Environmental remediation of the norfloxacin in water by adsorption: advances, current status and prospects

Antibiotics are considered as the new generation water pollutants as these disturb endocrine systems if water contaminated with antibiotics is consumed. Among many antibiotics norfloxacin is present in various natural water bodies globally. This antibiotic is considered an emerging pollutant due to...

Full description

Autores:
Georgin, Jordana
Dison Stracke, Pfingsten Franco
Meili, Lucas
Bonilla Petriciolet, Adrián
Kurniawan, Tonni Agustiono
Imanova, Gunel
Demir, Ersin
Ali, Imran
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13630
Acceso en línea:
https://hdl.handle.net/11323/13630
https://repositorio.cuc.edu.co/
Palabra clave:
Adsorption
Norfloxacin
Ecotoxicology
Aquatic environment
Future perspectives
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_1ac9c05911818477b7defe2876c9eeeb
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13630
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Environmental remediation of the norfloxacin in water by adsorption: advances, current status and prospects
title Environmental remediation of the norfloxacin in water by adsorption: advances, current status and prospects
spellingShingle Environmental remediation of the norfloxacin in water by adsorption: advances, current status and prospects
Adsorption
Norfloxacin
Ecotoxicology
Aquatic environment
Future perspectives
title_short Environmental remediation of the norfloxacin in water by adsorption: advances, current status and prospects
title_full Environmental remediation of the norfloxacin in water by adsorption: advances, current status and prospects
title_fullStr Environmental remediation of the norfloxacin in water by adsorption: advances, current status and prospects
title_full_unstemmed Environmental remediation of the norfloxacin in water by adsorption: advances, current status and prospects
title_sort Environmental remediation of the norfloxacin in water by adsorption: advances, current status and prospects
dc.creator.fl_str_mv Georgin, Jordana
Dison Stracke, Pfingsten Franco
Meili, Lucas
Bonilla Petriciolet, Adrián
Kurniawan, Tonni Agustiono
Imanova, Gunel
Demir, Ersin
Ali, Imran
dc.contributor.author.none.fl_str_mv Georgin, Jordana
Dison Stracke, Pfingsten Franco
Meili, Lucas
Bonilla Petriciolet, Adrián
Kurniawan, Tonni Agustiono
Imanova, Gunel
Demir, Ersin
Ali, Imran
dc.subject.proposal.eng.fl_str_mv Adsorption
Norfloxacin
Ecotoxicology
Aquatic environment
Future perspectives
topic Adsorption
Norfloxacin
Ecotoxicology
Aquatic environment
Future perspectives
description Antibiotics are considered as the new generation water pollutants as these disturb endocrine systems if water contaminated with antibiotics is consumed. Among many antibiotics norfloxacin is present in various natural water bodies globally. This antibiotic is considered an emerging pollutant due to its low degradation in aquatic animals. Besides, it has many side effects on human vital organs. Therefore, the present article discusses the recent advances in the removal of norfloxacin by adsorption. This article describes the presence of norfloxacin in natural water, consumption, toxicity, various adsorbents for norfloxacin removal, optimization factors for norfloxacin removal, kinetics, thermodynamics, modeling, adsorption mechanism and regeneration of the adsorbents. Adsorption takes place in a monolayer following the Langmuir model. The Pseudo-second order model represents the kinetic data. The adsorption capacity ranged from 0.924 to 1282 mg g−1. In this sense, the parameters such as the NFX concentration added to the adsorbent textural properties exerted a great influence. Besides, the fixed bed-based removal at a large scale is also included. In addition to this, the simulation studies were also discussed to describe the adsorption mechanism. Finally, the research challenges and future perspectives have also been highlighted. This article will be highly useful for academicians, researchers, industry persons, and government authorities for designing future advanced experiments.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-05T12:28:44Z
dc.date.available.none.fl_str_mv 2024-11-05T12:28:44Z
dc.date.issued.none.fl_str_mv 2024-01-30
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Jordana Georgin, Dison Stracke Pfingsten Franco, Lucas Meili, Adrián Bonilla-Petriciolet, Tonni Agustiono Kurniawan, Gunel Imanova, Ersin Demir, Imran Ali, Environmental remediation of the norfloxacin in water by adsorption: Advances, current status and prospects, Advances in Colloid and Interface Science, Volume 324, 2024, 103096, ISSN 0001-8686, https://doi.org/10.1016/j.cis.2024.103096.
dc.identifier.issn.none.fl_str_mv 0001-8686
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13630
dc.identifier.doi.none.fl_str_mv 10.1016/j.cis.2024.103096
dc.identifier.eissn.none.fl_str_mv 1873-3727
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Jordana Georgin, Dison Stracke Pfingsten Franco, Lucas Meili, Adrián Bonilla-Petriciolet, Tonni Agustiono Kurniawan, Gunel Imanova, Ersin Demir, Imran Ali, Environmental remediation of the norfloxacin in water by adsorption: Advances, current status and prospects, Advances in Colloid and Interface Science, Volume 324, 2024, 103096, ISSN 0001-8686, https://doi.org/10.1016/j.cis.2024.103096.
0001-8686
10.1016/j.cis.2024.103096
1873-3727
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13630
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Advances in Colloid and Interface Science
dc.relation.references.none.fl_str_mv Yang Y, Zhong Z, Li J, Du H, Li Z. Efficient with low-cost removal and adsorption mechanisms of norfloxacin, ciprofloxacin and ofloxacin on modified thermal kaolin: experimental and theoretical studies. J Hazard Mater 2022;430:128500. https://doi.org/10.1016/j.jhazmat.2022.128500.
Zelaya Soul´e ME, Barraqu´e F, Flores FM, Torres Sanchez ´ RM, Fernandez ´ MA. Carbon/montmorillonite hybrids with different activation methods: adsorption of norfloxacin. Adsorption. 2019;25:1361–73. https://doi.org/10.1007/s10450- 019-00098-2.
Feng Y, Liu Q, Yu Y, Kong Q, Zhou LL, Da Du Y, et al. Norfloxacin removal from aqueous solution using biochar derived from luffa sponge. J Water Supply Res Technol - AQUA 2018;67:703–14. https://doi.org/10.2166/aqua.2018.040.
Gattey DM. Toxicology, Garner Klintworth’s Pathobiol. Ocul Dis Part B, Third Ed 2007:1079–90. https://doi.org/10.5005/jp/books/14224_17.
Fatta-Kassinos D, Hapeshi E, Achilleos A, Meric S, Gros M, Petrovic M, et al. Existence of pharmaceutical compounds in tertiary treated urban wastewater that is utilized for reuse applications. Water Resour Manag 2011;25:1183–93. https:// doi.org/10.1007/s11269-010-9646-4.
Chahm T, De Souza LF, Dos Santos NR, Da Silva BA, Rodrigues CA. Use of chemically activated termite feces a low-cost adsorbent for the adsorption of norfloxacin from aqueous solution. Water Sci Technol 2019;79:291–301. https:// doi.org/10.2166/wst.2019.052.
Nayak A, Bhushan B, Kotnala S. Fabrication of chitosan-hydroxyapatite nanoadsorbent for removal of norfloxacin from water: isotherm and kinetic studies. Mater Today Proc 2022;61:143–9. https://doi.org/10.1016/j. matpr.2021.07.356.
Wang Y, Yu W, Chang Z, Gao C, Yang Y, Zhang B, et al. Effects of dissolved organic matter on the adsorption of norfloxacin on a sandy soil (fraction) from the Yellow River of northern China. Sci Total Environ 2022;848:157495. https:// doi.org/10.1016/j.scitotenv.2022.157495.
Ali I, Burakova I, Galunin E, Burakov A, Mkrtchyan E, Melezhik A, et al. Highspeed and high-capacity removal of methyl Orange and malachite green in water using newly developed mesoporous carbon: kinetic and isotherm studies. ACS Omega 2019;4:19293–306. https://doi.org/10.1021/acsomega.9b02669.
Ali I, ALOthman ZA, Mbianda XY, Basheer A Arsh. Preparation and characterization of nanoporous carbon for removal of amoxicillin antibiotic from water: modelling, kinetics and thermodynamic studies. Inorg Chem Commun 2023;155:111006. https://doi.org/10.1016/j.inoche.2023.111006.
Ali I, Imanova GT, Alamri A, Hasan SZ, Basheer AA. Preparation of polyhydroquinone graphene oxide nanocomposite for cephalexin removal from water by adsorption: simulation, kinetics, and thermodynamic studies. Inorg Chem Commun 2023;157:111414. https://doi.org/10.1016/j. inoche.2023.111414.
Ali I, Afshinb S, Poureshgh Y, Azari A, Rashtbari Y, Feizizadeh A, et al. Green preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water. Environ Sci Pollut Res 2020;27:36732–43. https://doi.org/10.1007/ s11356-020-09310-1.
Ali I, Alyona S, Tatiana K, Anastasiya G, Albishri HM, Alshitari WH. Facile adsorption-electroflotation method for the removal of heavy metal ions from water using carbon nanomaterials. Environ Sci Pollut Res 2023;30:38970–81. https://doi.org/10.1007/s11356-022-24509-0.
Sun M, Yang Y, Huang M, Fu S, Hao Y, Hu S, et al. Adsorption behaviors and mechanisms of antibiotic norfloxacin on degradable and nondegradable microplastics. Sci Total Environ 2022;807:151042. https://doi.org/10.1016/j. scitotenv.2021.151042.
Cao X, Meng Z, Song E, Sun X, Hu X, Wenbin Li Z, et al. Co-adsorption capabilities and mechanisms of bentonite enhanced sludge biochar for de-risking norfloxacin and Cu2+ contaminated water. Chemosphere. 2022;299:134414. https://doi. org/10.1016/j.chemosphere.2022.134414.
Fang X, Wu S, Wu Y, Yang W, Li Y, He J, et al. High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: dynamics, thermodynamics, and mechanisms. Appl Surf Sci 2020;518. https://doi.org/ 10.1016/j.apsusc.2020.146226.
Huang M, Zhou T, Wu X, Mao J. Distinguishing homogeneous-heterogeneous degradation of norfloxacin in a photochemical Fenton-like system (Fe3O4/UV/ oxalate) and the interfacial reaction mechanism. Water Res 2017;119:47–56. https://doi.org/10.1016/j.watres.2017.03.008.
Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 2015;49:6772–82. https://doi.org/10.1021/acs.est.5b00729.
Zhang H, Ding X, Chen X, Ma Y, Wang Z, Zhao X. A new method of utilizing rice husk: consecutively preparing d-xylose, organosolv lignin, ethanol and amorphous superfine silica. J Hazard Mater 2015;291:65–73. https://doi.org/ 10.1016/j.jhazmat.2015.03.003.
Wang G, Yi Y, Huang L, Wang J, Fang Z. Efficient removal of norfloxacin by biological aerated filters: effect of zeolite modification and analysis of microbial communities. J Water Process Eng 2021;40:101799. https://doi.org/10.1016/j. jwpe.2020.101799.
Larsson DGJ, de Pedro C, Paxeus N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 2007;148:751–5. https://doi.org/10.1016/j.jhazmat.2007.07.008.
Ezzariai A, Hafidi M, Khadra A, Aemig Q, El Fels L, Barret M, et al. Human and veterinary antibiotics during composting of sludge or manure: global perspectives on persistence, degradation, and resistance genes. J Hazard Mater 2018;359: 465–81. https://doi.org/10.1016/j.jhazmat.2018.07.092.
Domagala JM. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother 1994;33:685–706. https://doi. org/10.1093/jac/33.4.685.
Sarro A, Sarro G. Adverse reactions to fluoroquinolones. An overview on mechanistic aspects. Curr Med Chem 2012;8:371–84. https://doi.org/10.2174/ 0929867013373435.
Pan Y, Yan SW, Li RZ, Hu YW, Chang XX. Lethal/sublethal responses of Daphnia magna to acute norfloxacin contamination and changes in phytoplanktonzooplankton interactions induced by this antibiotic. Sci Rep 2017;7:1–10. https:// doi.org/10.1038/srep40385.
dos Santos Barbosa CR, Scherf JR, de Freitas TS, de Menezes IRA, Pereira RLS, dos Santos JFS, et al. Effect of Carvacrol and thymol on NorA efflux pump inhibition in multidrug-resistant (MDR) Staphylococcus aureus strains. J Bioenerg Biomembr 2021;53:489–98. https://doi.org/10.1007/s10863-021-09906-3.
Li S, Li J, Li Z, Ke X, Wu L, Christie P. Toxic effects of norfloxacin in soil on fed and unfed Folsomia candida (Isotomidae: Collembola) and on gut and soil microbiota. Sci Total Environ 2021;788:147793. https://doi.org/10.1016/j. scitotenv.2021.147793.
Regan F, Hansen PD. Biosensors for the Marine Environment: Introduction. 2023. https://doi.org/10.1007/698_2022_952.
Ajala OJ, Tijani JO, Salau RB, Abdulkareem AS, Aremu OS. A review of emerging micro-pollutants in hospital wastewater: environmental fate and remediation options. Res Eng Des 2022;16:100671. https://doi.org/10.1016/j. rineng.2022.100671.
Peng Q, Ding Y, Zhu L, Zhang G, Tang H. Fast and complete degradation of norfloxacin by using Fe/Fe3C@NG as a bifunctional catalyst for activating peroxymonosulfate. Sep Purif Technol 2018;202:307–17. https://doi.org/ 10.1016/j.seppur.2018.03.049.
Xie W-Y, Shen Q, Zhao FJ. Antibiotics and antibiotic resistance from animal manures to soil: a review. Eur J Soil Sci 2018;69:181–95. https://doi.org/ 10.1111/ejss.12494.
Zhu Y, Yang K, Shan R, Han Z, Shao Y, Tian C. The influence of Humification degree of humic acid on its sorption of Norfloxacin during sewage sludge composting. Water Air Soil Pollut 2018;229. https://doi.org/10.1007/s11270- 018-3821-2.
Khan NA, Ahmed S, Farooqi IH, Ali I, Vambol V, Changani F, et al. Occurrence, sources and conventional treatment techniques for various antibiotics present in hospital wastewaters: a critical review. TrAC - Trends Anal Chem 2020;129. https://doi.org/10.1016/j.trac.2020.115921.
Golet EM, Alder AC, Giger W. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley watershed, Switzerland. Environ Sci Technol 2002;36:3645–51. https:// doi.org/10.1021/es0256212.
Le TX, Munekage Y. Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam. Mar Pollut Bull 2004;49:922–9. https://doi.org/10.1016/j.marpolbul.2004.06.016.
Xu W, Zhang G, Li X, Zou S, Li P, Hu Z, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Res 2007;41:4526–34. https://doi.org/10.1016/j. watres.2007.06.023.
Gulkowska A, Leung HW, So MK, Taniyasu S, Yamashita N, Yeung LWY, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Res 2008;42:395–403. https://doi.org/ 10.1016/j.watres.2007.07.031.
Xu W, Zhang G, Zou S, Ling Z, Wang G, Yan W. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China. Water Environ Res 2009;81:248–54. https://doi.org/10.2175/ 106143008x325719.
Zhang RR, Kang Y, Zhang RR, Han M, Zeng W, Wang Y, et al. Occurrence, source, and the fate of antibiotics in mariculture ponds near the Maowei Sea, South China: storm caused the increase of antibiotics usage. Sci Total Environ 2021;752: 141882. https://doi.org/10.1016/j.scitotenv.2020.141882.
Zorita S, Mårtensson L, Mathiasson L. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Sci Total Environ 2009;407:2760–70. https://doi.org/10.1016/j. scitotenv.2008.12.030.
Watkinson AJ, Murby EJ, Kolpin DW, Costanzo SD. The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci Total Environ 2009;407:2711–23. https://doi.org/10.1016/j.scitotenv.2008.11.059.
Kafaei R, Papari F, Seyedabadi M, Sahebi S, Tahmasebi R, Ahmadi M, et al. Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf, Iran. Sci Total Environ 2018;627:703–12. https://doi.org/10.1016/j.scitotenv.2018.01.305.
Morales-Munoz ˜ S, Luque-García JL, Luque De Castro MD. Continuous microwaveassisted extraction coupled with derivatization and fluorimetric monitoring for the determination of fluoroquinolone antibacterial agents from soil samples. J Chromatogr A 2004;1059:25–31. https://doi.org/10.1016/j. chroma.2004.09.086.
Lindberg RH, Wennberg P, Johansson MI, Tysklind M, Andersson BAV. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environ Sci Technol 2005;39:3421–9. https://doi.org/10.1021/es048143z.
Yang JF, Ying GG, Zhao JL, Tao R, Su HC, Chen F. Simultaneous determination of four classes of antibiotics in sediments of the pearl Rivers using RRLC-MS/MS. Sci Total Environ 2010;408:3424–32. https://doi.org/10.1016/j. scitotenv.2010.03.049.
Zhou LJ, Ying GG, Zhao JL, Yang JF, Wang L, Yang B, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ Pollut 2011;159: 1877–85. https://doi.org/10.1016/j.envpol.2011.03.034.
Li S, Huang Z, Wang Y, Liu YQ, Luo R, Shang JG, et al. Migration of two antibiotics during resuspension under simulated wind–wave disturbances in a water–sediment system. Chemosphere. 2018;192:234–43. https://doi.org/ 10.1016/j.chemosphere.2017.10.131.
Gao L, Shi Y, Li W, Niu H, Liu J, Cai Y. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere. 2012;86:665–71. https://doi. org/10.1016/j.chemosphere.2011.11.019.
Li W, Shi Y, Gao L, Liu J, Cai Y. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere. 2012;89:1307–15. https://doi.org/10.1016/j.chemosphere.2012.05.079
Blair BD, Crago JP, Hedman CJ, Klaper RD. Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere. 2013;93:2116–23. https://doi.org/10.1016/j. chemosphere.2013.07.057.
Mandaric L, Diamantini E, Stella E, Cano-Paoli K, Valle-Sistac J, MolinsDelgado D, et al. Contamination sources and distribution patterns of pharmaceuticals and personal care products in alpine rivers strongly affected by tourism. Sci Total Environ 2017;590–591:484–94. https://doi.org/10.1016/j. scitotenv.2017.02.185.
Yang Y, Xue T, Xiang F, Zhang S, Hanamoto S, Sun P, et al. Toxicity and combined effects of antibiotics and nano ZnO on a phosphorus-removing Shewanella strain in wastewater treatment. J Hazard Mater 2021;416:125532. https://doi.org/ 10.1016/j.jhazmat.2021.125532.
Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, et al. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999− 2000: A National Reconnaissance. Environ Sci Technol 2002;36: 1202–11. https://doi.org/10.1021/es011055j.
Li Y, Wang Z, Xie X, Zhu J, Li R, Qin T. Removal of Norfloxacin from aqueous solution by clay-biochar composite prepared from potato stem and natural attapulgite. Colloids Surfaces A Physicochem Eng Asp 2017;514:126–36. https:// doi.org/10.1016/j.colsurfa.2016.11.064.
Feng M, Wang Z, Dionysiou DD, Sharma VK. Metal-mediated oxidation of fluoroquinolone antibiotics in water: a review on kinetics, transformation products, and toxicity assessment. J Hazard Mater 2018;344:1136–54. https:// doi.org/10.1016/j.jhazmat.2017.08.067.
Peng X, Hu F, Zhang T, Qiu F, Dai H. Amine-functionalized magnetic bamboobased activated carbon adsorptive removal of ciprofloxacin and norfloxacin: a batch and fixed-bed column study. Bioresour Technol 2018;249:924–34. https:// doi.org/10.1016/j.biortech.2017.10.095.
Liu W, He T, Wang Y, Ning G, Xu Z, Chen X, et al. Synergistic adsorptionphotocatalytic degradation effect and norfloxacin mechanism of ZnO/ZnS@BC under UV-light irradiation. Sci Rep 2020;10:1–12. https://doi.org/10.1038/ s41598-020-68517-x.
Tian Y, Jia N, Ma H, Liu G, Xiao Z, Wu Y, et al. 0D/3D coupling of g-C3N4 QDs/ hierarchical macro-mesoporous CuO-SiO2 for high-efficiency norfloxacin removal in photo-Fenton-like processes. J Hazard Mater 2021;419:126359. https://doi.org/10.1016/j.jhazmat.2021.126359.
De Souza DI, Dottein EM, Giacobbo A, Siqueira Rodrigues MA, De Pinho MN, Bernardes AM. Nanofiltration for the removal of norfloxacin from pharmaceutical effluent. J Environ Chem Eng 2018;6:6147–53. https://doi.org/10.1016/j. jece.2018.09.034.
Yu D, He J, Wang Z, Pang H, Li L, Zheng Y, et al. Mineralization of norfloxacin in a CoFe–LDH/CF cathode-based heterogeneous electro-Fenton system: preparation parameter optimization of the cathode and conversion mechanisms of H2O2 to ⋅OH. Chem Eng J 2021;417:129240. https://doi.org/10.1016/j.cej.2021.129240.
Zhang H, Qiao J, Li G, Li S, Wang G, Wang J, et al. Preparation of Ce4+− doped BaZrO3 by hydrothermal method and application in dual-frequent sonocatalytic degradation of norfloxacin in aqueous solution. Ultrason Sonochem 2018;42: 356–67. https://doi.org/10.1016/j.ultsonch.2017.11.043.
Baran W, Adamek E, Jajko M, Sobczak A. Removal of veterinary antibiotics from wastewater by electrocoagulation. Chemosphere. 2018;194:381–9. https://doi. org/10.1016/j.chemosphere.2017.11.165.
Bajpai M, Katoch SS, Kadier A, Singh A. A review on electrocoagulation process for the removal of emerging contaminants: theory, fundamentals, and applications. Environ Sci Pollut Res 2022;29:15252–81. https://doi.org/ 10.1007/s11356-021-18348-8.
Prabavathi SL, Govindan K, Saravanakumar K, Jang A, Muthuraj V. Construction of heterostructure CoWO4/g-C3N4 nanocomposite as an efficient visible-light photocatalyst for norfloxacin degradation. J Ind Eng Chem 2019;80:558–67. https://doi.org/10.1016/j.jiec.2019.08.035.
Lebron YAR, Moreira VR, Drumond GP, Gomes GCF, da Silva MM, de Bernardes RO, et al. Statistical physics modeling and optimization of norfloxacin adsorption onto graphene oxide. Coll Surf A Physicochem Eng Asp 2020;606: 125534. https://doi.org/10.1016/j.colsurfa.2020.125534.
Fang L, Miao Y, Wei D, Zhang Y, Zhou Y. Efficient removal of norfloxacin in water using magnetic molecularly imprinted polymer. Chemosphere. 2021;262. https:// doi.org/10.1016/j.chemosphere.2020.128032
Azhar MR, Abid HR, Periasamy V, Sun H, Tade MO, Wang S. Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment. J Colloid Interface Sci 2017;500:88–95. https://doi.org/10.1016/j. jcis.2017.04.001.
Diwan V, Hanna N, Purohit M, Chandran S, Riggi E, Parashar V, et al. Seasonal variations in water-quality, antibiotic residues, resistant bacteria and antibiotic resistance genes of Escherichia coli isolates from water and sediments of the Kshipra River in Central India. Int J Environ Res Public Health 2018;15:1–16. https://doi.org/10.3390/ijerph15061281.
Parashar A, Sikarwar S, Jain R. Studies on adsorption kinetics of Norfloxacin using Nano alumina in aqueous medium. Anal Chem Lett 2020;10:227–39. https://doi.org/10.1080/22297928.2020.1775698.
Minh TB, Leung HW, Loi IH, Chan WH, So MK, Mao JQ, et al. Antibiotics in the Hong Kong metropolitan area: ubiquitous distribution and fate in Victoria harbour. Mar Pollut Bull 2009;58:1052–62. https://doi.org/10.1016/j. marpolbul.2009.02.004.
Senta I, Terzi´c S, Ahel M. Simultaneous determination of sulfonamides, fluoroquinolones, macrolides and trimethoprim in wastewater and river water by LC-tandem-MS. Chromatographia. 2008;68:747–58. https://doi.org/10.1365/ s10337-008-0780-6.
Chen Y, Yu G, Cao Q, Zhang H, Lin Q, Hong Y. Occurrence and environmental implications of pharmaceuticals in Chinese municipal sewage sludge. Chemosphere. 2013;93:1765–72. https://doi.org/10.1016/j. chemosphere.2013.06.007.
Yan B, Niu CH, Wang J. Kinetics, electron-donor-acceptor interactions, and site energy distribution analyses of norfloxacin adsorption on pretreated barley straw. Chem Eng J 2017;330:1211–21. https://doi.org/10.1016/j.cej.2017.08.056.
Zeng Y, Chang F, Liu Q, Duan L, Li D, Zhang H. Recent advances and perspectives on the sources and detection of antibiotics in aquatic environments. J Anal Meth Chem 2022;2022. https://doi.org/10.1155/2022/5091181.
Pan Y, Dong J, Wan L, Sun S, MacIsaac HJ, Drouillard KG, et al. Norfloxacin pollution alters species composition and stability of plankton communities. J Hazard Mater 2020;385:121625. https://doi.org/10.1016/j. jhazmat.2019.121625.
Wan L, Long Y, Hui J, Zhang H, Hou Z, Tan J, et al. Effect of norfloxacin on algae–cladoceran grazer–larval damselfly food chains: algal morphologymediated trophic cascades. Chemosphere. 2020;256:127166. https://doi.org/ 10.1016/j.chemosphere.2020.127166.
Shen R, Yu Y, Lan R, Yu R, Yuan Z, Xia Z. The cardiovascular toxicity induced by high doses of gatifloxacin and ciprofloxacin in zebrafish. Environ Pollut 2019; 254. https://doi.org/10.1016/j.envpol.2019.07.029.
Liang X, Wang F, Li K, Nie X, Fang H. Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio): developmental toxicity, oxidative stress and immunotoxicity. Fish Shellfish Immunol 2020;96:262–9. https://doi.org/ 10.1016/j.fsi.2019.12.008.
Scarafile G. Antibiotic resistance: current issues and future strategies. Rev Heal Care 2016;7:3–16. https://doi.org/10.7175/rhc.v7i1.1226.
Wu H, Niu X, Yang J, Wang C, Lu M. Retentions of bisphenol a and norfloxacin by three different ultrafiltration membranes in regard to drinking water treatment. Chem Eng J 2016;294:410–6. https://doi.org/10.1016/j.cej.2016.02.117.
Hardouin K, Bedoux G, Burlot AS, Nyvall-Coll´en P, Bourgougnon N. Enzymatic recovery of metabolites from seaweeds: potential applications. Adv Bot Res 2014; 71:279–320. https://doi.org/10.1016/B978-0-12-408062-1.00010-X.
Li Y, Zhu J, Ma Y, Li Y, Shao J, Li H. High transparent ag NPs/PVC SERS membrane combined with molecular imprinting technology for selective detection of norfloxacin. J Environ Chem Eng 2022;10:1–9. https://doi.org/ 10.1016/j.jece.2022.108916.
Sharma V, Vinoth Kumar R, Pakshirajan K, Pugazhenthi G. Integrated adsorptionmembrane filtration process for antibiotic removal from aqueous solution. Powder Technol 2017;321:259–69. https://doi.org/10.1016/j. powtec.2017.08.040.
Ighalo JO, Ajala OJ, Umenweke G, Ogunniyi S, Adeyanju CA, Igwegbe CA, et al. Mitigation of clofibric acid pollution by adsorption: a review of recent developments. J Environ Chem Eng 2020;8:104264. https://doi.org/10.1016/j. jece.2020.104264.
Ighalo JO, Igwegbe CA, Adeniyi AG, Adeyanju CA, Ogunniyi S. Mitigation of metronidazole (Flagyl) pollution in aqueous media by adsorption: a review. Environ Technol Rev 2020;9:137–48. https://doi.org/10.1080/ 21622515.2020.1849409.
Anastopoulos I, Ighalo JO, Adaobi Igwegbe C, Giannakoudakis DA, Triantafyllidis KS, Pashalidis I, et al. Sunflower-biomass derived adsorbents for toxic/heavy metals removal from (waste) water. J Mol Liq 2021;342:117540. https://doi.org/10.1016/j.molliq.2021.117540.
Dolar D, Koˇsuti´c K, Periˇsa M, Babi´c S. Photolysis of enrofloxacin and removal of its photodegradation products from water by reverse osmosis and nanofiltration membranes. Sep Purif Technol 2013;115:1–8. https://doi.org/10.1016/j. seppur.2013.04.042.
Oba SN, Ighalo JO, Aniagor CO, Adaobi C, Igwegbe CA, Adaobi C. Removal of ibuprofen from aqueous media by adsorption: a comprehensive review. Sci Total Environ 2021;780:146608. https://doi.org/10.1016/j.scitotenv.2021.146608.
Lippi M, Gaudie Ley MBR, Mendez GP, Felix Cardoso Junior RA. State of art of landfill leachate treatment: Literature Review and Critical Evaluation. Ciˆencia e Nat 2018;40:78. https://doi.org/10.5902/2179460x35239.
Balarak D, Dashtizadeh M, Oguike RS, Chandrika K. Survey electrocoagulation process in removal of Norfloxacin antibiotic from aqueous solutions. J Pharm Res Int 2020:53–60. https://doi.org/10.9734/jpri/2020/v32i330413.
Bartolomeu M, Neves MGPMS, Faustino MAF, Almeida A. Wastewater chemical contaminants: remediation by advanced oxidation processes. Photochem Photobiol Sci 2018;17:1573–98. https://doi.org/10.1039/c8pp00249e.
Serna-Galvis EA, Botero-Coy AM, Martínez-Pachon ´ D, Moncayo-Lasso A, Ib´ anez ˜ M, Hern´ andez F, et al. Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes. Water Res 2019;154:349–60. https://doi.org/10.1016/j. watres.2019.01.045.
Aramyan SM. Advances in Fenton and Fenton based oxidation processes for industrial effluent contaminants control-a review. Int J Environ Sci Nat Resour 2017;2. https://doi.org/10.19080/ijesnr.2017.02.555594.
He J, Zhang Y, Ni F, Tian D, Zhang Y, Long L, et al. Understanding and characteristics of coagulation removal of composite pollution of microplastic and norfloxacin during water treatment. Sci Total Environ 2022;831:154826. https:// doi.org/10.1016/j.scitotenv.2022.154826.
Mora-Gomez J, Ortega E, Mestre S, P´erez-Herranz V, García-Gabaldon ´ M. Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Sep Purif Technol 2019;208:68–75. https://doi.org/ 10.1016/j.seppur.2018.05.017.
Li J, Han M, Guo Y, Wang F, Sun C. Fabrication of FeVO4/Fe2TiO5 composite catalyst and photocatalytic removal of norfloxacin. Chem Eng J 2016;298:300–8. https://doi.org/10.1016/j.cej.2016.03.107.
Oladipo AA, Vaziri R, Abureesh MA. Highly robust AgIO3/MIL-53 (Fe) nanohybrid composites for degradation of organophosphorus pesticides in single and binary systems: application of artificial neural networks modelling. J Taiwan Inst Chem Eng 2018;83:133–42. https://doi.org/10.1016/j.jtice.2017.12.013.
Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 2009;35: 402–17. https://doi.org/10.1016/j.envint.2008.07.009.
García-Munoz ˜ P, Zussblatt NP, Pliego G, Zazo JA, Fresno F, Chmelka BF, et al. Evaluation of photoassisted treatments for norfloxacin removal in water using mesoporous Fe 2 O 3 -TiO 2 materials. J Environ Manage 2019;238:243–50. https://doi.org/10.1016/j.jenvman.2019.02.109.
Ahmadi S, Mesbah M, Igwegbe CA, Ezeliora CD, Osagie C, Khan NA, et al. Sono electro-chemical synthesis of LaFeO3nanoparticles for the removal of fluoride: optimization and modeling using RSM, ANN and GA tools. J Environ Chem Eng 2021;9:105320. https://doi.org/10.1016/j.jece.2021.105320.
Ozcan ¨ A, Atılır Ozcan ¨ A, Demirci Y. Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chem Eng J 2016;304:518–26. https://doi.org/10.1016/j.cej.2016.06.105.
Wang G, Zhao D, Kou F, Ouyang Q, Chen J, Fang Z. Removal of norfloxacin by surface Fenton system (MnFe2O4/H2O2): kinetics, mechanism and degradation pathway. Chem Eng J 2018;351:747–55. https://doi.org/10.1016/j. cej.2018.06.033
Zhao Q, Wang CC, Wang P. Effective norfloxacin elimination via photo-Fenton process over the MIL-101(Fe)-NH2 immobilized on α-Al2O3 sheet. Chin Chem Lett 2022;33:4828–33. https://doi.org/10.1016/j.cclet.2022.01.033.
Lu J, Li J, Xu J, Tang H, Lv Z, Du E, et al. Kinetics, structural effects and transformation pathways for norfloxacin oxidation using the UV/chlorine process. J Water Process Eng 2021;44:102324. https://doi.org/10.1016/j. jwpe.2021.102324.
Su R, Huang L, Li N, Li L, Jin B, Zhou W, et al. Chlorine dioxide radicals triggered by chlorite under visible-light irradiation for enhanced degradation and detoxification of norfloxacin antibiotic: radical mechanism and toxicity evaluation. Chem Eng J 2021;414. https://doi.org/10.1016/j.cej.2021.128768.
Carrillo-Abad J, Mora-Gomez ´ J, García-Gabaldon ´ M, Ortega E, Mestre S, P´erezHerranz V. Effect of the CuO addition on a Sb-doped SnO2 ceramic electrode applied to the removal of Norfloxacin in chloride media by electro-oxidation. Chemosphere. 2020;249. https://doi.org/10.1016/j.chemosphere.2020.126178.
Chen W, Li X, Pan Z, Ma S, Li L. Synthesis of MnOx/SBA-15 for Norfloxacin degradation by catalytic ozonation. Sep Purif Technol 2017;173:99–104. https:// doi.org/10.1016/j.seppur.2016.09.030.
Chen H, Zhang Z, Hu D, Chen C, Zhang Y, He S, et al. Catalytic ozonation of norfloxacin using Co3O4/C composite derived from ZIF-67 as catalyst. Chemosphere. 2021;265:129047. https://doi.org/10.1016/j. chemosphere.2020.129047.
Hu SB, Li L, Luo MY, Yun YF, Chang CT. Aqueous norfloxacin sonocatalytic degradation with multilayer flower-like ZnO in the presence of peroxydisulfate. Ultrason Sonochem 2017;38:446–54. https://doi.org/10.1016/j. ultsonch.2017.03.044.
Ma X, Cheng Y, Ge Y, Wu H, Li Q, Gao N, et al. Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. Ultrason Sonochem 2018;40:763–72. https://doi.org/10.1016/j. ultsonch.2017.08.025.
Liao W, Sharma VK, Xu S, Li Q, Wang L. Microwave-enhanced photolysis of norfloxacin: kinetics, matrix effects, and degradation pathways. Int J Environ Res Public Health 2017;14. https://doi.org/10.3390/ijerph14121564.
de Souza Santos LV, Meireles AM, Lange LC. Degradation of antibiotics norfloxacin by Fenton, UV and UV/H2O2. J Environ Manage 2015;154:8–12. https://doi.org/10.1016/j.jenvman.2015.02.021.
Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 2019;17:145–55. https://doi.org/ 10.1007/s10311-018-0785-9.
Nwabanne JT, Obi CC. Coagulation-flocculation performance of snail shell biomass in abattoir wastewater treatment. J Chem Technol Metall 2019;54: 1177–88.
Nwabanne JT, Obi CC. Abattoir wastewater treatment by electrocoagulation using Iron electrodes. Der Chem Sin 2017;8:254–60.
Nwabanne JT, Obi CC. Electrocoagulation Treatment of Abattoirwastewater Using Aluminium Electrode Pairs P33; 2018. p. 65–77.
Igwegbe CA, Onukwuli OD, Onyechi PC. Optimal route for turbidity removal from aquaculture wastewater by electrocoagulation-flocculation process. J Eng Appl Sci 2019;15:99–108.
Khalil M, Liu Y. Greywater biodegradability and biological treatment technologies: a critical review. Int Biodeter Biodegr 2021;161:105211. https:// doi.org/10.1016/j.ibiod.2021.105211.
De Souza Santos LV, Teixeira DC, Jacob RS, Do Amaral MC Santos, Lange LC. Evaluation of the aerobic and anaerobic biodegradability of the antibiotic norfloxacin. Water Sci Technol 2014;70:265–71. https://doi.org/10.2166/ wst.2014.214.
Ondon BS, Li S, Zhou Q, Li F. Simultaneous removal and high tolerance of norfloxacin with electricity generation in microbial fuel cell and its antibiotic resistance genes quantification. Bioresour Technol 2020;304:122984. https://doi. org/10.1016/j.biortech.2020.122984.
Zhao R, Li X, Hu M, Li S, Zhai Q, Jiang Y. Efficient enzymatic degradation used as pre-stage treatment for norfloxacin removal by activated sludge. Bioprocess Biosyst Eng 2017;40:1261–70. https://doi.org/10.1007/s00449-017-1786-y.
Mohd A. Presence of phenol in wastewater effluent and its removal: an overview. Int J Environ Anal Chem 2020;00:1–23. https://doi.org/10.1080/ 03067319.2020.1738412.
Crini G, Lichtfouse E. Green Adsorbents for Pollutant Removal: Innovative Materials. 2018. https://doi.org/10.1007/978-3-319-92162-4.
Franco DSP, Georgin J, Lima EC, Silva LFO. Journal of water process engineering advances made in removing paraquat herbicide by adsorption technology : a review. J Water Process Eng 2022;49:102988. https://doi.org/10.1016/j. jwpe.2022.102988.
Georgin J, Franco DSP, Ramos CG, Piccilli DGA, Lima EC, Sher F, et al. A review of the antibiotic ofloxacin : current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology. Chem Eng Res Des 2023;193:99–120. https://doi.org/10.1016/j.cherd.2023.03.025.
Georgin J, Franco DSP, da Boit Martinello K, Lima EC, Silva LFO. A review of the toxicology presence and removal of ketoprofen through adsorption technology. J Environ Chem Eng 2022;10:107798. https://doi.org/10.1016/j. jece.2022.107798.
Narayanan I, Kumar PS, Franco DSP, Georgin J, Meili L. Insight into the biosorptive removal mechanisms of hexavalent chromium using the red macroalgae Gelidium sp. Biomass Convers Biorefin 2023. https://doi.org/ 10.1007/s13399-023-04390-8.
Franco DSP, Georgin J, Ramos CG, Netto MS, Lobo B, Jimenez G, et al. Production of adsorbent for removal of propranolol hydrochloride: use of residues from Bactris guineensis fruit palm with economically exploitable potential from the Colombian Caribbean. J Mol Liq 2023;380:121677. https://doi.org/10.1016/j. molliq.2023.121677.
Sellaoui L, Bouzidi M, Franco DSP, Alshammari AS, Gandouzi M, Georgin J, et al. Exploitation of Bauhinia forficata residual fruit powder for the adsorption of cationic dyes. Chem Eng J 2023;456:141033. https://doi.org/10.1016/j. cej.2022.141033.
Georgin J, Franco DSP, Netto MS, Gama BMV, Fernandes DP, Sepúlveda P, et al. Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis. Colloids Surfaces A Physicochem Eng Asp 2022;654: 129900. https://doi.org/10.1016/j.colsurfa.2022.129900.
Khan NA, Shaheen S, Najam T, Shah SSA, Javed MS, Nazir MA, et al. Efficient removal of norfloxacin by MOF@GO composite: isothermal, kinetic, statistical, and mechanistic study. Toxin Rev 2021;40:915–27. https://doi.org/10.1080/ 15569543.2020.1801750.
Yang Z Zhu, Zhang C, Zeng G Ming, Tan X Fei, Huang D Lian, Zhou J Wu, et al. State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production. Coord Chem Rev 2021;446:214103. https://doi.org/10.1016/j.ccr.2021.214103.
Fang N, He Q, Sheng L, Xi Y, Zhang L, Liu H, et al. Toward broader applications of iron ore waste in pollution control: adsorption of norfloxacin. J Hazard Mater 2021;418:126273. https://doi.org/10.1016/j.jhazmat.2021.126273.
Wu H, Gong L, Zhang X, He F, Li Z. Bifunctional porous polyethyleneiminegrafted lignin microspheres for efficient adsorption of 2,4-dichlorophenoxyacetic acid over a wide pH range and controlled release. Chem Eng J 2021;411:128539. https://doi.org/10.1016/j.cej.2021.128539.
Luo Y, Huang X, Li Y, Fu Y, Wang Z, Lu J, et al. CuNiN@C coupled with peroxymonosulfate as efficient catalytic system for the removal of norfloxacin by adsorption and catalysis. Sep Purif Technol 2020;252:117476. https://doi.org/ 10.1016/j.seppur.2020.117476.
Wan Y, Liu X, Liu P, Zhao L, Zou W. Optimization adsorption of norfloxacin onto polydopamine microspheres from aqueous solution: kinetic, equilibrium and adsorption mechanism studies. Sci Total Environ 2018;639:428–37. https://doi. org/10.1016/j.scitotenv.2018.05.171.
Tegegne B, Chimuka L, Chandravanshi BS, Zewge F. Molecularly imprinted polymer for adsorption of venlafaxine, albendazole, ciprofloxacin and norfloxacin in aqueous environment. Sep Sci Technol 2021;56:2217–31. https://doi.org/ 10.1080/01496395.2020.1819323.
Jing F, Guan J, Tang W, Chen J. Mechanistic insight into adsorptive removal of ionic NOR and nonionic DEP organic contaminates by clay-biochar composites. Environ Pollut 2022;310:119881. https://doi.org/10.1016/j. envpol.2022.119881.
Moussout H, Dehmani Y, Franco DSP, Georgin J. Towards an in-depth experimental and theoretical understanding of the cadmium uptake mechanism on a synthesized chitin biopolymer. J Mol Liq 2023;383:122106. https://doi.org/ 10.1016/j.molliq.2023.122106.
Franco DSP, Georgin J, Ramos CG, Netto MS, Ojeda NJ, Vega NA, et al. The production of activated biochar using Calophyllum inophyllum waste biomass and use as an adsorbent for removal of diuron from the water in batch and fixed bed column. Environ Sci Pollut Res 2023:52498–513. https://doi.org/10.1007/ s11356-023-26048-8.
Dehmani Y, Franco DSP, Georgin J, Lamhasni T, Brahmi Y, Oukhrib R, et al. Comparison of phenol adsorption property and mechanism onto different Moroccan clays. Water. 2023;15:1881. https://doi.org/10.3390/w15101881.
Bonilla-Petriciolet AAAA, Mendoza-Castillo DI, Reynel-Avila ´ HE, ReynelAvila HE, Reynel-Avila ´ HE. Adsorption Processes for Water Treatment and Purification. Cham: Springer, Springer International Publishing; 2017. https:// doi.org/10.1007/978-3-319-58136-1.
Gupta B, Deep A, Malik P. Liquid-liquid extraction and recovery of indium using Cyanex 923. Anal Chim Acta 2004;513:463–71. https://doi.org/10.1016/j. aca.2004.02.036.
Lima EC, Hosseini-Bandegharaei A, Anastopoulos I, Moreno-Pirajan ´ JC, Anastopoulos I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 2019;273:425–34. https://doi.org/10.1016/j.molliq.2018.10.048.
Freundlich HMF. Over the adsorption in solution. J Phys Chem 1906;57:358–471.
Langmuir I. Adsorption of gases on glass, mica and platinum. J Am Chem Soc 1918;40:1361–403.
Derylo-Marczewska A, Blachnio M, Marczewski AW, Swiatkowski A, Tarasiuk B. Adsorption of selected herbicides from aqueous solutions on activated carbon. J Therm Anal Calorim 2010;101:785–94. https://doi.org/10.1007/s10973-010- 0840-7.
Franco DSP, Georgin J, Ramos CG, Eljaiek SM, Badillo DR, de Oliveira AHP, et al. The synthesis and evaluation of porous carbon material from Corozo fruit (Bactris guineensis) for efficient propranolol hydrochloride adsorption. Molecules. 2023; 28. https://doi.org/10.3390/molecules28135232
Franco DSP, Georgin J, Netto MS, da Boit Martinello K, Silva LFO. Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical model. J Mol Liq 2022;356: 119021. https://doi.org/10.1016/j.molliq.2022.119021.
Kerkhoff CM, da Boit Martinello K, Franco DSP, Netto MS, Georgin J, Foletto EL, et al. Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp. J Mol Liq 2021;339:117184. https://doi.org/10.1016/j.molliq.2021.117184.
Franco DSP, Pinto D, Georgin J, Netto MS, Luiz E, Manera C, et al. Conversion of Erythrina speciosa pods to porous adsorbent for ibuprofen removal. J Environ Chem Eng 2022;10:108070. https://doi.org/10.1016/j.jece.2022.108070
Crini G, Badot P-MM. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 2008;33:399–447. https://doi.org/ 10.1016/j.progpolymsci.2007.11.001.
Mohan D, Pittman CU. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 2006;137:762–811. https://doi.org/10.1016/j.jhazmat.2006.06.060.
Zanli BLGL, Tang W, Chen J. N-doped and activated porous biochar derived from cocoa shell for removing norfloxacin from aqueous solution: performance assessment and mechanism insight. Environ Res 2022;214:113951. https://doi. org/10.1016/j.envres.2022.113951.
Wang J, Zhang M, Zhou R, Li J, Zhao W, Zhou J. Adsorption characteristics and mechanism of norfloxacin in water by γ-Fe2O3@BC. Water Sci Technol 2020;82: 242–54. https://doi.org/10.2166/wst.2020.078.
Li X, Jiang Y, Chen T, Zhao P, Niu S, Yuan M, et al. Adsorption of norfloxacin from wastewater by biochar with different substrates. Environ Geochem Health 2023; 45:3331–44. https://doi.org/10.1007/s10653-022-01414-6.
Feng D, Yu H, Deng H, Li F, Ge C. Adsorption characteristics of Norfloxacin by biochar prepared by cassava dreg: kinetics, isotherms, and thermodynamic analysis. BioResources. 2015;10:6751–68. https://doi.org/10.15376/ biores.10.4.6751-6768.
Zhang M, Zhang K, Wang J, Zhou R, Li J, Zhao W. Study on optimal adsorption conditions of norfloxacin in water based on response surface methodology. Water Supply 2022;22:3661–72. https://doi.org/10.2166/ws.2022.008.
Liu Y, Zhu S, Zhao B, Ai J, Liu Z. N, O, P multi-doped porous carbon with superior norfloxacin sorption performance. Mater Lett 2021;290:129478. https://doi.org/ 10.1016/j.matlet.2021.129478.
Zhou H, Wang Z, Gao C, Sun Q, Liu J, She D. Synthesis of honeycomb lignin-based biochar and its high-efficiency adsorption of norfloxacin. Bioresour Technol 2023; 369:128402. https://doi.org/10.1016/j.biortech.2022.128402.
Tang J, Wang L, Qin W, Qing Z, Du C, Xiao S, et al. High reusability and adsorption capacity of acid washed calcium alginate/chitosan composite hydrogel spheres in the removal of norfloxacin. Chemosphere. 2023;335:139048. https:// doi.org/10.1016/j.chemosphere.2023.139048.
Chen W, Li X, Pan Z, Bao Y, Ma S, Li L. Efficient adsorption of Norfloxacin by FeMCM-41 molecular sieves: kinetic, isotherm and thermodynamic studies. Chem Eng J 2015;281:397–403. https://doi.org/10.1016/j.cej.2015.06.121.
Cheng D, Chen J, Wang J, Liu X. Adsorption behaviors and influencing factors of antibiotic norfloxacin on natural kaolinite-humic composite colloids in aquatic environment. Heliyon. 2023;9:e15979. https://doi.org/10.1016/j.heliyon.2023. e15979.
Wu J, Wang T, Liu Y, Tang W, Geng S, Chen J. Norfloxacin adsorption and subsequent degradation on ball-milling tailored N-doped biochar. Chemosphere. 2022;303:135264. https://doi.org/10.1016/j.chemosphere.2022.135264.
Nguyen V-T, Vo T-D-H, Nguyen T-B, Dat ND, Huu BT, Nguyen X-C, et al. Adsorption of norfloxacin from aqueous solution on biochar derived from spent coffee ground: master variables and response surface method optimized adsorption process. Chemosphere. 2022;288:132577. https://doi.org/10.1016/j. chemosphere.2021.132577.
Li C, Gao Y, Li A, Zhang L, Ji G, Zhu K, et al. Synergistic effects of anionic surfactants on adsorption of norfloxacin by magnetic biochar derived from furfural residue. Environ Pollut 2019;254:113005. https://doi.org/10.1016/j. envpol.2019.113005.
Peng H, Feng S, Zhang X, Li Y, Zhang X. Adsorption of norfloxacin onto titanium oxide: effect of drug carrier and dissolved humic acid. Sci Total Environ 2012; 438:66–71. https://doi.org/10.1016/j.scitotenv.2012.08.045.
Yan B, Niu CH. Adsorption behavior of norfloxacin and site energy distribution based on the Dubinin-Astakhov isotherm. Sci Total Environ 2018;631–632: 1525–33. https://doi.org/10.1016/j.scitotenv.2018.03.119.
Wei F, Liu H, Ren Q, Yang L, Qin L, Chen H, et al. Preparation of Zr-MOF for the removal of norfloxacin from an aqueous solution. Inorg Chem Commun 2023;153: 110819. https://doi.org/10.1016/j.inoche.2023.110819.
Yang W, Lu Y, Zheng F, Xue X, Li N, Liu D. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube. Chem Eng J 2012;179: 112–8. https://doi.org/10.1016/j.cej.2011.10.068.
Sharma P, Sharma M, Laddha H, Gupta R, Agarwal M. Non-toxic and biodegradable κ-carrageenan/ZnO hydrogel for adsorptive removal of norfloxacin: optimization using response surface methodology. Int J Biol Macromol 2023;238:124145. https://doi.org/10.1016/j.ijbiomac.2023.124145
Sui M, Zhou Y, Sheng L, Duan B. Adsorption of norfloxacin in aqueous solution by mg-Al layered double hydroxides with variable metal composition and interlayer anions. Chem Eng J 2012;210:451–60. https://doi.org/10.1016/j. cej.2012.09.026.
Zhang J, Lu M, Wan J, Sun Y, Lan H, Deng X. Effects of pH, dissolved humic acid and Cu2+ on the adsorption of norfloxacin on montmorillonite-biochar composite derived from wheat straw. Biochem Eng J 2018;130:104–12. https://doi.org/ 10.1016/j.bej.2017.11.018.
Wu X, Huang M, Zhou T, Mao J. Recognizing removal of norfloxacin by novel magnetic molecular imprinted chitosan/γ-Fe2O3 composites: selective adsorption mechanisms, practical application and regeneration. Sep Purif Technol 2016;165: 92–100. https://doi.org/10.1016/j.seppur.2016.03.041.
Qiu Z, Lin Q, Lin J, Zhang X, Wang Y. Regenerable mg/Fe bimetallic hydroxide for remarkable removal of low-concentration norfloxacin from aqueous solution. Colloids Surfaces A Physicochem Eng Asp 2022;644:128825. https://doi.org/ 10.1016/j.colsurfa.2022.128825.
Otalvaro JO, Avena M, Brigante M. Adsorption of norfloxacin on a hexagonal mesoporous silica: isotherms, kinetics and adsorbent reuse. Adsorption. 2019;25: 1375–85. https://doi.org/10.1007/s10450-019-00100-x.
Ma Q, Zhao N, Wei Y, Wang S, Liu D, Peng Yuan. Efficient Adsorption and Separation of Norfloxacin from Water by Allophane Aerogel Microspheres. SSRN. 2023. https://doi.org/10.2139/ssrn.4500058.
Iftekhar S, Ramasamy DL, Srivastava V, Asif MB, Sillanpa¨¨ a M. Understanding the factors affecting the adsorption of lanthanum using different adsorbents: a critical review. Chemosphere. 2018;204:413–30. https://doi.org/10.1016/J. CHEMOSPHERE.2018.04.053.
Essandoh M, Wolgemuth D, Pittman CU, Mohan D, Mlsna T. Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere. 2017;174:49–57. https://doi.org/10.1016/j. chemosphere.2017.01.105.
Salomon ´ YL, Georgin J, Franco DSP, Netto MS, Piccilli DGA, Foletto EL, et al. Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon. J Mol Liq 2022;347:117990. https://doi.org/10.1016/j. molliq.2021.117990.
Yadav BS, Dasgupta S. Effect of time, pH, and temperature on kinetics for adsorption of methyl orange dye into the modified nitrate intercalated MgAl LDH adsorbent. Inorg Chem Commun 2022;137:109203. https://doi.org/10.1016/j. inoche.2022.109203.
Balakrishna K, Rath A, Praveenkumarreddy Y, Guruge KS, Subedi B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol Environ Saf 2017;137:113–20. https://doi.org/10.1016/j. ecoenv.2016.11.014.
Xie X, Xiong H, Zhang Y, Tong Z, Liao A, Qin Z. Preparation magnetic cassava residue microspheres and its application for cu(II) adsorption. J Environ Chem Eng 2017;5:2800–6. https://doi.org/10.1016/j.jece.2017.05.024
Zubair M, Manzar MS, Suleiman MA, Fernandes DP, Meili L, Bin Essa WA, et al. Production of magnetic biochar-steel dust composites for enhanced phosphate adsorption. J Water Process Eng 2022;47:102793. https://doi.org/10.1016/j. jwpe.2022.102793.
Ma X, Xin Y, Yan Q, Pan X, Xin S, Huang X, et al. Adsorption characteristics of tetracycline onto biochars as affected by solution chemistry conditions and ball milling treatment. Water Air Soil Pollut 2020;231. https://doi.org/10.1007/ s11270-020-04769-7.
Vieira Y, Schnorr C, Piazzi AC, Netto MS, Piccini WM, Franco DSP, et al. An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon. J Mol Liq 2022;361:119639. https://doi.org/ 10.1016/j.molliq.2022.119639.
Dhaouadi F, Sellaoui L, Taamalli S, Louis F, El A, Badawi M, et al. Enhanced Adsorption of Ketoprofen and 2, 4-Dichlorophenoxyactic Acid on Physalis peruviana Fruit Residue Functionalized with H 2 SO 4 : Adsorption Properties and Statistical Physics Modeling Adri a445; 2022. https://doi.org/10.1016/j. cej.2022.136773.
Gupta N, Amritphale SS, Chandra N. Removal of lead from aqueous solution by hybrid precursor prepared by rice hull. J Hazard Mater 2009;163:1194–8. https://doi.org/10.1016/j.jhazmat.2008.07.113.
Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem 1999;34:451–65. https://doi.org/10.1016/S0032-9592(98)00112-5.
Tanyildizi MS¸ . Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull. Chem Eng J 2011;168:1234–40. https://doi.org/ 10.1016/j.cej.2011.02.021.
Elovich SY, Larionov OG. Theory of adsorption from nonelectrolyte solutions on solid adsorbents. Bull Acad Sci USSR Div Chem Sci 1962;11:198–203. https://doi. org/10.1007/BF00908017.
Avrami M. Kinetics of phase change. I: general theory. J Chem Phys 1939;7: 1103–12. https://doi.org/10.1063/1.1750380.
Lima EC, ´ Dehghani MH, Guleria A, Sher F, Karri RR, Dotto GL, et al. Adsorption: Fundamental aspects and applications of adsorption for effluent treatment. In: Hadi Dehghani M, Karri R, Lima E, editors. Green Technol. Defluoridation water. Elsevier; 2021. p. 41–88. https://doi.org/10.1016/b978-0-323-85768-0.00004-x.
Lima EC, Sher F, Guleria A, Saeb MR, Anastopoulos I, Tran HN, et al. Is one performing the treatment data of adsorption kinetics correctly? J Environ Chem Eng 2021;9:104813. https://doi.org/10.1016/j.jece.2020.104813.
Awad AM, Shaikh SMR, Jalab R, Gulied MH, Nasser MS, Benamor A, et al. Adsorption of organic pollutants by natural and modified clays: a comprehensive review. Sep Purif Technol 2019;228:115719. https://doi.org/10.1016/j. seppur.2019.115719.
Woo S-HH, Roy SK, Kwon SJ, Cho S-WW, Sarker K, Lee M-SS, et al. Chapter three - concepts, prospects, and potentiality in buckwheat (Fagopyrum esculentum Moench): A research perspective. In: Zhou M, Kreft I, Woo S-H, Chrungoo N, Wieslander G, editors. Mol. Breed. Nutr. Asp. Buckwheat. Academic Press; 2016. p. 21–49. https://doi.org/10.1016/B978-0-12-803692-1.00003-1.
Foo KY, Hameed BH. Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation. Bioresour Technol 2012;112: 143–50. https://doi.org/10.1016/j.biortech.2012.01.178.
Foo KY, Hameed BH. Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste. Adv Colloid Interface Sci 2009;152: 39–47. https://doi.org/10.1016/j.cis.2009.09.005.
Lima EC, Hosseini-Bandegharaei A, Anastopoulos I. Response to “Some remarks on a critical review of the estimation of the thermodynamic parameters on adsorption equilibria”. Wrong use of equilibrium constant in the van’t Hoff equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 2019;280:298–300. https://doi.org/10.1016/j.molliq.2019.01.160.
Tran HN, Lima EC, Juang R-S, Bollinger J-C, Chao H-P. Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: a comparison study. J Environ Chem Eng ;9:106674. https://doi.org/10.1016/j.jece.2021.106674.
Lima EC, Gomes AA, Tran HN. Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (ΔS◦ and ΔH◦). J Mol Liq 2020;311:113315. https://doi.org/10.1016/j. molliq.2020.113315.
Georgin J, da Boit Martinello K, Franco DSP, Netto MS, Piccilli DGA, Yilmaz M, et al. Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water. J Environ Chem Eng 2022;10. https://doi.org/10.1016/j. jece.2021.107006.
Lazarotto JS, da Boit Martinello K, Georgin J, Franco DSP, Netto MS, Piccilli DGA, et al. Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide. J Environ Chem Eng 2021;9. https://doi.org/10.1016/j. jece.2021.106843.
Glueckauf E. Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography. Trans Faraday Soc 1955;51: 1540–51. https://doi.org/10.1039/TF9555101540.
Liu YY, Shen L. A general rate law equation for biosorption. Biochem Eng J 2008; 38:390–4. https://doi.org/10.1016/j.bej.2007.08.003.
Elovich SY, Larionov OG. Theory of adsorption from nonelectrolyte solutions on solid adsorbents - 2. Experimental verification of the equation for the adsorption isotherm from solutions. Bull Acad Sci USSR Div Chem Sci 1962;11:198–203. https://doi.org/10.1007/BF00908017.
Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Des 2016;109:495–504. https://doi.org/10.1016/j.cherd.2016.02.006.
Wang J, Guo X. Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater 2020;390:122156. https://doi.org/10.1016/j. jhazmat.2020.122156.
Monnier X, Napolitano S, Cangialosi D. Direct observation of desorption of a melt of long polymer chains. Nat Commun 2020;11:1–7. https://doi.org/10.1038/ s41467-020-18216-y.
Sips R. On the structure of a catalyst surface. J Chem Phys 1948;16:490–5. https://doi.org/10.1063/1.1746922.
Redlich O, Peterson DL. A useful adsorption isotherm. J Phys Chem 1959;63: 1024. https://doi.org/10.1021/j150576a611.
Toth ´ J. Uniform interpretation of gas/solid adsorption. Adv Colloid Interface Sci 1995;55:1–239. https://doi.org/10.1016/0001-8686(94)00226-3.
Liu Y, Xu H, Tay JH. Derivation of a general adsorption isotherm model. J Environ Eng 2005;131:1466–8. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:10 (1466).
Tran HN, Lima EC, Juang RS, Bollinger JC, Chao HP. Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: a comparison study. J Environ Chem Eng 2021;9. https://doi.org/10.1016/j.jece.2021.106674.
Ali I, Kon’kova T, Kasianov V, Rysev A, Panglisch S, Mbianda XY, et al. Preparation and characterization of nano-structured modified montmorillonite for dioxidine antibacterial drug removal in water. J Mol Liq 2021;331:115770. https://doi.org/10.1016/j.molliq.2021.115770.
Darweesh TM, Ahmed MJ. Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column. Ecotoxicol Environ Saf 2017;138:139–45. https://doi.org/10.1016/j.ecoenv.2016.12.032.
Zhou J, Sun Q. Sodium alginate/modified bentonite composite bead adsorptive removal of Norfloxacin: static and dynamic adsorption. Polymers (Basel) 2022;14 3984. https://doi.org/10.3390/polym14193984.
Hu Q, Huang Q, Yang D, Liu H. Prediction of breakthrough curves in a fixed-bed column based on normalized Gudermannian and error functions. J Mol Liq 2021; 323:115061. https://doi.org/10.1016/j.molliq.2020.115061.
Ji H, Liu Z, Xie X, Jiang W, Wan S, Wang B, et al. Norfloxacin removal efficiency by a carbon filtration column under the influence of nanoplastics: mechanistic analysis and prediction model. Water Supply 2023;23:2105–18. https://doi.org/ 10.2166/ws.2023.108.
Wang Z, Yu X, Pan B, Xing B. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes. Environ Sci Technol 2010;44:978–84. https://doi.org/10.1021/es902775u.
Zhang Y, Ni F, He J, Shen F, Deng S, Tian D, et al. Mechanistic insight into different adsorption of norfloxacin on microplastics in simulated natural water and real surface water. Environ Pollut 2021;284:117537. https://doi.org/ 10.1016/j.envpol.2021.117537.
Dan H, Li N, Xu X, Gao Y, Huang Y, Akram M, et al. Mechanism of sonication time on structure and adsorption properties of 3D peanut shell/graphene oxide aerogel. Sci Total Environ 2020;739:139983. https://doi.org/10.1016/j. scitotenv.2020.139983.
Onu CE, Ekwueme BN, Ohale PE, Onu CP, Asadu CO, Obi CC, et al. Decolourization of bromocresol green dye solution by acid functionalized rice husk: artificial intelligence modeling, GA optimization, and adsorption studies. J Hazar Mater Adv 2023;9:100224. https://doi.org/10.1016/j. hazadv.2022.100224.
Cao Y, Kamel M, Mohammadifard K, Heshmati AJM, Heravi MR Poor, Ebadi A Ghaffar. Probing and comparison of graphene, boron nitride and boron carbide nanosheets for Flutamide adsorption: a DFT computational study. J Mol Liq 2021; 343:117487. https://doi.org/10.1016/j.molliq.2021.117487.
Emenike EC, Iwuozor KO, Agbana SA, Otoikhian KS, Adeniyi AG. Efficient recycling of disposable face masks via co-carbonization with waste biomass: a pathway to a cleaner environment. Clean Environ Syst 2022;6:100094. https:// doi.org/10.1016/j.cesys.2022.100094.
Aniagor CO, Menkiti MC. Kinetics and mechanistic description of adsorptive uptake of crystal violet dye by lignified elephant grass complexed isolate. J Environ Chem Eng 2018;6:2105–18. https://doi.org/10.1016/j. jece.2018.01.070.
Li S, Fang L. Modeling of the adsorption mechanisms and selectivity of the molecular imprinted particles for norfloxacin. Adv Mat Res 2014;1030–1032: 121–4. https://doi.org/10.4028/www.scientific.net/AMR.1030-1032.121.
Zhang Y, Cheng L, Ji Y. A novel amorphous porous biochar for adsorption of antibiotics: adsorption mechanism analysis via experiment coupled with theoretical calculations. Chem Eng Res Des 2022;186:362–73. https://doi.org/ 10.1016/j.cherd.2022.07.049.
Liang D, Wang X, Liu JJ, Liu JJ, Tang S, Xu B, et al. Design, preparation and adsorption performances of norfloxacin molecularly imprinted polymers. J Mol Graph Model 2022;114:108197. https://doi.org/10.1016/j.jmgm.2022.108197.
Zhang X, Shen J, Zhuo N, Tian Z, Xu P, Yang Z, et al. Interactions between antibiotics and graphene-based materials in water: a comparative experimental and theoretical investigation. ACS Appl Mater Interfaces 2016;8:24273–80. https://doi.org/10.1021/acsami.6b09377.
Ohale PE, Igwegbe CA, Iwuozor KO, Emenike EC, Obi CC, Białowiec A. A review of the adsorption method for norfloxacin reduction from aqueous media. MethodsX. 2023;10. https://doi.org/10.1016/j.mex.2023.102180.
Niu M, Sun C, Zhang K, Li G, Meriem F, Pham-Huy C, et al. A simple extraction method for norfloxacin from pharmaceutical wastewater with a magnetic coreshell molecularly imprinted polymer with the aid of computer simulation. New J Chem 2017;41:2614–24. https://doi.org/10.1039/c6nj03901d.
Yadav S, Goel N, Kumar V, Tikoo K, Singhal S. Removal of fluoroquinolone from aqueous solution using graphene oxide: experimental and computational elucidation. Environ Sci Pollut Res 2018;25:2942–57. https://doi.org/10.1007/ s11356-017-0596-8.
Huo Y, Guo R, Lin K, Ai Y. Insights into interface mechanism of three typical antibiotics onto the graphene oxide/chitosan composite: experimental and theoretical investigation. Chin J Chem Phys 2023;36:211. https://doi.org/ 10.1063/1674-0068/cjcp2106111.
Georgin J, Franco DSPP, Netto MS, Manzar MS, Zubair M, Meili L, et al. Adsorption of the first-line Covid treatment analgesic onto activated carbon from residual pods of Erythrina Speciosa. Environ Manag 2023;71:795–808. https:// doi.org/10.1007/s00267-022-01716-6.
Ali I, Babkin AV, Burakova IV, Burakov AE, Neskoromnaya EA, Tkachev AG, et al. Fast removal of samarium ions in water on highly efficient nanocomposite based graphene oxide modified with polyhydroquinone: isotherms, kinetics, thermodynamics and desorption. J Mol Liq 2021;329:115584. https://doi.org/ 10.1016/j.molliq.2021.115584.
Ali I, Kon’kova T, Rysev A, ALOthman ZA, Sillanpa¨a ¨ M, Georgin J, et al. Removal of dichromate-, molybdate-, and nitrate ions from wastewater using modified natural montmorillonite. J Mol Liq 2023;392:123400. https://doi.org/10.1016/j. molliq.2023.123400.
dc.relation.citationendpage.none.fl_str_mv 22
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 324
dc.rights.none.fl_str_mv © 2024 Published by Elsevier B.V
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2024 Published by Elsevier B.V
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 22 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.place.none.fl_str_mv Netherlands
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0001868624000198?via%3Dihub
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/b600a975-2e41-41b3-bfb9-a75fed5b4a14/download
https://repositorio.cuc.edu.co/bitstreams/7dac3509-088f-41dd-8b2e-ae5a523bf2e1/download
https://repositorio.cuc.edu.co/bitstreams/9cb7a884-a6c0-4e1d-b6e7-c9c7a1f5e695/download
https://repositorio.cuc.edu.co/bitstreams/8f17ac07-cb63-4ea5-9708-95c69977a5f1/download
bitstream.checksum.fl_str_mv 67e79947cec8b88c57acab32b3a44c92
73a5432e0b76442b22b026844140d683
1b68987dd0e2c83cae2a9e00f5990a9b
47fb2ccaf18082b3c50cd16a94202cdb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166530776432640
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2024 Published by Elsevier B.Vhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Georgin, JordanaDison Stracke, Pfingsten FrancoMeili, LucasBonilla Petriciolet, AdriánKurniawan, Tonni AgustionoImanova, GunelDemir, ErsinAli, Imran2024-11-05T12:28:44Z2024-11-05T12:28:44Z2024-01-30Jordana Georgin, Dison Stracke Pfingsten Franco, Lucas Meili, Adrián Bonilla-Petriciolet, Tonni Agustiono Kurniawan, Gunel Imanova, Ersin Demir, Imran Ali, Environmental remediation of the norfloxacin in water by adsorption: Advances, current status and prospects, Advances in Colloid and Interface Science, Volume 324, 2024, 103096, ISSN 0001-8686, https://doi.org/10.1016/j.cis.2024.103096.0001-8686https://hdl.handle.net/11323/1363010.1016/j.cis.2024.1030961873-3727Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Antibiotics are considered as the new generation water pollutants as these disturb endocrine systems if water contaminated with antibiotics is consumed. Among many antibiotics norfloxacin is present in various natural water bodies globally. This antibiotic is considered an emerging pollutant due to its low degradation in aquatic animals. Besides, it has many side effects on human vital organs. Therefore, the present article discusses the recent advances in the removal of norfloxacin by adsorption. This article describes the presence of norfloxacin in natural water, consumption, toxicity, various adsorbents for norfloxacin removal, optimization factors for norfloxacin removal, kinetics, thermodynamics, modeling, adsorption mechanism and regeneration of the adsorbents. Adsorption takes place in a monolayer following the Langmuir model. The Pseudo-second order model represents the kinetic data. The adsorption capacity ranged from 0.924 to 1282 mg g−1. In this sense, the parameters such as the NFX concentration added to the adsorbent textural properties exerted a great influence. Besides, the fixed bed-based removal at a large scale is also included. In addition to this, the simulation studies were also discussed to describe the adsorption mechanism. Finally, the research challenges and future perspectives have also been highlighted. This article will be highly useful for academicians, researchers, industry persons, and government authorities for designing future advanced experiments.22 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S0001868624000198?via%3DihubEnvironmental remediation of the norfloxacin in water by adsorption: advances, current status and prospectsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Advances in Colloid and Interface ScienceYang Y, Zhong Z, Li J, Du H, Li Z. Efficient with low-cost removal and adsorption mechanisms of norfloxacin, ciprofloxacin and ofloxacin on modified thermal kaolin: experimental and theoretical studies. J Hazard Mater 2022;430:128500. https://doi.org/10.1016/j.jhazmat.2022.128500.Zelaya Soul´e ME, Barraqu´e F, Flores FM, Torres Sanchez ´ RM, Fernandez ´ MA. Carbon/montmorillonite hybrids with different activation methods: adsorption of norfloxacin. Adsorption. 2019;25:1361–73. https://doi.org/10.1007/s10450- 019-00098-2.Feng Y, Liu Q, Yu Y, Kong Q, Zhou LL, Da Du Y, et al. Norfloxacin removal from aqueous solution using biochar derived from luffa sponge. J Water Supply Res Technol - AQUA 2018;67:703–14. https://doi.org/10.2166/aqua.2018.040.Gattey DM. Toxicology, Garner Klintworth’s Pathobiol. Ocul Dis Part B, Third Ed 2007:1079–90. https://doi.org/10.5005/jp/books/14224_17.Fatta-Kassinos D, Hapeshi E, Achilleos A, Meric S, Gros M, Petrovic M, et al. Existence of pharmaceutical compounds in tertiary treated urban wastewater that is utilized for reuse applications. Water Resour Manag 2011;25:1183–93. https:// doi.org/10.1007/s11269-010-9646-4.Chahm T, De Souza LF, Dos Santos NR, Da Silva BA, Rodrigues CA. Use of chemically activated termite feces a low-cost adsorbent for the adsorption of norfloxacin from aqueous solution. Water Sci Technol 2019;79:291–301. https:// doi.org/10.2166/wst.2019.052.Nayak A, Bhushan B, Kotnala S. Fabrication of chitosan-hydroxyapatite nanoadsorbent for removal of norfloxacin from water: isotherm and kinetic studies. Mater Today Proc 2022;61:143–9. https://doi.org/10.1016/j. matpr.2021.07.356.Wang Y, Yu W, Chang Z, Gao C, Yang Y, Zhang B, et al. Effects of dissolved organic matter on the adsorption of norfloxacin on a sandy soil (fraction) from the Yellow River of northern China. Sci Total Environ 2022;848:157495. https:// doi.org/10.1016/j.scitotenv.2022.157495.Ali I, Burakova I, Galunin E, Burakov A, Mkrtchyan E, Melezhik A, et al. Highspeed and high-capacity removal of methyl Orange and malachite green in water using newly developed mesoporous carbon: kinetic and isotherm studies. ACS Omega 2019;4:19293–306. https://doi.org/10.1021/acsomega.9b02669.Ali I, ALOthman ZA, Mbianda XY, Basheer A Arsh. Preparation and characterization of nanoporous carbon for removal of amoxicillin antibiotic from water: modelling, kinetics and thermodynamic studies. Inorg Chem Commun 2023;155:111006. https://doi.org/10.1016/j.inoche.2023.111006.Ali I, Imanova GT, Alamri A, Hasan SZ, Basheer AA. Preparation of polyhydroquinone graphene oxide nanocomposite for cephalexin removal from water by adsorption: simulation, kinetics, and thermodynamic studies. Inorg Chem Commun 2023;157:111414. https://doi.org/10.1016/j. inoche.2023.111414.Ali I, Afshinb S, Poureshgh Y, Azari A, Rashtbari Y, Feizizadeh A, et al. Green preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water. Environ Sci Pollut Res 2020;27:36732–43. https://doi.org/10.1007/ s11356-020-09310-1.Ali I, Alyona S, Tatiana K, Anastasiya G, Albishri HM, Alshitari WH. Facile adsorption-electroflotation method for the removal of heavy metal ions from water using carbon nanomaterials. Environ Sci Pollut Res 2023;30:38970–81. https://doi.org/10.1007/s11356-022-24509-0.Sun M, Yang Y, Huang M, Fu S, Hao Y, Hu S, et al. Adsorption behaviors and mechanisms of antibiotic norfloxacin on degradable and nondegradable microplastics. Sci Total Environ 2022;807:151042. https://doi.org/10.1016/j. scitotenv.2021.151042.Cao X, Meng Z, Song E, Sun X, Hu X, Wenbin Li Z, et al. Co-adsorption capabilities and mechanisms of bentonite enhanced sludge biochar for de-risking norfloxacin and Cu2+ contaminated water. Chemosphere. 2022;299:134414. https://doi. org/10.1016/j.chemosphere.2022.134414.Fang X, Wu S, Wu Y, Yang W, Li Y, He J, et al. High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: dynamics, thermodynamics, and mechanisms. Appl Surf Sci 2020;518. https://doi.org/ 10.1016/j.apsusc.2020.146226.Huang M, Zhou T, Wu X, Mao J. Distinguishing homogeneous-heterogeneous degradation of norfloxacin in a photochemical Fenton-like system (Fe3O4/UV/ oxalate) and the interfacial reaction mechanism. Water Res 2017;119:47–56. https://doi.org/10.1016/j.watres.2017.03.008.Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 2015;49:6772–82. https://doi.org/10.1021/acs.est.5b00729.Zhang H, Ding X, Chen X, Ma Y, Wang Z, Zhao X. A new method of utilizing rice husk: consecutively preparing d-xylose, organosolv lignin, ethanol and amorphous superfine silica. J Hazard Mater 2015;291:65–73. https://doi.org/ 10.1016/j.jhazmat.2015.03.003.Wang G, Yi Y, Huang L, Wang J, Fang Z. Efficient removal of norfloxacin by biological aerated filters: effect of zeolite modification and analysis of microbial communities. J Water Process Eng 2021;40:101799. https://doi.org/10.1016/j. jwpe.2020.101799.Larsson DGJ, de Pedro C, Paxeus N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 2007;148:751–5. https://doi.org/10.1016/j.jhazmat.2007.07.008.Ezzariai A, Hafidi M, Khadra A, Aemig Q, El Fels L, Barret M, et al. Human and veterinary antibiotics during composting of sludge or manure: global perspectives on persistence, degradation, and resistance genes. J Hazard Mater 2018;359: 465–81. https://doi.org/10.1016/j.jhazmat.2018.07.092.Domagala JM. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother 1994;33:685–706. https://doi. org/10.1093/jac/33.4.685.Sarro A, Sarro G. Adverse reactions to fluoroquinolones. An overview on mechanistic aspects. Curr Med Chem 2012;8:371–84. https://doi.org/10.2174/ 0929867013373435.Pan Y, Yan SW, Li RZ, Hu YW, Chang XX. Lethal/sublethal responses of Daphnia magna to acute norfloxacin contamination and changes in phytoplanktonzooplankton interactions induced by this antibiotic. Sci Rep 2017;7:1–10. https:// doi.org/10.1038/srep40385.dos Santos Barbosa CR, Scherf JR, de Freitas TS, de Menezes IRA, Pereira RLS, dos Santos JFS, et al. Effect of Carvacrol and thymol on NorA efflux pump inhibition in multidrug-resistant (MDR) Staphylococcus aureus strains. J Bioenerg Biomembr 2021;53:489–98. https://doi.org/10.1007/s10863-021-09906-3.Li S, Li J, Li Z, Ke X, Wu L, Christie P. Toxic effects of norfloxacin in soil on fed and unfed Folsomia candida (Isotomidae: Collembola) and on gut and soil microbiota. Sci Total Environ 2021;788:147793. https://doi.org/10.1016/j. scitotenv.2021.147793.Regan F, Hansen PD. Biosensors for the Marine Environment: Introduction. 2023. https://doi.org/10.1007/698_2022_952.Ajala OJ, Tijani JO, Salau RB, Abdulkareem AS, Aremu OS. A review of emerging micro-pollutants in hospital wastewater: environmental fate and remediation options. Res Eng Des 2022;16:100671. https://doi.org/10.1016/j. rineng.2022.100671.Peng Q, Ding Y, Zhu L, Zhang G, Tang H. Fast and complete degradation of norfloxacin by using Fe/Fe3C@NG as a bifunctional catalyst for activating peroxymonosulfate. Sep Purif Technol 2018;202:307–17. https://doi.org/ 10.1016/j.seppur.2018.03.049.Xie W-Y, Shen Q, Zhao FJ. Antibiotics and antibiotic resistance from animal manures to soil: a review. Eur J Soil Sci 2018;69:181–95. https://doi.org/ 10.1111/ejss.12494.Zhu Y, Yang K, Shan R, Han Z, Shao Y, Tian C. The influence of Humification degree of humic acid on its sorption of Norfloxacin during sewage sludge composting. Water Air Soil Pollut 2018;229. https://doi.org/10.1007/s11270- 018-3821-2.Khan NA, Ahmed S, Farooqi IH, Ali I, Vambol V, Changani F, et al. Occurrence, sources and conventional treatment techniques for various antibiotics present in hospital wastewaters: a critical review. TrAC - Trends Anal Chem 2020;129. https://doi.org/10.1016/j.trac.2020.115921.Golet EM, Alder AC, Giger W. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley watershed, Switzerland. Environ Sci Technol 2002;36:3645–51. https:// doi.org/10.1021/es0256212.Le TX, Munekage Y. Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam. Mar Pollut Bull 2004;49:922–9. https://doi.org/10.1016/j.marpolbul.2004.06.016.Xu W, Zhang G, Li X, Zou S, Li P, Hu Z, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Res 2007;41:4526–34. https://doi.org/10.1016/j. watres.2007.06.023.Gulkowska A, Leung HW, So MK, Taniyasu S, Yamashita N, Yeung LWY, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Res 2008;42:395–403. https://doi.org/ 10.1016/j.watres.2007.07.031.Xu W, Zhang G, Zou S, Ling Z, Wang G, Yan W. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China. Water Environ Res 2009;81:248–54. https://doi.org/10.2175/ 106143008x325719.Zhang RR, Kang Y, Zhang RR, Han M, Zeng W, Wang Y, et al. Occurrence, source, and the fate of antibiotics in mariculture ponds near the Maowei Sea, South China: storm caused the increase of antibiotics usage. Sci Total Environ 2021;752: 141882. https://doi.org/10.1016/j.scitotenv.2020.141882.Zorita S, Mårtensson L, Mathiasson L. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Sci Total Environ 2009;407:2760–70. https://doi.org/10.1016/j. scitotenv.2008.12.030.Watkinson AJ, Murby EJ, Kolpin DW, Costanzo SD. The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci Total Environ 2009;407:2711–23. https://doi.org/10.1016/j.scitotenv.2008.11.059.Kafaei R, Papari F, Seyedabadi M, Sahebi S, Tahmasebi R, Ahmadi M, et al. Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf, Iran. Sci Total Environ 2018;627:703–12. https://doi.org/10.1016/j.scitotenv.2018.01.305.Morales-Munoz ˜ S, Luque-García JL, Luque De Castro MD. Continuous microwaveassisted extraction coupled with derivatization and fluorimetric monitoring for the determination of fluoroquinolone antibacterial agents from soil samples. J Chromatogr A 2004;1059:25–31. https://doi.org/10.1016/j. chroma.2004.09.086.Lindberg RH, Wennberg P, Johansson MI, Tysklind M, Andersson BAV. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environ Sci Technol 2005;39:3421–9. https://doi.org/10.1021/es048143z.Yang JF, Ying GG, Zhao JL, Tao R, Su HC, Chen F. Simultaneous determination of four classes of antibiotics in sediments of the pearl Rivers using RRLC-MS/MS. Sci Total Environ 2010;408:3424–32. https://doi.org/10.1016/j. scitotenv.2010.03.049.Zhou LJ, Ying GG, Zhao JL, Yang JF, Wang L, Yang B, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ Pollut 2011;159: 1877–85. https://doi.org/10.1016/j.envpol.2011.03.034.Li S, Huang Z, Wang Y, Liu YQ, Luo R, Shang JG, et al. Migration of two antibiotics during resuspension under simulated wind–wave disturbances in a water–sediment system. Chemosphere. 2018;192:234–43. https://doi.org/ 10.1016/j.chemosphere.2017.10.131.Gao L, Shi Y, Li W, Niu H, Liu J, Cai Y. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere. 2012;86:665–71. https://doi. org/10.1016/j.chemosphere.2011.11.019.Li W, Shi Y, Gao L, Liu J, Cai Y. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere. 2012;89:1307–15. https://doi.org/10.1016/j.chemosphere.2012.05.079Blair BD, Crago JP, Hedman CJ, Klaper RD. Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere. 2013;93:2116–23. https://doi.org/10.1016/j. chemosphere.2013.07.057.Mandaric L, Diamantini E, Stella E, Cano-Paoli K, Valle-Sistac J, MolinsDelgado D, et al. Contamination sources and distribution patterns of pharmaceuticals and personal care products in alpine rivers strongly affected by tourism. Sci Total Environ 2017;590–591:484–94. https://doi.org/10.1016/j. scitotenv.2017.02.185.Yang Y, Xue T, Xiang F, Zhang S, Hanamoto S, Sun P, et al. Toxicity and combined effects of antibiotics and nano ZnO on a phosphorus-removing Shewanella strain in wastewater treatment. J Hazard Mater 2021;416:125532. https://doi.org/ 10.1016/j.jhazmat.2021.125532.Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, et al. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999− 2000: A National Reconnaissance. Environ Sci Technol 2002;36: 1202–11. https://doi.org/10.1021/es011055j.Li Y, Wang Z, Xie X, Zhu J, Li R, Qin T. Removal of Norfloxacin from aqueous solution by clay-biochar composite prepared from potato stem and natural attapulgite. Colloids Surfaces A Physicochem Eng Asp 2017;514:126–36. https:// doi.org/10.1016/j.colsurfa.2016.11.064.Feng M, Wang Z, Dionysiou DD, Sharma VK. Metal-mediated oxidation of fluoroquinolone antibiotics in water: a review on kinetics, transformation products, and toxicity assessment. J Hazard Mater 2018;344:1136–54. https:// doi.org/10.1016/j.jhazmat.2017.08.067.Peng X, Hu F, Zhang T, Qiu F, Dai H. Amine-functionalized magnetic bamboobased activated carbon adsorptive removal of ciprofloxacin and norfloxacin: a batch and fixed-bed column study. Bioresour Technol 2018;249:924–34. https:// doi.org/10.1016/j.biortech.2017.10.095.Liu W, He T, Wang Y, Ning G, Xu Z, Chen X, et al. Synergistic adsorptionphotocatalytic degradation effect and norfloxacin mechanism of ZnO/ZnS@BC under UV-light irradiation. Sci Rep 2020;10:1–12. https://doi.org/10.1038/ s41598-020-68517-x.Tian Y, Jia N, Ma H, Liu G, Xiao Z, Wu Y, et al. 0D/3D coupling of g-C3N4 QDs/ hierarchical macro-mesoporous CuO-SiO2 for high-efficiency norfloxacin removal in photo-Fenton-like processes. J Hazard Mater 2021;419:126359. https://doi.org/10.1016/j.jhazmat.2021.126359.De Souza DI, Dottein EM, Giacobbo A, Siqueira Rodrigues MA, De Pinho MN, Bernardes AM. Nanofiltration for the removal of norfloxacin from pharmaceutical effluent. J Environ Chem Eng 2018;6:6147–53. https://doi.org/10.1016/j. jece.2018.09.034.Yu D, He J, Wang Z, Pang H, Li L, Zheng Y, et al. Mineralization of norfloxacin in a CoFe–LDH/CF cathode-based heterogeneous electro-Fenton system: preparation parameter optimization of the cathode and conversion mechanisms of H2O2 to ⋅OH. Chem Eng J 2021;417:129240. https://doi.org/10.1016/j.cej.2021.129240.Zhang H, Qiao J, Li G, Li S, Wang G, Wang J, et al. Preparation of Ce4+− doped BaZrO3 by hydrothermal method and application in dual-frequent sonocatalytic degradation of norfloxacin in aqueous solution. Ultrason Sonochem 2018;42: 356–67. https://doi.org/10.1016/j.ultsonch.2017.11.043.Baran W, Adamek E, Jajko M, Sobczak A. Removal of veterinary antibiotics from wastewater by electrocoagulation. Chemosphere. 2018;194:381–9. https://doi. org/10.1016/j.chemosphere.2017.11.165.Bajpai M, Katoch SS, Kadier A, Singh A. A review on electrocoagulation process for the removal of emerging contaminants: theory, fundamentals, and applications. Environ Sci Pollut Res 2022;29:15252–81. https://doi.org/ 10.1007/s11356-021-18348-8.Prabavathi SL, Govindan K, Saravanakumar K, Jang A, Muthuraj V. Construction of heterostructure CoWO4/g-C3N4 nanocomposite as an efficient visible-light photocatalyst for norfloxacin degradation. J Ind Eng Chem 2019;80:558–67. https://doi.org/10.1016/j.jiec.2019.08.035.Lebron YAR, Moreira VR, Drumond GP, Gomes GCF, da Silva MM, de Bernardes RO, et al. Statistical physics modeling and optimization of norfloxacin adsorption onto graphene oxide. Coll Surf A Physicochem Eng Asp 2020;606: 125534. https://doi.org/10.1016/j.colsurfa.2020.125534.Fang L, Miao Y, Wei D, Zhang Y, Zhou Y. Efficient removal of norfloxacin in water using magnetic molecularly imprinted polymer. Chemosphere. 2021;262. https:// doi.org/10.1016/j.chemosphere.2020.128032Azhar MR, Abid HR, Periasamy V, Sun H, Tade MO, Wang S. Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment. J Colloid Interface Sci 2017;500:88–95. https://doi.org/10.1016/j. jcis.2017.04.001.Diwan V, Hanna N, Purohit M, Chandran S, Riggi E, Parashar V, et al. Seasonal variations in water-quality, antibiotic residues, resistant bacteria and antibiotic resistance genes of Escherichia coli isolates from water and sediments of the Kshipra River in Central India. Int J Environ Res Public Health 2018;15:1–16. https://doi.org/10.3390/ijerph15061281.Parashar A, Sikarwar S, Jain R. Studies on adsorption kinetics of Norfloxacin using Nano alumina in aqueous medium. Anal Chem Lett 2020;10:227–39. https://doi.org/10.1080/22297928.2020.1775698.Minh TB, Leung HW, Loi IH, Chan WH, So MK, Mao JQ, et al. Antibiotics in the Hong Kong metropolitan area: ubiquitous distribution and fate in Victoria harbour. Mar Pollut Bull 2009;58:1052–62. https://doi.org/10.1016/j. marpolbul.2009.02.004.Senta I, Terzi´c S, Ahel M. Simultaneous determination of sulfonamides, fluoroquinolones, macrolides and trimethoprim in wastewater and river water by LC-tandem-MS. Chromatographia. 2008;68:747–58. https://doi.org/10.1365/ s10337-008-0780-6.Chen Y, Yu G, Cao Q, Zhang H, Lin Q, Hong Y. Occurrence and environmental implications of pharmaceuticals in Chinese municipal sewage sludge. Chemosphere. 2013;93:1765–72. https://doi.org/10.1016/j. chemosphere.2013.06.007.Yan B, Niu CH, Wang J. Kinetics, electron-donor-acceptor interactions, and site energy distribution analyses of norfloxacin adsorption on pretreated barley straw. Chem Eng J 2017;330:1211–21. https://doi.org/10.1016/j.cej.2017.08.056.Zeng Y, Chang F, Liu Q, Duan L, Li D, Zhang H. Recent advances and perspectives on the sources and detection of antibiotics in aquatic environments. J Anal Meth Chem 2022;2022. https://doi.org/10.1155/2022/5091181.Pan Y, Dong J, Wan L, Sun S, MacIsaac HJ, Drouillard KG, et al. Norfloxacin pollution alters species composition and stability of plankton communities. J Hazard Mater 2020;385:121625. https://doi.org/10.1016/j. jhazmat.2019.121625.Wan L, Long Y, Hui J, Zhang H, Hou Z, Tan J, et al. Effect of norfloxacin on algae–cladoceran grazer–larval damselfly food chains: algal morphologymediated trophic cascades. Chemosphere. 2020;256:127166. https://doi.org/ 10.1016/j.chemosphere.2020.127166.Shen R, Yu Y, Lan R, Yu R, Yuan Z, Xia Z. The cardiovascular toxicity induced by high doses of gatifloxacin and ciprofloxacin in zebrafish. Environ Pollut 2019; 254. https://doi.org/10.1016/j.envpol.2019.07.029.Liang X, Wang F, Li K, Nie X, Fang H. Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio): developmental toxicity, oxidative stress and immunotoxicity. Fish Shellfish Immunol 2020;96:262–9. https://doi.org/ 10.1016/j.fsi.2019.12.008.Scarafile G. Antibiotic resistance: current issues and future strategies. Rev Heal Care 2016;7:3–16. https://doi.org/10.7175/rhc.v7i1.1226.Wu H, Niu X, Yang J, Wang C, Lu M. Retentions of bisphenol a and norfloxacin by three different ultrafiltration membranes in regard to drinking water treatment. Chem Eng J 2016;294:410–6. https://doi.org/10.1016/j.cej.2016.02.117.Hardouin K, Bedoux G, Burlot AS, Nyvall-Coll´en P, Bourgougnon N. Enzymatic recovery of metabolites from seaweeds: potential applications. Adv Bot Res 2014; 71:279–320. https://doi.org/10.1016/B978-0-12-408062-1.00010-X.Li Y, Zhu J, Ma Y, Li Y, Shao J, Li H. High transparent ag NPs/PVC SERS membrane combined with molecular imprinting technology for selective detection of norfloxacin. J Environ Chem Eng 2022;10:1–9. https://doi.org/ 10.1016/j.jece.2022.108916.Sharma V, Vinoth Kumar R, Pakshirajan K, Pugazhenthi G. Integrated adsorptionmembrane filtration process for antibiotic removal from aqueous solution. Powder Technol 2017;321:259–69. https://doi.org/10.1016/j. powtec.2017.08.040.Ighalo JO, Ajala OJ, Umenweke G, Ogunniyi S, Adeyanju CA, Igwegbe CA, et al. Mitigation of clofibric acid pollution by adsorption: a review of recent developments. J Environ Chem Eng 2020;8:104264. https://doi.org/10.1016/j. jece.2020.104264.Ighalo JO, Igwegbe CA, Adeniyi AG, Adeyanju CA, Ogunniyi S. Mitigation of metronidazole (Flagyl) pollution in aqueous media by adsorption: a review. Environ Technol Rev 2020;9:137–48. https://doi.org/10.1080/ 21622515.2020.1849409.Anastopoulos I, Ighalo JO, Adaobi Igwegbe C, Giannakoudakis DA, Triantafyllidis KS, Pashalidis I, et al. Sunflower-biomass derived adsorbents for toxic/heavy metals removal from (waste) water. J Mol Liq 2021;342:117540. https://doi.org/10.1016/j.molliq.2021.117540.Dolar D, Koˇsuti´c K, Periˇsa M, Babi´c S. Photolysis of enrofloxacin and removal of its photodegradation products from water by reverse osmosis and nanofiltration membranes. Sep Purif Technol 2013;115:1–8. https://doi.org/10.1016/j. seppur.2013.04.042.Oba SN, Ighalo JO, Aniagor CO, Adaobi C, Igwegbe CA, Adaobi C. Removal of ibuprofen from aqueous media by adsorption: a comprehensive review. Sci Total Environ 2021;780:146608. https://doi.org/10.1016/j.scitotenv.2021.146608.Lippi M, Gaudie Ley MBR, Mendez GP, Felix Cardoso Junior RA. State of art of landfill leachate treatment: Literature Review and Critical Evaluation. Ciˆencia e Nat 2018;40:78. https://doi.org/10.5902/2179460x35239.Balarak D, Dashtizadeh M, Oguike RS, Chandrika K. Survey electrocoagulation process in removal of Norfloxacin antibiotic from aqueous solutions. J Pharm Res Int 2020:53–60. https://doi.org/10.9734/jpri/2020/v32i330413.Bartolomeu M, Neves MGPMS, Faustino MAF, Almeida A. Wastewater chemical contaminants: remediation by advanced oxidation processes. Photochem Photobiol Sci 2018;17:1573–98. https://doi.org/10.1039/c8pp00249e.Serna-Galvis EA, Botero-Coy AM, Martínez-Pachon ´ D, Moncayo-Lasso A, Ib´ anez ˜ M, Hern´ andez F, et al. Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes. Water Res 2019;154:349–60. https://doi.org/10.1016/j. watres.2019.01.045.Aramyan SM. Advances in Fenton and Fenton based oxidation processes for industrial effluent contaminants control-a review. Int J Environ Sci Nat Resour 2017;2. https://doi.org/10.19080/ijesnr.2017.02.555594.He J, Zhang Y, Ni F, Tian D, Zhang Y, Long L, et al. Understanding and characteristics of coagulation removal of composite pollution of microplastic and norfloxacin during water treatment. Sci Total Environ 2022;831:154826. https:// doi.org/10.1016/j.scitotenv.2022.154826.Mora-Gomez J, Ortega E, Mestre S, P´erez-Herranz V, García-Gabaldon ´ M. Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Sep Purif Technol 2019;208:68–75. https://doi.org/ 10.1016/j.seppur.2018.05.017.Li J, Han M, Guo Y, Wang F, Sun C. Fabrication of FeVO4/Fe2TiO5 composite catalyst and photocatalytic removal of norfloxacin. Chem Eng J 2016;298:300–8. https://doi.org/10.1016/j.cej.2016.03.107.Oladipo AA, Vaziri R, Abureesh MA. Highly robust AgIO3/MIL-53 (Fe) nanohybrid composites for degradation of organophosphorus pesticides in single and binary systems: application of artificial neural networks modelling. J Taiwan Inst Chem Eng 2018;83:133–42. https://doi.org/10.1016/j.jtice.2017.12.013.Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 2009;35: 402–17. https://doi.org/10.1016/j.envint.2008.07.009.García-Munoz ˜ P, Zussblatt NP, Pliego G, Zazo JA, Fresno F, Chmelka BF, et al. Evaluation of photoassisted treatments for norfloxacin removal in water using mesoporous Fe 2 O 3 -TiO 2 materials. J Environ Manage 2019;238:243–50. https://doi.org/10.1016/j.jenvman.2019.02.109.Ahmadi S, Mesbah M, Igwegbe CA, Ezeliora CD, Osagie C, Khan NA, et al. Sono electro-chemical synthesis of LaFeO3nanoparticles for the removal of fluoride: optimization and modeling using RSM, ANN and GA tools. J Environ Chem Eng 2021;9:105320. https://doi.org/10.1016/j.jece.2021.105320.Ozcan ¨ A, Atılır Ozcan ¨ A, Demirci Y. Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chem Eng J 2016;304:518–26. https://doi.org/10.1016/j.cej.2016.06.105.Wang G, Zhao D, Kou F, Ouyang Q, Chen J, Fang Z. Removal of norfloxacin by surface Fenton system (MnFe2O4/H2O2): kinetics, mechanism and degradation pathway. Chem Eng J 2018;351:747–55. https://doi.org/10.1016/j. cej.2018.06.033Zhao Q, Wang CC, Wang P. Effective norfloxacin elimination via photo-Fenton process over the MIL-101(Fe)-NH2 immobilized on α-Al2O3 sheet. Chin Chem Lett 2022;33:4828–33. https://doi.org/10.1016/j.cclet.2022.01.033.Lu J, Li J, Xu J, Tang H, Lv Z, Du E, et al. Kinetics, structural effects and transformation pathways for norfloxacin oxidation using the UV/chlorine process. J Water Process Eng 2021;44:102324. https://doi.org/10.1016/j. jwpe.2021.102324.Su R, Huang L, Li N, Li L, Jin B, Zhou W, et al. Chlorine dioxide radicals triggered by chlorite under visible-light irradiation for enhanced degradation and detoxification of norfloxacin antibiotic: radical mechanism and toxicity evaluation. Chem Eng J 2021;414. https://doi.org/10.1016/j.cej.2021.128768.Carrillo-Abad J, Mora-Gomez ´ J, García-Gabaldon ´ M, Ortega E, Mestre S, P´erezHerranz V. Effect of the CuO addition on a Sb-doped SnO2 ceramic electrode applied to the removal of Norfloxacin in chloride media by electro-oxidation. Chemosphere. 2020;249. https://doi.org/10.1016/j.chemosphere.2020.126178.Chen W, Li X, Pan Z, Ma S, Li L. Synthesis of MnOx/SBA-15 for Norfloxacin degradation by catalytic ozonation. Sep Purif Technol 2017;173:99–104. https:// doi.org/10.1016/j.seppur.2016.09.030.Chen H, Zhang Z, Hu D, Chen C, Zhang Y, He S, et al. Catalytic ozonation of norfloxacin using Co3O4/C composite derived from ZIF-67 as catalyst. Chemosphere. 2021;265:129047. https://doi.org/10.1016/j. chemosphere.2020.129047.Hu SB, Li L, Luo MY, Yun YF, Chang CT. Aqueous norfloxacin sonocatalytic degradation with multilayer flower-like ZnO in the presence of peroxydisulfate. Ultrason Sonochem 2017;38:446–54. https://doi.org/10.1016/j. ultsonch.2017.03.044.Ma X, Cheng Y, Ge Y, Wu H, Li Q, Gao N, et al. Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. Ultrason Sonochem 2018;40:763–72. https://doi.org/10.1016/j. ultsonch.2017.08.025.Liao W, Sharma VK, Xu S, Li Q, Wang L. Microwave-enhanced photolysis of norfloxacin: kinetics, matrix effects, and degradation pathways. Int J Environ Res Public Health 2017;14. https://doi.org/10.3390/ijerph14121564.de Souza Santos LV, Meireles AM, Lange LC. Degradation of antibiotics norfloxacin by Fenton, UV and UV/H2O2. J Environ Manage 2015;154:8–12. https://doi.org/10.1016/j.jenvman.2015.02.021.Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 2019;17:145–55. https://doi.org/ 10.1007/s10311-018-0785-9.Nwabanne JT, Obi CC. Coagulation-flocculation performance of snail shell biomass in abattoir wastewater treatment. J Chem Technol Metall 2019;54: 1177–88.Nwabanne JT, Obi CC. Abattoir wastewater treatment by electrocoagulation using Iron electrodes. Der Chem Sin 2017;8:254–60.Nwabanne JT, Obi CC. Electrocoagulation Treatment of Abattoirwastewater Using Aluminium Electrode Pairs P33; 2018. p. 65–77.Igwegbe CA, Onukwuli OD, Onyechi PC. Optimal route for turbidity removal from aquaculture wastewater by electrocoagulation-flocculation process. J Eng Appl Sci 2019;15:99–108.Khalil M, Liu Y. Greywater biodegradability and biological treatment technologies: a critical review. Int Biodeter Biodegr 2021;161:105211. https:// doi.org/10.1016/j.ibiod.2021.105211.De Souza Santos LV, Teixeira DC, Jacob RS, Do Amaral MC Santos, Lange LC. Evaluation of the aerobic and anaerobic biodegradability of the antibiotic norfloxacin. Water Sci Technol 2014;70:265–71. https://doi.org/10.2166/ wst.2014.214.Ondon BS, Li S, Zhou Q, Li F. Simultaneous removal and high tolerance of norfloxacin with electricity generation in microbial fuel cell and its antibiotic resistance genes quantification. Bioresour Technol 2020;304:122984. https://doi. org/10.1016/j.biortech.2020.122984.Zhao R, Li X, Hu M, Li S, Zhai Q, Jiang Y. Efficient enzymatic degradation used as pre-stage treatment for norfloxacin removal by activated sludge. Bioprocess Biosyst Eng 2017;40:1261–70. https://doi.org/10.1007/s00449-017-1786-y.Mohd A. Presence of phenol in wastewater effluent and its removal: an overview. Int J Environ Anal Chem 2020;00:1–23. https://doi.org/10.1080/ 03067319.2020.1738412.Crini G, Lichtfouse E. Green Adsorbents for Pollutant Removal: Innovative Materials. 2018. https://doi.org/10.1007/978-3-319-92162-4.Franco DSP, Georgin J, Lima EC, Silva LFO. Journal of water process engineering advances made in removing paraquat herbicide by adsorption technology : a review. J Water Process Eng 2022;49:102988. https://doi.org/10.1016/j. jwpe.2022.102988.Georgin J, Franco DSP, Ramos CG, Piccilli DGA, Lima EC, Sher F, et al. A review of the antibiotic ofloxacin : current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology. Chem Eng Res Des 2023;193:99–120. https://doi.org/10.1016/j.cherd.2023.03.025.Georgin J, Franco DSP, da Boit Martinello K, Lima EC, Silva LFO. A review of the toxicology presence and removal of ketoprofen through adsorption technology. J Environ Chem Eng 2022;10:107798. https://doi.org/10.1016/j. jece.2022.107798.Narayanan I, Kumar PS, Franco DSP, Georgin J, Meili L. Insight into the biosorptive removal mechanisms of hexavalent chromium using the red macroalgae Gelidium sp. Biomass Convers Biorefin 2023. https://doi.org/ 10.1007/s13399-023-04390-8.Franco DSP, Georgin J, Ramos CG, Netto MS, Lobo B, Jimenez G, et al. Production of adsorbent for removal of propranolol hydrochloride: use of residues from Bactris guineensis fruit palm with economically exploitable potential from the Colombian Caribbean. J Mol Liq 2023;380:121677. https://doi.org/10.1016/j. molliq.2023.121677.Sellaoui L, Bouzidi M, Franco DSP, Alshammari AS, Gandouzi M, Georgin J, et al. Exploitation of Bauhinia forficata residual fruit powder for the adsorption of cationic dyes. Chem Eng J 2023;456:141033. https://doi.org/10.1016/j. cej.2022.141033.Georgin J, Franco DSP, Netto MS, Gama BMV, Fernandes DP, Sepúlveda P, et al. Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis. Colloids Surfaces A Physicochem Eng Asp 2022;654: 129900. https://doi.org/10.1016/j.colsurfa.2022.129900.Khan NA, Shaheen S, Najam T, Shah SSA, Javed MS, Nazir MA, et al. Efficient removal of norfloxacin by MOF@GO composite: isothermal, kinetic, statistical, and mechanistic study. Toxin Rev 2021;40:915–27. https://doi.org/10.1080/ 15569543.2020.1801750.Yang Z Zhu, Zhang C, Zeng G Ming, Tan X Fei, Huang D Lian, Zhou J Wu, et al. State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production. Coord Chem Rev 2021;446:214103. https://doi.org/10.1016/j.ccr.2021.214103.Fang N, He Q, Sheng L, Xi Y, Zhang L, Liu H, et al. Toward broader applications of iron ore waste in pollution control: adsorption of norfloxacin. J Hazard Mater 2021;418:126273. https://doi.org/10.1016/j.jhazmat.2021.126273.Wu H, Gong L, Zhang X, He F, Li Z. Bifunctional porous polyethyleneiminegrafted lignin microspheres for efficient adsorption of 2,4-dichlorophenoxyacetic acid over a wide pH range and controlled release. Chem Eng J 2021;411:128539. https://doi.org/10.1016/j.cej.2021.128539.Luo Y, Huang X, Li Y, Fu Y, Wang Z, Lu J, et al. CuNiN@C coupled with peroxymonosulfate as efficient catalytic system for the removal of norfloxacin by adsorption and catalysis. Sep Purif Technol 2020;252:117476. https://doi.org/ 10.1016/j.seppur.2020.117476.Wan Y, Liu X, Liu P, Zhao L, Zou W. Optimization adsorption of norfloxacin onto polydopamine microspheres from aqueous solution: kinetic, equilibrium and adsorption mechanism studies. Sci Total Environ 2018;639:428–37. https://doi. org/10.1016/j.scitotenv.2018.05.171.Tegegne B, Chimuka L, Chandravanshi BS, Zewge F. Molecularly imprinted polymer for adsorption of venlafaxine, albendazole, ciprofloxacin and norfloxacin in aqueous environment. Sep Sci Technol 2021;56:2217–31. https://doi.org/ 10.1080/01496395.2020.1819323.Jing F, Guan J, Tang W, Chen J. Mechanistic insight into adsorptive removal of ionic NOR and nonionic DEP organic contaminates by clay-biochar composites. Environ Pollut 2022;310:119881. https://doi.org/10.1016/j. envpol.2022.119881.Moussout H, Dehmani Y, Franco DSP, Georgin J. Towards an in-depth experimental and theoretical understanding of the cadmium uptake mechanism on a synthesized chitin biopolymer. J Mol Liq 2023;383:122106. https://doi.org/ 10.1016/j.molliq.2023.122106.Franco DSP, Georgin J, Ramos CG, Netto MS, Ojeda NJ, Vega NA, et al. The production of activated biochar using Calophyllum inophyllum waste biomass and use as an adsorbent for removal of diuron from the water in batch and fixed bed column. Environ Sci Pollut Res 2023:52498–513. https://doi.org/10.1007/ s11356-023-26048-8.Dehmani Y, Franco DSP, Georgin J, Lamhasni T, Brahmi Y, Oukhrib R, et al. Comparison of phenol adsorption property and mechanism onto different Moroccan clays. Water. 2023;15:1881. https://doi.org/10.3390/w15101881.Bonilla-Petriciolet AAAA, Mendoza-Castillo DI, Reynel-Avila ´ HE, ReynelAvila HE, Reynel-Avila ´ HE. Adsorption Processes for Water Treatment and Purification. Cham: Springer, Springer International Publishing; 2017. https:// doi.org/10.1007/978-3-319-58136-1.Gupta B, Deep A, Malik P. Liquid-liquid extraction and recovery of indium using Cyanex 923. Anal Chim Acta 2004;513:463–71. https://doi.org/10.1016/j. aca.2004.02.036.Lima EC, Hosseini-Bandegharaei A, Anastopoulos I, Moreno-Pirajan ´ JC, Anastopoulos I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 2019;273:425–34. https://doi.org/10.1016/j.molliq.2018.10.048.Freundlich HMF. Over the adsorption in solution. J Phys Chem 1906;57:358–471.Langmuir I. Adsorption of gases on glass, mica and platinum. J Am Chem Soc 1918;40:1361–403.Derylo-Marczewska A, Blachnio M, Marczewski AW, Swiatkowski A, Tarasiuk B. Adsorption of selected herbicides from aqueous solutions on activated carbon. J Therm Anal Calorim 2010;101:785–94. https://doi.org/10.1007/s10973-010- 0840-7.Franco DSP, Georgin J, Ramos CG, Eljaiek SM, Badillo DR, de Oliveira AHP, et al. The synthesis and evaluation of porous carbon material from Corozo fruit (Bactris guineensis) for efficient propranolol hydrochloride adsorption. Molecules. 2023; 28. https://doi.org/10.3390/molecules28135232Franco DSP, Georgin J, Netto MS, da Boit Martinello K, Silva LFO. Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical model. J Mol Liq 2022;356: 119021. https://doi.org/10.1016/j.molliq.2022.119021.Kerkhoff CM, da Boit Martinello K, Franco DSP, Netto MS, Georgin J, Foletto EL, et al. Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp. J Mol Liq 2021;339:117184. https://doi.org/10.1016/j.molliq.2021.117184.Franco DSP, Pinto D, Georgin J, Netto MS, Luiz E, Manera C, et al. Conversion of Erythrina speciosa pods to porous adsorbent for ibuprofen removal. J Environ Chem Eng 2022;10:108070. https://doi.org/10.1016/j.jece.2022.108070Crini G, Badot P-MM. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 2008;33:399–447. https://doi.org/ 10.1016/j.progpolymsci.2007.11.001.Mohan D, Pittman CU. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 2006;137:762–811. https://doi.org/10.1016/j.jhazmat.2006.06.060.Zanli BLGL, Tang W, Chen J. N-doped and activated porous biochar derived from cocoa shell for removing norfloxacin from aqueous solution: performance assessment and mechanism insight. Environ Res 2022;214:113951. https://doi. org/10.1016/j.envres.2022.113951.Wang J, Zhang M, Zhou R, Li J, Zhao W, Zhou J. Adsorption characteristics and mechanism of norfloxacin in water by γ-Fe2O3@BC. Water Sci Technol 2020;82: 242–54. https://doi.org/10.2166/wst.2020.078.Li X, Jiang Y, Chen T, Zhao P, Niu S, Yuan M, et al. Adsorption of norfloxacin from wastewater by biochar with different substrates. Environ Geochem Health 2023; 45:3331–44. https://doi.org/10.1007/s10653-022-01414-6.Feng D, Yu H, Deng H, Li F, Ge C. Adsorption characteristics of Norfloxacin by biochar prepared by cassava dreg: kinetics, isotherms, and thermodynamic analysis. BioResources. 2015;10:6751–68. https://doi.org/10.15376/ biores.10.4.6751-6768.Zhang M, Zhang K, Wang J, Zhou R, Li J, Zhao W. Study on optimal adsorption conditions of norfloxacin in water based on response surface methodology. Water Supply 2022;22:3661–72. https://doi.org/10.2166/ws.2022.008.Liu Y, Zhu S, Zhao B, Ai J, Liu Z. N, O, P multi-doped porous carbon with superior norfloxacin sorption performance. Mater Lett 2021;290:129478. https://doi.org/ 10.1016/j.matlet.2021.129478.Zhou H, Wang Z, Gao C, Sun Q, Liu J, She D. Synthesis of honeycomb lignin-based biochar and its high-efficiency adsorption of norfloxacin. Bioresour Technol 2023; 369:128402. https://doi.org/10.1016/j.biortech.2022.128402.Tang J, Wang L, Qin W, Qing Z, Du C, Xiao S, et al. High reusability and adsorption capacity of acid washed calcium alginate/chitosan composite hydrogel spheres in the removal of norfloxacin. Chemosphere. 2023;335:139048. https:// doi.org/10.1016/j.chemosphere.2023.139048.Chen W, Li X, Pan Z, Bao Y, Ma S, Li L. Efficient adsorption of Norfloxacin by FeMCM-41 molecular sieves: kinetic, isotherm and thermodynamic studies. Chem Eng J 2015;281:397–403. https://doi.org/10.1016/j.cej.2015.06.121.Cheng D, Chen J, Wang J, Liu X. Adsorption behaviors and influencing factors of antibiotic norfloxacin on natural kaolinite-humic composite colloids in aquatic environment. Heliyon. 2023;9:e15979. https://doi.org/10.1016/j.heliyon.2023. e15979.Wu J, Wang T, Liu Y, Tang W, Geng S, Chen J. Norfloxacin adsorption and subsequent degradation on ball-milling tailored N-doped biochar. Chemosphere. 2022;303:135264. https://doi.org/10.1016/j.chemosphere.2022.135264.Nguyen V-T, Vo T-D-H, Nguyen T-B, Dat ND, Huu BT, Nguyen X-C, et al. Adsorption of norfloxacin from aqueous solution on biochar derived from spent coffee ground: master variables and response surface method optimized adsorption process. Chemosphere. 2022;288:132577. https://doi.org/10.1016/j. chemosphere.2021.132577.Li C, Gao Y, Li A, Zhang L, Ji G, Zhu K, et al. Synergistic effects of anionic surfactants on adsorption of norfloxacin by magnetic biochar derived from furfural residue. Environ Pollut 2019;254:113005. https://doi.org/10.1016/j. envpol.2019.113005.Peng H, Feng S, Zhang X, Li Y, Zhang X. Adsorption of norfloxacin onto titanium oxide: effect of drug carrier and dissolved humic acid. Sci Total Environ 2012; 438:66–71. https://doi.org/10.1016/j.scitotenv.2012.08.045.Yan B, Niu CH. Adsorption behavior of norfloxacin and site energy distribution based on the Dubinin-Astakhov isotherm. Sci Total Environ 2018;631–632: 1525–33. https://doi.org/10.1016/j.scitotenv.2018.03.119.Wei F, Liu H, Ren Q, Yang L, Qin L, Chen H, et al. Preparation of Zr-MOF for the removal of norfloxacin from an aqueous solution. Inorg Chem Commun 2023;153: 110819. https://doi.org/10.1016/j.inoche.2023.110819.Yang W, Lu Y, Zheng F, Xue X, Li N, Liu D. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube. Chem Eng J 2012;179: 112–8. https://doi.org/10.1016/j.cej.2011.10.068.Sharma P, Sharma M, Laddha H, Gupta R, Agarwal M. Non-toxic and biodegradable κ-carrageenan/ZnO hydrogel for adsorptive removal of norfloxacin: optimization using response surface methodology. Int J Biol Macromol 2023;238:124145. https://doi.org/10.1016/j.ijbiomac.2023.124145Sui M, Zhou Y, Sheng L, Duan B. Adsorption of norfloxacin in aqueous solution by mg-Al layered double hydroxides with variable metal composition and interlayer anions. Chem Eng J 2012;210:451–60. https://doi.org/10.1016/j. cej.2012.09.026.Zhang J, Lu M, Wan J, Sun Y, Lan H, Deng X. Effects of pH, dissolved humic acid and Cu2+ on the adsorption of norfloxacin on montmorillonite-biochar composite derived from wheat straw. Biochem Eng J 2018;130:104–12. https://doi.org/ 10.1016/j.bej.2017.11.018.Wu X, Huang M, Zhou T, Mao J. Recognizing removal of norfloxacin by novel magnetic molecular imprinted chitosan/γ-Fe2O3 composites: selective adsorption mechanisms, practical application and regeneration. Sep Purif Technol 2016;165: 92–100. https://doi.org/10.1016/j.seppur.2016.03.041.Qiu Z, Lin Q, Lin J, Zhang X, Wang Y. Regenerable mg/Fe bimetallic hydroxide for remarkable removal of low-concentration norfloxacin from aqueous solution. Colloids Surfaces A Physicochem Eng Asp 2022;644:128825. https://doi.org/ 10.1016/j.colsurfa.2022.128825.Otalvaro JO, Avena M, Brigante M. Adsorption of norfloxacin on a hexagonal mesoporous silica: isotherms, kinetics and adsorbent reuse. Adsorption. 2019;25: 1375–85. https://doi.org/10.1007/s10450-019-00100-x.Ma Q, Zhao N, Wei Y, Wang S, Liu D, Peng Yuan. Efficient Adsorption and Separation of Norfloxacin from Water by Allophane Aerogel Microspheres. SSRN. 2023. https://doi.org/10.2139/ssrn.4500058.Iftekhar S, Ramasamy DL, Srivastava V, Asif MB, Sillanpa¨¨ a M. Understanding the factors affecting the adsorption of lanthanum using different adsorbents: a critical review. Chemosphere. 2018;204:413–30. https://doi.org/10.1016/J. CHEMOSPHERE.2018.04.053.Essandoh M, Wolgemuth D, Pittman CU, Mohan D, Mlsna T. Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere. 2017;174:49–57. https://doi.org/10.1016/j. chemosphere.2017.01.105.Salomon ´ YL, Georgin J, Franco DSP, Netto MS, Piccilli DGA, Foletto EL, et al. Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon. J Mol Liq 2022;347:117990. https://doi.org/10.1016/j. molliq.2021.117990.Yadav BS, Dasgupta S. Effect of time, pH, and temperature on kinetics for adsorption of methyl orange dye into the modified nitrate intercalated MgAl LDH adsorbent. Inorg Chem Commun 2022;137:109203. https://doi.org/10.1016/j. inoche.2022.109203.Balakrishna K, Rath A, Praveenkumarreddy Y, Guruge KS, Subedi B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol Environ Saf 2017;137:113–20. https://doi.org/10.1016/j. ecoenv.2016.11.014.Xie X, Xiong H, Zhang Y, Tong Z, Liao A, Qin Z. Preparation magnetic cassava residue microspheres and its application for cu(II) adsorption. J Environ Chem Eng 2017;5:2800–6. https://doi.org/10.1016/j.jece.2017.05.024Zubair M, Manzar MS, Suleiman MA, Fernandes DP, Meili L, Bin Essa WA, et al. Production of magnetic biochar-steel dust composites for enhanced phosphate adsorption. J Water Process Eng 2022;47:102793. https://doi.org/10.1016/j. jwpe.2022.102793.Ma X, Xin Y, Yan Q, Pan X, Xin S, Huang X, et al. Adsorption characteristics of tetracycline onto biochars as affected by solution chemistry conditions and ball milling treatment. Water Air Soil Pollut 2020;231. https://doi.org/10.1007/ s11270-020-04769-7.Vieira Y, Schnorr C, Piazzi AC, Netto MS, Piccini WM, Franco DSP, et al. An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon. J Mol Liq 2022;361:119639. https://doi.org/ 10.1016/j.molliq.2022.119639.Dhaouadi F, Sellaoui L, Taamalli S, Louis F, El A, Badawi M, et al. Enhanced Adsorption of Ketoprofen and 2, 4-Dichlorophenoxyactic Acid on Physalis peruviana Fruit Residue Functionalized with H 2 SO 4 : Adsorption Properties and Statistical Physics Modeling Adri a445; 2022. https://doi.org/10.1016/j. cej.2022.136773.Gupta N, Amritphale SS, Chandra N. Removal of lead from aqueous solution by hybrid precursor prepared by rice hull. J Hazard Mater 2009;163:1194–8. https://doi.org/10.1016/j.jhazmat.2008.07.113.Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem 1999;34:451–65. https://doi.org/10.1016/S0032-9592(98)00112-5.Tanyildizi MS¸ . Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull. Chem Eng J 2011;168:1234–40. https://doi.org/ 10.1016/j.cej.2011.02.021.Elovich SY, Larionov OG. Theory of adsorption from nonelectrolyte solutions on solid adsorbents. Bull Acad Sci USSR Div Chem Sci 1962;11:198–203. https://doi. org/10.1007/BF00908017.Avrami M. Kinetics of phase change. I: general theory. J Chem Phys 1939;7: 1103–12. https://doi.org/10.1063/1.1750380.Lima EC, ´ Dehghani MH, Guleria A, Sher F, Karri RR, Dotto GL, et al. Adsorption: Fundamental aspects and applications of adsorption for effluent treatment. In: Hadi Dehghani M, Karri R, Lima E, editors. Green Technol. Defluoridation water. Elsevier; 2021. p. 41–88. https://doi.org/10.1016/b978-0-323-85768-0.00004-x.Lima EC, Sher F, Guleria A, Saeb MR, Anastopoulos I, Tran HN, et al. Is one performing the treatment data of adsorption kinetics correctly? J Environ Chem Eng 2021;9:104813. https://doi.org/10.1016/j.jece.2020.104813.Awad AM, Shaikh SMR, Jalab R, Gulied MH, Nasser MS, Benamor A, et al. Adsorption of organic pollutants by natural and modified clays: a comprehensive review. Sep Purif Technol 2019;228:115719. https://doi.org/10.1016/j. seppur.2019.115719.Woo S-HH, Roy SK, Kwon SJ, Cho S-WW, Sarker K, Lee M-SS, et al. Chapter three - concepts, prospects, and potentiality in buckwheat (Fagopyrum esculentum Moench): A research perspective. In: Zhou M, Kreft I, Woo S-H, Chrungoo N, Wieslander G, editors. Mol. Breed. Nutr. Asp. Buckwheat. Academic Press; 2016. p. 21–49. https://doi.org/10.1016/B978-0-12-803692-1.00003-1.Foo KY, Hameed BH. Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation. Bioresour Technol 2012;112: 143–50. https://doi.org/10.1016/j.biortech.2012.01.178.Foo KY, Hameed BH. Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste. Adv Colloid Interface Sci 2009;152: 39–47. https://doi.org/10.1016/j.cis.2009.09.005.Lima EC, Hosseini-Bandegharaei A, Anastopoulos I. Response to “Some remarks on a critical review of the estimation of the thermodynamic parameters on adsorption equilibria”. Wrong use of equilibrium constant in the van’t Hoff equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 2019;280:298–300. https://doi.org/10.1016/j.molliq.2019.01.160.Tran HN, Lima EC, Juang R-S, Bollinger J-C, Chao H-P. Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: a comparison study. J Environ Chem Eng ;9:106674. https://doi.org/10.1016/j.jece.2021.106674.Lima EC, Gomes AA, Tran HN. Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (ΔS◦ and ΔH◦). J Mol Liq 2020;311:113315. https://doi.org/10.1016/j. molliq.2020.113315.Georgin J, da Boit Martinello K, Franco DSP, Netto MS, Piccilli DGA, Yilmaz M, et al. Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water. J Environ Chem Eng 2022;10. https://doi.org/10.1016/j. jece.2021.107006.Lazarotto JS, da Boit Martinello K, Georgin J, Franco DSP, Netto MS, Piccilli DGA, et al. Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide. J Environ Chem Eng 2021;9. https://doi.org/10.1016/j. jece.2021.106843.Glueckauf E. Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography. Trans Faraday Soc 1955;51: 1540–51. https://doi.org/10.1039/TF9555101540.Liu YY, Shen L. A general rate law equation for biosorption. Biochem Eng J 2008; 38:390–4. https://doi.org/10.1016/j.bej.2007.08.003.Elovich SY, Larionov OG. Theory of adsorption from nonelectrolyte solutions on solid adsorbents - 2. Experimental verification of the equation for the adsorption isotherm from solutions. Bull Acad Sci USSR Div Chem Sci 1962;11:198–203. https://doi.org/10.1007/BF00908017.Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Des 2016;109:495–504. https://doi.org/10.1016/j.cherd.2016.02.006.Wang J, Guo X. Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater 2020;390:122156. https://doi.org/10.1016/j. jhazmat.2020.122156.Monnier X, Napolitano S, Cangialosi D. Direct observation of desorption of a melt of long polymer chains. Nat Commun 2020;11:1–7. https://doi.org/10.1038/ s41467-020-18216-y.Sips R. On the structure of a catalyst surface. J Chem Phys 1948;16:490–5. https://doi.org/10.1063/1.1746922.Redlich O, Peterson DL. A useful adsorption isotherm. J Phys Chem 1959;63: 1024. https://doi.org/10.1021/j150576a611.Toth ´ J. Uniform interpretation of gas/solid adsorption. Adv Colloid Interface Sci 1995;55:1–239. https://doi.org/10.1016/0001-8686(94)00226-3.Liu Y, Xu H, Tay JH. Derivation of a general adsorption isotherm model. J Environ Eng 2005;131:1466–8. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:10 (1466).Tran HN, Lima EC, Juang RS, Bollinger JC, Chao HP. Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: a comparison study. J Environ Chem Eng 2021;9. https://doi.org/10.1016/j.jece.2021.106674.Ali I, Kon’kova T, Kasianov V, Rysev A, Panglisch S, Mbianda XY, et al. Preparation and characterization of nano-structured modified montmorillonite for dioxidine antibacterial drug removal in water. J Mol Liq 2021;331:115770. https://doi.org/10.1016/j.molliq.2021.115770.Darweesh TM, Ahmed MJ. Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column. Ecotoxicol Environ Saf 2017;138:139–45. https://doi.org/10.1016/j.ecoenv.2016.12.032.Zhou J, Sun Q. Sodium alginate/modified bentonite composite bead adsorptive removal of Norfloxacin: static and dynamic adsorption. Polymers (Basel) 2022;14 3984. https://doi.org/10.3390/polym14193984.Hu Q, Huang Q, Yang D, Liu H. Prediction of breakthrough curves in a fixed-bed column based on normalized Gudermannian and error functions. J Mol Liq 2021; 323:115061. https://doi.org/10.1016/j.molliq.2020.115061.Ji H, Liu Z, Xie X, Jiang W, Wan S, Wang B, et al. Norfloxacin removal efficiency by a carbon filtration column under the influence of nanoplastics: mechanistic analysis and prediction model. Water Supply 2023;23:2105–18. https://doi.org/ 10.2166/ws.2023.108.Wang Z, Yu X, Pan B, Xing B. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes. Environ Sci Technol 2010;44:978–84. https://doi.org/10.1021/es902775u.Zhang Y, Ni F, He J, Shen F, Deng S, Tian D, et al. Mechanistic insight into different adsorption of norfloxacin on microplastics in simulated natural water and real surface water. Environ Pollut 2021;284:117537. https://doi.org/ 10.1016/j.envpol.2021.117537.Dan H, Li N, Xu X, Gao Y, Huang Y, Akram M, et al. Mechanism of sonication time on structure and adsorption properties of 3D peanut shell/graphene oxide aerogel. Sci Total Environ 2020;739:139983. https://doi.org/10.1016/j. scitotenv.2020.139983.Onu CE, Ekwueme BN, Ohale PE, Onu CP, Asadu CO, Obi CC, et al. Decolourization of bromocresol green dye solution by acid functionalized rice husk: artificial intelligence modeling, GA optimization, and adsorption studies. J Hazar Mater Adv 2023;9:100224. https://doi.org/10.1016/j. hazadv.2022.100224.Cao Y, Kamel M, Mohammadifard K, Heshmati AJM, Heravi MR Poor, Ebadi A Ghaffar. Probing and comparison of graphene, boron nitride and boron carbide nanosheets for Flutamide adsorption: a DFT computational study. J Mol Liq 2021; 343:117487. https://doi.org/10.1016/j.molliq.2021.117487.Emenike EC, Iwuozor KO, Agbana SA, Otoikhian KS, Adeniyi AG. Efficient recycling of disposable face masks via co-carbonization with waste biomass: a pathway to a cleaner environment. Clean Environ Syst 2022;6:100094. https:// doi.org/10.1016/j.cesys.2022.100094.Aniagor CO, Menkiti MC. Kinetics and mechanistic description of adsorptive uptake of crystal violet dye by lignified elephant grass complexed isolate. J Environ Chem Eng 2018;6:2105–18. https://doi.org/10.1016/j. jece.2018.01.070.Li S, Fang L. Modeling of the adsorption mechanisms and selectivity of the molecular imprinted particles for norfloxacin. Adv Mat Res 2014;1030–1032: 121–4. https://doi.org/10.4028/www.scientific.net/AMR.1030-1032.121.Zhang Y, Cheng L, Ji Y. A novel amorphous porous biochar for adsorption of antibiotics: adsorption mechanism analysis via experiment coupled with theoretical calculations. Chem Eng Res Des 2022;186:362–73. https://doi.org/ 10.1016/j.cherd.2022.07.049.Liang D, Wang X, Liu JJ, Liu JJ, Tang S, Xu B, et al. Design, preparation and adsorption performances of norfloxacin molecularly imprinted polymers. J Mol Graph Model 2022;114:108197. https://doi.org/10.1016/j.jmgm.2022.108197.Zhang X, Shen J, Zhuo N, Tian Z, Xu P, Yang Z, et al. Interactions between antibiotics and graphene-based materials in water: a comparative experimental and theoretical investigation. ACS Appl Mater Interfaces 2016;8:24273–80. https://doi.org/10.1021/acsami.6b09377.Ohale PE, Igwegbe CA, Iwuozor KO, Emenike EC, Obi CC, Białowiec A. A review of the adsorption method for norfloxacin reduction from aqueous media. MethodsX. 2023;10. https://doi.org/10.1016/j.mex.2023.102180.Niu M, Sun C, Zhang K, Li G, Meriem F, Pham-Huy C, et al. A simple extraction method for norfloxacin from pharmaceutical wastewater with a magnetic coreshell molecularly imprinted polymer with the aid of computer simulation. New J Chem 2017;41:2614–24. https://doi.org/10.1039/c6nj03901d.Yadav S, Goel N, Kumar V, Tikoo K, Singhal S. Removal of fluoroquinolone from aqueous solution using graphene oxide: experimental and computational elucidation. Environ Sci Pollut Res 2018;25:2942–57. https://doi.org/10.1007/ s11356-017-0596-8.Huo Y, Guo R, Lin K, Ai Y. Insights into interface mechanism of three typical antibiotics onto the graphene oxide/chitosan composite: experimental and theoretical investigation. Chin J Chem Phys 2023;36:211. https://doi.org/ 10.1063/1674-0068/cjcp2106111.Georgin J, Franco DSPP, Netto MS, Manzar MS, Zubair M, Meili L, et al. Adsorption of the first-line Covid treatment analgesic onto activated carbon from residual pods of Erythrina Speciosa. Environ Manag 2023;71:795–808. https:// doi.org/10.1007/s00267-022-01716-6.Ali I, Babkin AV, Burakova IV, Burakov AE, Neskoromnaya EA, Tkachev AG, et al. Fast removal of samarium ions in water on highly efficient nanocomposite based graphene oxide modified with polyhydroquinone: isotherms, kinetics, thermodynamics and desorption. J Mol Liq 2021;329:115584. https://doi.org/ 10.1016/j.molliq.2021.115584.Ali I, Kon’kova T, Rysev A, ALOthman ZA, Sillanpa¨a ¨ M, Georgin J, et al. Removal of dichromate-, molybdate-, and nitrate ions from wastewater using modified natural montmorillonite. J Mol Liq 2023;392:123400. https://doi.org/10.1016/j. molliq.2023.123400.221324AdsorptionNorfloxacinEcotoxicologyAquatic environmentFuture perspectivesPublicationORIGINALEnvironmental remediation of the norfloxacin in water by adsorption.pdfEnvironmental remediation of the norfloxacin in water by adsorption.pdfapplication/pdf1880371https://repositorio.cuc.edu.co/bitstreams/b600a975-2e41-41b3-bfb9-a75fed5b4a14/download67e79947cec8b88c57acab32b3a44c92MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/7dac3509-088f-41dd-8b2e-ae5a523bf2e1/download73a5432e0b76442b22b026844140d683MD52TEXTEnvironmental remediation of the norfloxacin in water by adsorption.pdf.txtEnvironmental remediation of the norfloxacin in water by adsorption.pdf.txtExtracted texttext/plain101508https://repositorio.cuc.edu.co/bitstreams/9cb7a884-a6c0-4e1d-b6e7-c9c7a1f5e695/download1b68987dd0e2c83cae2a9e00f5990a9bMD53THUMBNAILEnvironmental remediation of the norfloxacin in water by adsorption.pdf.jpgEnvironmental remediation of the norfloxacin in water by adsorption.pdf.jpgGenerated Thumbnailimage/jpeg14162https://repositorio.cuc.edu.co/bitstreams/8f17ac07-cb63-4ea5-9708-95c69977a5f1/download47fb2ccaf18082b3c50cd16a94202cdbMD5411323/13630oai:repositorio.cuc.edu.co:11323/136302024-11-06 03:00:14.306https://creativecommons.org/licenses/by-nc-nd/4.0/© 2024 Published by Elsevier B.Vopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K