, A., Kušan, A. C., Alempijević, S. B., Kasper-Giebl, A., & Frka, S. (2021). Variability of black carbon aerosol concentrations and sources at a Mediterranean coastal region. Atmospheric Pollution Research, 12(11). https://doi.org/10.1016/j.apr.2021.101221Minderytė, A., Pauraite, J., Dudoitis, V., Plauškaitė, K., Kilikevičius, A., Matijošius, J., Rimkus, A., Kilikevičienė, K., Vainorius, D., & Byčenkienė, S. (2022). Carbonaceous aerosol source apportionment and assessment of transport-related pollution. Atmospheric Environment, 279(March), 119043. https://doi.org/10.1016/j.atmosenv.2022.119043Morales Betancourt, R., Galvis, B., Balachandran, S., Ramos-Bonilla, J. P., Sarmiento, O. L., Gallo-Murcia, S. M., & Contreras, Y. (2017). Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmospheric Environment, 157(1), 135–145. https://doi.org/10.1016/j.atmosenv.2017.03.006Mousavi, A., Sowlat, M. H., Hasheminassab, S., Polidori, A., & Sioutas, C. (2018). Spatio-temporal trends and source apportionment of fossil fuel and biomass burning black carbon (BC) in the Los Angeles Basin. Science of the Total Environment, 640–641, 1231–1240. https://doi.org/10.1016/j.scitotenv.2018.06.022Mousavi, A., Sowlat, M. H., Lovett, C., Rauber, M., Szidat, S., Boffi, R., Borgini, A., De Marco, C., Ruprecht, A. A., & Sioutas, C. (2019). Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy. Atmospheric Environment, 203(September 2018), 252–261. https://doi.org/10.1016/j.atmosenv.2019.02.009Mukherjee, S., Verma, A., Meena, G. S., Kodoli, S., Buchunde, P., Aslam, M. Y., Patil, R. D., Panicker, A., Safai, P. D., & Pandithurai, G. (2022). Compensatory effect of biomass burning on black carbon concentrations during COVID-19 lockdown at a high-altitude station in SW India. Atmospheric Pollution Research, 13(10), 101566. https://doi.org/10.1016/j.apr.2022.101566Nam, J. J., Gustafsson, O., Kurt-Karakus, P., Breivik, K., Steinnes, E., & Jones, K. C. (2008). Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate. Environmental Pollution, 156(3), 809–817. https://doi.org/10.1016/j.envpol.2008.05.027Ngan, F., Loughner, C. P., & Stein, A. (2019). The evaluation of mixing methods in HYSPLIT using measurements from controlled tracer experiments. Atmospheric Environment, 219(April), 117043. https://doi.org/10.1016/j.atmosenv.2019.117043Nie, D., Qiu, Z., Wang, X., & Liu, Z. (2022). Characterizing the source apportionment of black carbon and ultrafine particles near urban roads in Xi’an, China. Environmental Research, 215(P1), 114209. https://doi.org/10.1016/j.envres.2022.114209Ningombam, S. S., Khatri, P., Larson, E. J. L., Dumka, U. C., Sarangi, C., & Vineeth, R. (2023). Classification of MODIS fire emission data based on aerosol absorption Angstrom exponent retrieved from AERONET data. Science of the Total Environment, 858(August 2022), 159898. https://doi.org/10.1016/j.scitotenv.2022.159898Olson, M. R., Yuqin, W., de Foy, B., Li, Z., Bergin, M. H., Zhang, Y., & Schauer, J. J. (2022). Source attribution of black and Brown carbon near-UV light absorption in Beijing, China and the impact of regional air-mass transport. Science of the Total Environment, 807, 150871. https://doi.org/10.1016/j.scitotenv.2021.150871Pani, S. K., Wang, S. H., Lin, N. H., Chantara, S., Lee, C. Te, & Thepnuan, D. (2020). Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. Environmental Pollution, 259, 113871. https://doi.org/10.1016/j.envpol.2019.113871Pei, C., Wu, Y., Tao, J., Zhang, L., Zhang, T., Zhang, R., & Li, S. (2022). Seasonal variations of mass absorption efficiency of elemental carbon in PM2.5 in urban Guangzhou of South China. Journal of Environmental Sciences, 133, 83–92. https://doi.org/10.1016/j.jes.2022.04.019Pérez-Pastor, R., Salvador, P., García-Gómez, H., García-Alonso, S., Toro, M., Artíñano, B., & Alonso, R. (2023). Characterization of organic aerosols at the Natura 2000 remote environment of Sanabria Lake (Spain): Evaluating the influence of African dust and regional biomass burning smoke. Atmospheric Environment, 298(October 2022). https://doi.org/10.1016/j.atmosenv.2023.119634Pirouzmand, A., Kowsar, Z., & Dehghani, P. (2018). Atmospheric dispersion assessment of radioactive materials during severe accident conditions for Bushehr nuclear power plant using HYSPLIT code. Progress in Nuclear Energy, 108(April), 169–178. https://doi.org/10.1016/j.pnucene.2018.05.015Prabhu, V., Soni, A., Madhwal, S., Gupta, A., Sundriyal, S., Shridhar, V., Sreekanth, V., & Mahapatra, P. S. (2020). Black carbon and biomass burning associated high pollution episodes observed at Doon valley in the foothills of the Himalayas. Atmospheric Research, 243(December 2019), 105001. https://doi.org/10.1016/j.atmosres.2020.105001Qiu, Y., Wu, X., Zhang, Y., Xu, L., Hong, Y., Chen, J., Chen, X., & Deng, J. (2019). Aerosol light absorption in a coastal city in Southeast China: Temporal variations and implications for brown carbon. Journal of Environmental Sciences (China), 80, 257–266. https://doi.org/10.1016/j.jes.2019.01.002Qiu, Z., Wang, X., Liu, Z., & Luo, J. (2022). Quantitative assessment of cyclists’ exposure to PM and BC on different bike lanes. Atmospheric Pollution Research, 13(11), 101588. https://doi.org/10.1016/j.apr.2022.101588Qu, Y., Liu, H., Zhou, Y., Dai, W., Shi, J., & Wang, N. (2023). Spectral dependence of light absorption and direct radiative forcing of the TSP , PM 10 , PM 2 . 5 and PM 0 . 1 in a rural region of northwestern China. Atmospheric Environment, 292(97), 119417. https://doi.org/10.1016/j.atmosenv.2022.119417Rajesh, T. A., Ramachandran, S., & Dhaker, V. K. (2021). Black carbon aerosols: Relative source strengths of vehicular emissions and residential/open wood burning over an urban and a semi-urban environment. Atmospheric Pollution Research, 12(6), 101060. https://doi.org/10.1016/j.apr.2021.101060Rangel-Buitrago, N., Gracia C., A., Vélez-Mendoza, A., Mantilla-Barbosa, E., Arana, V. A., Trilleras, J., & Arroyo-Olarte, H. (2018). Abundance and distribution of beach litter along the Atlantico Department, Caribbean coast of Colombia. Marine Pollution Bulletin, 136(August), 435–447. https://doi.org/10.1016/j.marpolbul.2018.09.040Rangel-Buitrago, N., Mendoza, A. V., Gracia C, A., Mantilla-Barbosa, E., Arana, V. A., Trilleras, J., & Arroyo-Olarte, H. (2019). Litter impacts on cleanliness and environmental status of Atlantico department beaches, Colombian Caribbean coast. Ocean and Coastal Management, 179(March), 104835. https://doi.org/10.1016/j.ocecoaman.2019.104835Rathod, T. D., Sahu, S. K., Tiwari, M., Bhangare, R. C., & Ajmal, P. Y. (2021). Light absorption enhancement due to mixing in black carbon and organic carbon generated during biomass burning. Atmospheric Pollution Research, 12(12), 101236. https://doi.org/10.1016/j.apr.2021.101236Resquin, M. D., Santágata, D., Gallardo, L., Gómez, D., Rössler, C., & Dawidowski, L. (2018). Local and remote black carbon sources in the Metropolitan Area of Buenos Aires. Atmospheric Environment, 182(March), 105–114. https://doi.org/10.1016/j.atmosenv.2018.03.018Reyna-Bensusan, N., Wilson, D. C., Davy, P. M., Fuller, G. W., Fowler, G. D., & Smith, S. R. (2019). Experimental measurements of black carbon emission factors to estimate the global impact of uncontrolled burning of waste. Atmospheric Environment, 213(January), 629–639. https://doi.org/10.1016/j.atmosenv.2019.06.047Rodríguez, S., Cuevas, E., González, Y., Ramos, R., Romero, P. M., Pérez, N., Querol, X., & Alastuey, A. (2008). Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5-10 concentrations in a coastal city. Atmospheric Environment, 42(26), 6523–6534. https://doi.org/10.1016/j.atmosenv.2008.04.022Roldan-Vargas, J. C., Toro-Gómez, M. V., & Marín-Sánchez, A. (2021). Estimación y modelización de la dispersión de black carbon en el Valle de Aburrá, Colombia. TecnoLógicas, 24(50), e1580. https://doi.org/10.22430/22565337.1580Saha, A., & Despiau, S. (2009). Seasonal and diurnal variations of black carbon aerosols over a Mediterranean coastal zone. Atmospheric Research, 92(1), 27–41. https://doi.org/10.1016/j.atmosres.2008.07.007Şahin, Ü. A., Onat, B., Akın, Ö., Ayvaz, C., Uzun, B., Mangır, N., Doğan, M., & Harrison, R. M. (2020). Temporal variations of atmospheric black carbon and its relation to other pollutants and meteorological factors at an urban traffic site in Istanbul. Atmospheric Pollution Research, 11(7), 1051–1062. https://doi.org/10.1016/j.apr.2020.03.009Sandradewi, J., Prévôt, A. S. H., Weingartner, E., Schmidhauser, R., Gysel, M., & Baltensperger, U. (2008). A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmospheric Environment, 42(1), 101–112. https://doi.org/10.1016/j.atmosenv.2007.09.034Schkolnik, G., Chand, D., Hoffer, A., Andreae, M. O., Erlick, C., Swietlicki, E., & Rudich, Y. (2007). Constraining the density and complex refractive index of elemental and organic carbon in biomass burning aerosol using optical and chemical measurements. Atmospheric Environment, 41(5), 1107–1118. https://doi.org/10.1016/j.atmosenv.2006.09.035Shi, Y., Gong, S., Zang, S., Zhao, Y., Wang, W., Lv, Z., Matsunaga, T., Yamaguchi, Y., & Bai, Y. (2021). High-resolution and multi-year estimation of emissions from open biomass burning in Northeast China during 2001–2017. Journal of Cleaner Production, 310(January), 127496. https://doi.org/10.1016/j.jclepro.2021.127496Silva, L. F. O., Schneider, I. L., Artaxo, P., Núñez-Blanco, Y., Pinto, D., Flores, É. M. M., Gómez-Plata, L., Ramírez, O., & Dotto, G. L. (2022). Particulate matter geochemistry of a highly industrialized region in the Caribbean: Basis for future toxicological studies. Geoscience Frontiers, 13(1). https://doi.org/10.1016/j.gsf.2020.11.012Skrynyk, O., Voloshchuk, V., Budak, I., & Bubin, S. (2019). Regional HYSPLIT simulation of atmospheric transport and deposition of the Chernobyl 137Cs releases. Atmospheric Pollution Research, 10(6), 1953–1963. https://doi.org/10.1016/j.apr.2019.09.001Srivastava, R., Asutosh, A., Sabu, P., & Anilkumar, N. (2021). Investigation of Black Carbon characteristics over southern ocean: Contribution of fossil fuel and biomass burning. Environmental Pollution, 276, 116645. https://doi.org/10.1016/j.envpol.2021.116645Swarnkar, A., & Gurjar, B. R. (2023). GIS-based emission inventory of heavy metals from road transport and NMVOCs associated with biomass burning for megacity Delhi. Urban Climate, 51(December 2022), 101600. https://doi.org/10.1016/j.uclim.2023.101600Targino, A. C., Krecl, P., Oukawa, G. Y., & Mollinedo, E. M. (2022). A short climatology of black and brown carbon and their sources at a suburban site impacted by smoke in Brazil. xxxx, 1–14. https://doi.org/10.1016/j.jes.2022.12.025 ul Haq, E., Alam, K., Bibi, S., & Roy, A. (2023). High concentration of black carbon in northern Pakistan: Characteristics, source apportionment and emission source regions. Atmospheric Environment, 293(October 2022), 119475. https://doi.org/10.1016/j.atmosenv.2022.119475Healy, R. M., Sofowote, U., Su, Y., Debosz, J., Noble, M., Jeong, C. H., Wang, J. M., Hilker, N., Evans, G. J., Doerksen, G., Jones, K., & Munoz, A. (2017). Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario. Atmospheric Environment, 161, 34–47. https://doi.org/10.1016/j.atmosenv.2017.04.034Hernandez, A. J., Morales-Rincon, L. A., Wu, D., Mallia, D., Lin, J. C., & Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45), 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051Highwood, E. J., & Kinnersley, R. P. (2006). When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environment International, 32(4), 560–566. https://doi.org/10.1016/j.envint.2005.12.003 http://queimadas.dgi.inpe.br/queimadas/bdqueimadasIchoku, C., & Kaufman, Y. J. (2005). A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Transactions on Geoscience and Remote Sensing, 43(11), 2636–2649. https://doi.org/10.1109/TGRS.2005.857328Iraji, F., Memarian, M. H., Joghataei, M., & Ghafarian Malamiri, H. R. (2021). Determining the source of dust storms with use of coupling WRF and HYSPLIT models: A case study of Yazd province in central desert of Iran. Dynamics of Atmospheres and Oceans, 93(December 2020), 101197. https://doi.org/10.1016/j.dynatmoce.2020.101197Jeong, H., & Park, D. (2017). Characteristics of elementary school children’s daily exposure to black carbon (BC) in Korea. Atmospheric Environment, 154, 179–188. https://doi.org/10.1016/j.atmosenv.2017.01.045Jiang, H., Li, J., Wang, J., Jiang, H., Mo, Y., Tang, J., Zhang, R., Pansak, W., Zhong, G., Zhao, S., Ning, J., Tian, C., & Zhang, G. (2022). Regional monitoring of biomass burning using passive air sampling technique reveals the importance of MODIS unresolved fires.Jiang, H., Li, J., Wang, J., Jiang, H., Mo, Y., Tang, J., Zhang, R., Pansak, W., Zhong, G., Zhao, S., Ning, J., Tian, C., & Zhang, G. (2022). Regional monitoring of biomass burning using passive air sampling technique reveals the importance of MODIS unresolved fires. Environment International, 170(July), 107582. https://doi.org/10.1016/j.envint.2022.107582Jiang, K., Xing, R., Luo, Z., Huang, W., Yi, F., Men, Y., Zhao, N., Chang, Z., Zhao, J., Pan, B., & Shen, G. (2024). Particuology Pollutant emissions from biomass burning : A review on emission characteristics , environmental impacts , and research perspectives. Particuology, 85, 296–309. https://doi.org/10.1016/j.partic.2023.07.012Kalisa, E., & Adams, M. (2022). Population-scale COVID-19 curfew effects on urban black carbon concentrations and sources in Kigali, Rwanda. Urban Climate, 46(October), 101312. https://doi.org/10.1016/j.uclim.2022.101312Kalita, G., Kunchala, R. K., Fadnavis, S., & Kaskaoutis, D. G. (2020). Long term variability of carbonaceous aerosols over Southeast Asia via reanalysis: Association with changes in vegetation cover and biomass burning. Atmospheric Research, 245(December 2019), 105064. https://doi.org/10.1016/j.atmosres.2020.105064Kang, Z., Ma, P., Quan, J., Jia, X., Liao, Z., & Pan, Y. (2023). Observational evidence of the regional transported black carbon in high layer over Beijing. Atmospheric Environment, 311(August), 120000. https://doi.org/10.1016/j.atmosenv.2023.120000Kapoor, T. S., Venkataraman, C., Sarkar, C., Phuleria, H. C., Chatterjee, A., Habib, G., & Apte, J. S. (2022). Estimation of real-time brown carbon absorption: An observationally constrained Mie theory-based optimization method. Journal of Aerosol Science, 166(June), 106047. https://doi.org/10.1016/j.jaerosci.2022.106047Kompalli, S. K., Babu, S. S., Ajith, T. C., Moorthy, K. K., Satheesh, S. K., Boopathy, R., Das, T., Liu, D., Allan, J., & Coe, H. (2023). Aging of biomass burning emissions in the Indo-Gangetic Plain outflow: Implications for black carbon light-absorption enhancement. Atmospheric Research, 294(July), 106949. https://doi.org/10.1016/j.atmosres.2023.106949Lack, D. A., Moosmüller, H., McMeeking, G. R., Chakrabarty, R. K., & Baumgardner, D. (2014). Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: A review of techniques, their limitations and uncertainties. Analytical and Bioanalytical Chemistry, 406(1), 99–122. https://doi.org/10.1007/s00216-013-7402-3Lee, Y. C., Lam, Y. F., Kuhlmann, G., Wenig, M. O., Chan, K. L., Hartl, A., & Ning, Z. (2013). An integrated approach to identify the biomass burning sources contributing to black carbon episodes in Hong Kong. Atmospheric Environment, 80, 478–487. https://doi.org/10.1016/j.atmosenv.2013.08.030Li, Fangjun, Zhang, X., Kondragunta, S., Lu, X., Csiszar, I., & Schmidt, C. C. (2022). Hourly biomass burning emissions product from blended geostationary and polar-orbiting satellites for air quality forecasting applications. Remote Sensing of Environment, 281(April), 113237. https://doi.org/10.1016/j.rse.2022.113237Li, Fangzhou, Luo, Q., Lin, W., Li, J., & Jiang, B. (2022). Simulating the impact of biomass burning aerosols on an intensive precipitation event in urban areas of the Pearl River Delta. Atmospheric Research, 266(December 2021), 105966. https://doi.org/10.1016/j.atmosres.2021.105966Li, W., Liu, X., Duan, F., Qu, Y., & An, J. (2022). A one-year study on black carbon in urban Beijing: Concentrations, sources and implications on visibility. Atmospheric Pollution Research, 13(2). https://doi.org/10.1016/j.apr.2021.101307Li, X., Sun, N., Jin, Q., Zhao, Z., Wang, L., Wang, Q., Gu, X., Li, Y., & Liu, X. (2022). Light absorption properties of black and brown carbon in winter over the North China Plain: Impacts of regional biomass burning. Atmospheric Environment, 278(February), 119100. https://doi.org/10.1016/j.atmosenv.2022.119100Li, X., Sun, N., Jin, Q., Zhao, Z., Wang, L., Wang, Q., Gu, X., Li, Y., & Liu, X. (2022). Light absorption properties of black and brown carbon in winter over the North China Plain: Impacts of regional biomass burning. Atmospheric Environment, 278(February), 119100. https://doi.org/10.1016/j.atmosenv.2022.119100Liang, G., Li, S., Yu, X., Bu, Q., Qu, H., Zhu, H., Yao, X., Lu, A., & Gong, W. (2022). Black carbon-mediated degradation of organic pollutants: A critical review. Process Safety and Environmental Protection, 160, 610–619. https://doi.org/10.1016/j.psep.2022.02.049Liñán-Abanto, R. N., Salcedo, D., Arnott, P., Paredes-Miranda, G., Grutter, M., Peralta, O., Carabali, G., Serrano-Silva, N., Ruiz-Suárez, L. G., & Castro, T. (2021). Temporal variations of black carbon, carbon monoxide, and carbon dioxide in Mexico City: Mutual correlations and evaluation of emissions inventories. Urban Climate, 37(April). https://doi.org/10.1016/j.uclim.2021.100855Liu, S., Luo, T., Zhou, L., Song, T., Wang, N., Luo, Q., Huang, G., Jiang, X., Zhou, S., Qiu, Y., & Yang, F. (2022). Vehicle exhausts contribute high near-UV absorption through carbonaceous aerosol during winter in a fast-growing city of Sichuan Basin, China. Environmental Pollution, 312(June), 119966. https://doi.org/10.1016/j.envpol.2022.119966Liu, T., Mickley, L. J., Singh, S., Jain, M., DeFries, R. S., & Marlier, M. E. (2020). Crop residue burning practices across north India inferred from household survey data: Bridging gaps in satellite observations. Atmospheric Environment: X, 8(September), 100091. https://doi.org/10.1016/j.aeaoa.2020.100091Liu, Xinhui, Zhu, R., Jin, B., Zu, L., Wang, Y., Wei, Y., & Zhang, R. (2023). Emission characteristics and light absorption apportionment of carbonaceous aerosols: A tunnel test conducted in an urban with fully enclosed use of E10 petrol. Environmental Research, 216(P3), 114701. https://doi.org/10.1016/j.envres.2022.114701Liu, Xuyan, Wang, S., Zhang, Q., Jiang, C., Liang, L., Tang, S., Zhang, X., Han, X., & Zhu, L. (2023). Origins of black carbon from anthropogenic emissions and open biomass burning transported to Xishuangbanna, Southwest China. Journal of Environmental Sciences (China), 125, 277–289. https://doi.org/10.1016/j.jes.2021.12.020Liu, Y., Liu, J., Yan, C., Xiao, J., Ye, J., Guo, L., & Zheng, M. (2023). Metrological traceability of black carbon measurement based on optical methods and its challenges in China : A review. Atmospheric Research, 292(February), 106854. https://doi.org/10.1016/j.atmosres.2023.106854Lizundia-Loiola, J., Franquesa, M., Khairoun, A., & Chuvieco, E. (2022). Global burned area mapping from Sentinel-3 Synergy and VIIRS active fires. Remote Sensing of Environment, 282(March), 113298. https://doi.org/10.1016/j.rse.2022.113298López-Caravaca, A., Crespo, J., Galindo, N., Yubero, E., Castañer, R., & Nicolás Aguilera, J. F. (2022). Characterization of aerosol absorption properties and PM1 at a mountain site located in the southeast of the Iberian Peninsula. Atmospheric Pollution Research, 13(10). https://doi.org/10.1016/j.apr.2022.101559Lu, X., Zhang, X., Li, F., & Cochrane, M. A. (2022). Improved estimation of fire particulate emissions using a combination of VIIRS and AHI data for Indonesia during 2015–2020. Remote Sensing of Environment, 281(September), 113238. https://doi.org/10.1016/j.rse.2022.113238Mani, S. A., Peltier, R. E., Le Mestre, M., Gunkel-Grillon, P., Shah, S., & Mani, F. S. (2022). Black carbon and elemental characterization of PM2.5 in dense traffic areas in two cities in Fiji, a Small Island Developing State. Science of the Total Environment, 845(June), 157136. https://doi.org/10.1016/j.scitotenv.2022.157136Marinho, A. A. R., Gois, G. de, Oliveira-Júnior, J. F. de, Correia Filho, W. L. F., Santiago, D. de B., Silva Junior, C. A. da, Teodoro, P. E., de Souza, A., Capristo-Silva, G. F., Freitas, W. K. de, & Rogério, J. P. (2021). Temporal record and spatial distribution of fire foci in State of Minas Gerais, Brazil. Journal of Environmental Management, 280(April 2020). https://doi.org/10.1016/j.jenvman.2020.111707Meena, G. S., Mukherjee, S., Buchunde, P., Safai, P. D., Singla, V., Aslam, M. Y., Sonbawne, S. M., Made, R., Anand, V., Dani, K. K., & Pandithurai, G. (2021). Seasonal variability and source apportionment of black carbon over a rural high-altitude and an urban site in western India. Atmospheric Pollution Research, 12(2), 32–45. https://doi.org/10.1016/j.apr.2020.10.006Milinković, A., Gregorič, A., Grgičin, V. D., Vidič, S., Penezić, A., Kušan, A. C., Alempijević, S. B., Kasper-Giebl, A., & Frka, S. (2021). Variability of black carbon aerosol concentrations and sources at a Mediterranean coastal region. Atmospheric Pollution Research, 12(11). https://doi.org/10.1016/j.apr.2021.101221Minderytė, A., Pauraite, J., Dudoitis, V., Plauškaitė, K., Kilikevičius, A., Matijošius, J., Rimkus, A., Kilikevičienė, K., Vainorius, D., & Byčenkienė, S. (2022). Carbonaceous aerosol source apportionment and assessment of transport-related pollution. Atmospheric Environment, 279(March), 119043. https://doi.org/10.1016/j.atmosenv.2022.119043Morales Betancourt, R., Galvis, B., Balachandran, S., Ramos-Bonilla, J. P., Sarmiento, O. L., Gallo-Murcia, S. M., & Contreras, Y. (2017). Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmospheric Environment, 157(1), 135–145. https://doi.org/10.1016/j.atmosenv.2017.03.006Mousavi, A., Sowlat, M. H., Hasheminassab, S., Polidori, A., & Sioutas, C. (2018). Spatio-temporal trends and source apportionment of fossil fuel and biomass burning black carbon (BC) in the Los Angeles Basin. Science of the Total Environment, 640–641, 1231–1240. https://doi.org/10.1016/j.scitotenv.2018.06.022Mousavi, A., Sowlat, M. H., Lovett, C., Rauber, M., Szidat, S., Boffi, R., Borgini, A., De Marco, C., Ruprecht, A. A., & Sioutas, C. (2019). Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy. Atmospheric Environment, 203(September 2018), 252–261. https://doi.org/10.1016/j.atmosenv.2019.02.009Mukherjee, S., Verma, A., Meena, G. S., Kodoli, S., Buchunde, P., Aslam, M. Y., Patil, R. D., Panicker, A., Safai, P. D., & Pandithurai, G. (2022). Compensatory effect of biomass burning on black carbon concentrations during COVID-19 lockdown at a high-altitude station in SW India. Atmospheric Pollution Research, 13(10), 101566. https://doi.org/10.1016/j.apr.2022.101566Nam, J. J., Gustafsson, O., Kurt-Karakus, P., Breivik, K., Steinnes, E., & Jones, K. C. (2008). Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate. Environmental Pollution, 156(3), 809–817. https://doi.org/10.1016/j.envpol.2008.05.027Ngan, F., Loughner, C. P., & Stein, A. (2019). The evaluation of mixing methods in HYSPLIT using measurements from controlled tracer experiments. Atmospheric Environment, 219(April), 117043. https://doi.org/10.1016/j.atmosenv.2019.117043Ngoc Trieu, T. T., Morino, I., Uchino, O., Tsutsumi, Y., Izumi, T., Sakai, T., Shibata, T., Ohyama, H., & Nagahama, T. (2023). Long-range transport of CO and aerosols from Siberian biomass burning over northern Japan during 18–20 May 2016. Environmental Pollution, 322(December 2022). https://doi.org/10.1016/j.envpol.2023.121129Nie, D., Qiu, Z., Wang, X., & Liu, Z. (2022). Characterizing the source apportionment of black carbon and ultrafine particles near urban roads in Xi’an, China. Environmental Research, 215(P1), 114209. https://doi.org/10.1016/j.envres.2022.114209Nielsen, I. E., Eriksson, A. C., Lindgren, R., Martinsson, J., Nyström, R., Nordin, E. Z., Sadiktsis, I., Boman, C., Nøjgaard, J. K., & Pagels, J. (2017). Time-resolved analysis of particle emissions from residential biomass combustion – Emissions of refractory black carbon, PAHs and organic tracers. Atmospheric Environment, 165, 179–190. https://doi.org/10.1016/j.atmosenv.2017.06.033Ningombam, S. S., Khatri, P., Larson, E. J. L., Dumka, U. C., Sarangi, C., & Vineeth, R. (2023). Classification of MODIS fire emission data based on aerosol absorption Angstrom exponent retrieved from AERONET data. Science of the Total Environment, 858(August 2022), 159898. https://doi.org/10.1016/j.scitotenv.2022.159898Olson, M. R., Yuqin, W., de Foy, B., Li, Z., Bergin, M. H., Zhang, Y., & Schauer, J. J. (2022). Source attribution of black and Brown carbon near-UV light absorption in Beijing, China and the impact of regional air-mass transport. Science of the Total Environment, 807, 150871. https://doi.org/10.1016/j.scitotenv.2021.150871Pani, S. K., Lin, N. H., Chantara, S., Wang, S. H., Khamkaew, C., Prapamontol, T., & Janjai, S. (2018). Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia. Science of the Total Environment, 633, 892–911. https://doi.org/10.1016/j.scitotenv.2018.03.204Pani, S. K., Wang, S. H., Lin, N. H., Chantara, S., Lee, C. Te, & Thepnuan, D. (2020). Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. Environmental Pollution, 259, 113871. https://doi.org/10.1016/j.envpol.2019.113871Pei, C., Wu, Y., Tao, J., Zhang, L., Zhang, T., Zhang, R., & Li, S. (2022). Seasonal variations of mass absorption efficiency of elemental carbon in PM2.5 in urban Guangzhou of South China. Journal of Environmental Sciences, 133, 83–92. https://doi.org/10.1016/j.jes.2022.04.019Pérez-Pastor, R., Salvador, P., García-Gómez, H., García-Alonso, S., Toro, M., Artíñano, B., & Alonso, R. (2023). Characterization of organic aerosols at the Natura 2000 remote environment of Sanabria Lake (Spain): Evaluating the influence of African dust and regional biomass burning smoke. Atmospheric Environment, 298(October 2022). https://doi.org/10.1016/j.atmosenv.2023.119634Pirouzmand, A., Kowsar, Z., & Dehghani, P. (2018). Atmospheric dispersion assessment of radioactive materials during severe accident conditions for Bushehr nuclear power plant using HYSPLIT code. Progress in Nuclear Energy, 108(April), 169–178. https://doi.org/10.1016/j.pnucene.2018.05.015Prabhu, V., Soni, A., Madhwal, S., Gupta, A., Sundriyal, S., Shridhar, V., Sreekanth, V., & Mahapatra, P. S. (2020). Black carbon and biomass burning associated high pollution episodes observed at Doon valley in the foothills of the Himalayas. Atmospheric Research, 243(December 2019), 105001. https://doi.org/10.1016/j.atmosres.2020.105001Qiu, Y., Wu, X., Zhang, Y., Xu, L., Hong, Y., Chen, J., Chen, X., & Deng, J. (2019). Aerosol light absorption in a coastal city in Southeast China: Temporal variations and implications for brown carbon. Journal of Environmental Sciences (China), 80, 257–266. https://doi.org/10.1016/j.jes.2019.01.002Qiu, Z., Wang, X., Liu, Z., & Luo, J. (2022). Quantitative assessment of cyclists’ exposure to PM and BC on different bike lanes. Atmospheric Pollution Research, 13(11), 101588. https://doi.org/10.1016/j.apr.2022.101588Qu, Y., Liu, H., Zhou, Y., Dai, W., Shi, J., & Wang, N. (2023). Spectral dependence of light absorption and direct radiative forcing of the TSP , PM 10 , PM 2 . 5 and PM 0 . 1 in a rural region of northwestern China. Atmospheric Environment, 292(97), 119417. https://doi.org/10.1016/j.atmosenv.2022.119417Rajesh, T. A., Ramachandran, S., & Dhaker, V. K. (2021). Black carbon aerosols: Relative source strengths of vehicular emissions and residential/open wood burning over an urban and a semi-urban environment. Atmospheric Pollution Research, 12(6), 101060. https://doi.org/10.1016/j.apr.2021.101060Rangel-Buitrago, N., Gracia C., A., Vélez-Mendoza, A., Mantilla-Barbosa, E., Arana, V. A., Trilleras, J., & Arroyo-Olarte, H. (2018). Abundance and distribution of beach litter along the Atlantico Department, Caribbean coast of Colombia. Marine Pollution Bulletin, 136(August), 435–447. https://doi.org/10.1016/j.marpolbul.2018.09.040Rangel-Buitrago, N., Mendoza, A. V., Gracia C, A., Mantilla-Barbosa, E., Arana, V. A., Trilleras, J., & Arroyo-Olarte, H. (2019). Litter impacts on cleanliness and environmental status of Atlantico department beaches, Colombian Caribbean coast. Ocean and Coastal Management, 179(March), 104835. https://doi.org/10.1016/j.ocecoaman.2019.104835Rathod, T. D., Sahu, S. K., Tiwari, M., Bhangare, R. C., & Ajmal, P. Y. (2021). Light absorption enhancement due to mixing in black carbon and organic carbon generated during biomass burning. Atmospheric Pollution Research, 12(12), 101236. https://doi.org/10.1016/j.apr.2021.101236Resquin, M. D., Santágata, D., Gallardo, L., Gómez, D., Rössler, C., & Dawidowski, L. (2018). Local and remote black carbon sources in the Metropolitan Area of Buenos Aires. Atmospheric Environment, 182(March), 105–114. https://doi.org/10.1016/j.atmosenv.2018.03.018Reyna-Bensusan, N., Wilson, D. C., Davy, P. M., Fuller, G. W., Fowler, G. D., & Smith, S. R. (2019). Experimental measurements of black carbon emission factors to estimate the global impact of uncontrolled burning of waste. Atmospheric Environment, 213(January), 629–639. https://doi.org/10.1016/j.atmosenv.2019.06.047Rodríguez, S., Cuevas, E., González, Y., Ramos, R., Romero, P. M., Pérez, N., Querol, X., & Alastuey, A. (2008). Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5-10 concentrations in a coastal city. Atmospheric Environment, 42(26), 6523–6534. https://doi.org/10.1016/j.atmosenv.2008.04.022Roldan-Vargas, J. C., Toro-Gómez, M. V., & Marín-Sánchez, A. (2021). Estimación y modelización de la dispersión de black carbon en el Valle de Aburrá, Colombia. TecnoLógicas, 24(50), e1580. https://doi.org/10.22430/22565337.1580Saha, A., & Despiau, S. (2009). Seasonal and diurnal variations of black carbon aerosols over a Mediterranean coastal zone. Atmospheric Research, 92(1), 27–41. https://doi.org/10.1016/j.atmosres.2008.07.007Şahin, Ü. A., Onat, B., Akın, Ö., Ayvaz, C., Uzun, B., Mangır, N., Doğan, M., & Harrison, R. M. (2020). Temporal variations of atmospheric black carbon and its relation to other pollutants and meteorological factors at an urban traffic site in Istanbul. Atmospheric Pollution Research, 11(7), 1051–1062. https://doi.org/10.1016/j.apr.2020.03.009Sandradewi, J., Prévôt, A. S. H., Weingartner, E., Schmidhauser, R., Gysel, M., & Baltensperger, U. (2008). A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmospheric Environment, 42(1), 101–112. https://doi.org/10.1016/j.atmosenv.2007.09.034Schkolnik, G., Chand, D., Hoffer, A., Andreae, M. O., Erlick, C., Swietlicki, E., & Rudich, Y. (2007). Constraining the density and complex refractive index of elemental and organic carbon in biomass burning aerosol using optical and chemical measurements. Atmospheric Environment, 41(5), 1107–1118. https://doi.org/10.1016/j.atmosenv.2006.09.035Shi, Y., Gong, S., Zang, S., Zhao, Y., Wang, W., Lv, Z., Matsunaga, T., Yamaguchi, Y., & Bai, Y. (2021). High-resolution and multi-year estimation of emissions from open biomass burning in Northeast China during 2001–2017. Journal of Cleaner Production, 310(January), 127496. https://doi.org/10.1016/j.jclepro.2021.127496Skrynyk, O., Voloshchuk, V., Budak, I., & Bubin, S. (2019). Regional HYSPLIT simulation of atmospheric transport and deposition of the Chernobyl 137Cs releases. Atmospheric Pollution Research, 10(6), 1953–1963. https://doi.org/10.1016/j.apr.2019.09.001Srivastava, R., Asutosh, A., Sabu, P., & Anilkumar, N. (2021). Investigation of Black Carbon characteristics over southern ocean: Contribution of fossil fuel and biomass burning. Environmental Pollution, 276, 116645. https://doi.org/10.1016/j.envpol.2021.116645Swarnkar, A., & Gurjar, B. R. (2023). GIS-based emission inventory of heavy metals from road transport and NMVOCs associated with biomass burning for megacity Delhi. Urban Climate, 51(December 2022), 101600. https://doi.org/10.1016/j.uclim.2023.101600Targino, A. C., Krecl, P., Oukawa, G. Y., & Mollinedo, E. M. (2022). A short climatology of black and brown carbon and their sources at a suburban site impacted by smoke in Brazil. xxxx, 1–14. https://doi.org/10.1016/j.jes.2022.12.025Ul Haq, E., Alam, K., Bibi, S., & Roy, A. (2023). High concentration of black carbon in northern Pakistan: Characteristics, source apportionment and emission source regions. Atmospheric Environment, 293(October 2022), 119475. https://doi.org/10.1016/j.atmosenv.2022.119475Valenzuela, A., Olmo, F. J., Lyamani, H., Antón, M., Titos, G., Cazorla, A., & Alados-Arboledas, L. (2015). Aerosol scattering and absorption Angström exponents as indicators of dust and dust-free days over Granada (Spain). Atmospheric Research, 154, 1–13. https://doi.org/10.1016/j.atmosres.2014.10.015Voinea, S., & Stefan, S. (2019). Study of the Ångström turbidity over Romanian Black Sea coast. Journal of Atmospheric and Solar-Terrestrial Physics, 182(November 2018), 67–78. https://doi.org/10.1016/j.jastp.2018.11.001Wang, Q., Wang, L., Tao, M., Chen, N., Lei, Y., Sun, Y., Xin, J., Li, T., Zhou, J., Liu, J., Ji, D., & Wang, Y. (2021). Exploring the variation of black and brown carbon during COVID-19 lockdown in megacity Wuhan and its surrounding cities, China. Science of the Total Environment, 791, 148226. https://doi.org/10.1016/j.scitotenv.2021.148226Wang, T., Zhao, G., Tan, T., Yu, Y., Tang, R., Dong, H., Chen, S., Li, X., Lu, K., Zeng, L., Gao, Y., Wang, H., Lou, S., Liu, D., Hu, M., Zhao, C., & Guo, S. (2021). Effects of biomass burning and photochemical oxidation on the black carbon mixing state and light absorption in summer season. Atmospheric Environment, 248, 118230. https://doi.org/10.1016/j.atmosenv.2021.118230Wang, W., Khanna, N., Lin, J., & Liu, X. (2023). Black carbon emissions and reduction potential in China: 2015–2050. Journal of Environmental Management, 329(June 2022), 117087. https://doi.org/10.1016/j.jenvman.2022.117087Wang, X., Li, J., Zhang, X., Cheng, Z., Jiang, H., Jiang, H., Lin, B., Zhu, S., Zhao, S., Liu, J., Tian, C., Zhang, R., & Zhang, G. (2023). An innovative passive sampler to reveal the high contribution of biomass burning to black carbon over Indo-China Peninsula: Radiocarbon constraints. Atmospheric Environment, 294(August 2022), 119522. https://doi.org/10.1016/j.atmosenv.2022.119522Wyche, K. P., Cordell, R. L., Smith M, L., Smallbone, K. L., Lyons, P., Hama, S. M. L., Monks, P. S., Staelens, J., Hofman, J., Stroobants, C., Roekens, E., Kos, G. P. A., Weijers, E. P., Panteliadis, P., & Dijkema, M. B. A. (2020). The spatio-temporal evolution of black carbon in the North-West European ‘air pollution hotspot.’ Atmospheric Environment, 243(July), 117874. https://doi.org/10.1016/j.atmosenv.2020.117874Xiao, H. W., Mao, D. Y., Huang, L. L., Xiao, H. Y., & Wu, J. F. (2021). Evaluation of black carbon source apportionment based on one year’s daily observations in Beijing. Science of the Total Environment, 773, 145668. https://doi.org/10.1016/j.scitotenv.2021.145668Xiao, H. W., Mao, D. Y., Huang, L. L., Xiao, H. Y., & Wu, J. F. (2021). Evaluation of black carbon source apportionment based on one year’s daily observations in Beijing. Science of the Total Environment, 773, 145668. https://doi.org/10.1016/j.scitotenv.2021.145668Xiao, H., Xu, Y., & Xiao, H. (2023). Source apportionment of black carbon aerosols in winter across China. 298(January). https://doi.org/10.1016/j.atmosenv.2023.119622Xu, R., Tie, X., Li, G., Zhao, S., Cao, J., Feng, T., & Long, X. (2018). Effect of biomass burning on black carbon (BC) in South Asia and Tibetan Plateau: The analysis of WRF-Chem modeling. Science of the Total Environment, 645, 901–912. https://doi.org/10.1016/j.scitotenv.2018.07.165Yang, J., Ji, Z., Kang, S., & Tripathee, L. (2021). Contribution of South Asian biomass burning to black carbon over the Tibetan Plateau and its climatic impact. Environmental Pollution, 270, 116195. https://doi.org/10.1016/j.envpol.2020.116195Yang, Xiaoyang, Ji, D., Li, J., He, J., Gong, C., Xu, X., Wang, Z., Liu, Y., Bi, F., Zhang, Z., & Chen, Y. (2023). Impacts of springtime biomass burning in Southeast Asia on atmospheric carbonaceous components over the Beibu Gulf in China: Insights from aircraft observations. Science of the Total Environment, 857(August 2022), 159232. https://doi.org/10.1016/j.scitotenv.2022.159232Yang, Xiuleng, Orjuela, J. P., McCoy, E., Vich, G., Anaya-Boig, E., Avila-Palencia, I., Brand, C., Carrasco-Turigas, G., Dons, E., Gerike, R., Götschi, T., Nieuwenhuijsen, M., Panis, L. I., Standaert, A., & de Nazelle, A. (2022). The impact of black carbon (BC) on mode-specific galvanic skin response (GSR) as a measure of stress in urban environments. Environmental Research, 214(June), 16–18. https://doi.org/10.1016/j.envres.2022.114083Yu, R., Liu, X. C., Larson, T., & Wang, Y. (2015). Coherent approach for modeling and nowcasting hourly near-road Black Carbon concentrations in Seattle, Washington. Transportation Research Part D: Transport and Environment, 34, 104–115. https://doi.org/10.1016/j.trd.2014.10.009Yuan, M., Wang, Q., Zhao, Z., Zhang, Y., Lin, Y., Wang, X., Chow, J. C., Watson, J. G., Tian, R., Liu, H., Tian, J., & Cao, J. (2022). Seasonal variation of optical properties and source apportionment of black and brown carbon in Xi’an, China. Atmospheric Pollution Research, 13(6), 101448. https://doi.org/10.1016/j.apr.2022.101448Zeng, X., Li, S., Xing, J., Yang, J., Wang, Q., Song, G., Teng, M., Zhou, D., & Lu, J. (2023). CALIPSO-observed Southeast Asia biomass-burning influences on aerosol vertical structure in Guangdong-Hong Kong-Macao Greater Bay Area. Atmospheric Research, 289(April), 106755. https://doi.org/10.1016/j.atmosres.2023.106755Zhang, Junmei, Qi, A., Wang, Q., Huang, Q., Yao, S., Li, J., Yu, H., & Yang, L. (2022). Characteristics of water-soluble organic carbon (WSOC) in PM2.5 in inland and coastal cities, China. Atmospheric Pollution Research, 13(6), 101447. https://doi.org/10.1016/j.apr.2022.101447Zhang, L., Luo, Z., Du, W., Li, G., Shen, G., Cheng, H., & Tao, S. (2020). Light absorption properties and absorption emission factors for indoor biomass burning. Environmental Pollution, 267, 115652. https://doi.org/10.1016/j.envpol.2020.115652Zhang, Y., Zhang, X., Fan, X., Ni, C., Sun, Z., Wang, S., Fan, J., & Zheng, C. (2020). Modifying effects of temperature on human mortality related to black carbon particulates in Beijing, China. Atmospheric Environment, 243(24), 117845. https://doi.org/10.1016/j.atmosenv.2020.117845Zhu, C., Miyakawa, T., Irie, H., Choi, Y., Taketani, F., & Kanaya, Y. (2021). Light-absorption properties of brown carbon aerosols in the Asian outflow: Implications of a combination of filter and ground remote-sensing observations at Fukue Island, Japan. Science of the Total Environment, 797, 149155. https://doi.org/10.1016/j.scitotenv.2021.149155Black CarbónQuemas de biomasaExponente de absorción de ÅngströmEtalómetroBiomass burningÅngström absorption exponentEtalometerPublicationORIGINALEvaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico..pdfEvaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico..pdfTesisapplication/pdf3177677https://repositorio.cuc.edu.co/bitstreams/84de49eb-55eb-477b-97af-1122a6c13833/download6759e7243ff92929b824647d25b1c267MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/02aa766a-4fc4-4b5d-9788-ce3ffc3829b0/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTEvaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico..pdf.txtEvaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico..pdf.txtExtracted texttext/plain193152https://repositorio.cuc.edu.co/bitstreams/79c2a2f7-ea48-485a-8bbf-c762abea97a3/download090a3daf9bc0bbb1c583fd3bc0eaca33MD53THUMBNAILEvaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico..pdf.jpgEvaluación de la contribución de las quemas de biomasa en las concentraciones de Black Carbon en Barranquilla, Atlántico..pdf.jpgGenerated Thumbnailimage/jpeg8285https://repositorio.cuc.edu.co/bitstreams/0048731b-e3c5-47b8-a6d6-bf18d577b33e/download6fc7b492bf03188fdbbc7ed18828b343MD5411323/10487oai:repositorio.cuc.edu.co:11323/104872024-09-17 14:11:10.753https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=