Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city

Air pollution has become a critical issue in urban areas, so a broad understanding of its spatiotemporal characteristics is important to develop public policies. This study analyzes the spatiotemporal variation of atmospheric particulate matter (PM10 and PM2.5) and ozone (O3) in Barranquilla, Colomb...

Full description

Autores:
Duarte, Ana L.
Schneider, Ismael L.
Artaxo, Paulo
Oliveira, Marcos L.S.
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8318
Acceso en línea:
https://hdl.handle.net/11323/8318
https://doi.org/10.1016/j.gsf.2021.101168
https://repositorio.cuc.edu.co/
Palabra clave:
Particulate matter
Ozone
Colombian Caribbean
Coastal urban area
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_1a839566a8d3164ff05b0854283f02bb
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8318
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city
title Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city
spellingShingle Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city
Particulate matter
Ozone
Colombian Caribbean
Coastal urban area
title_short Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city
title_full Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city
title_fullStr Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city
title_full_unstemmed Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city
title_sort Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city
dc.creator.fl_str_mv Duarte, Ana L.
Schneider, Ismael L.
Artaxo, Paulo
Oliveira, Marcos L.S.
dc.contributor.author.spa.fl_str_mv Duarte, Ana L.
Schneider, Ismael L.
Artaxo, Paulo
Oliveira, Marcos L.S.
dc.subject.eng.fl_str_mv Particulate matter
Ozone
Colombian Caribbean
Coastal urban area
topic Particulate matter
Ozone
Colombian Caribbean
Coastal urban area
description Air pollution has become a critical issue in urban areas, so a broad understanding of its spatiotemporal characteristics is important to develop public policies. This study analyzes the spatiotemporal variation of atmospheric particulate matter (PM10 and PM2.5) and ozone (O3) in Barranquilla, Colombia from March 2018 to June 2019 in three monitoring stations. The average concentrations observed for the Móvil, Policía, and Tres Avemarías stations, respectively, for PM10: 46.4, 51.4, and 39.7 μg/m3; for PM2.5: 16.1, 18.1, and 15.1 μg/m3 and for O3: 35.0, 26.6, and 33.6 μg/m3. The results indicated spatial and temporal variations between the stations and the pollutants evaluated. The highest PM concentrations were observed in the southern part of the city, while for ozone, higher concentrations were observed in the north. These variations are mainly associated with the influence of local sources in the environment of each site evaluated as well as the meteorological conditions and transport patterns of the study area. This study also verified the existence of differences in the concentrations of the studied pollutants between the dry and rainy seasons and the contribution of local sources as biomass burnings from the Isla Salamanca Natural Park and long-range transport of dust particles from the Sahara Desert. This study provides a scientific baseline for understanding air quality in the city, which enables policy makers to adopt efficient measures that jointly prevent and control pollution.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-01T14:44:19Z
dc.date.available.none.fl_str_mv 2021-06-01T14:44:19Z
dc.date.issued.none.fl_str_mv 2021-02-09
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1674-9871
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8318
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.gsf.2021.101168
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1674-9871
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8318
https://doi.org/10.1016/j.gsf.2021.101168
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Agudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Pereira, F.N., Oliveira, M.L.S.,Taffarel, S.R., Sehn, J.L., Ramos, C.G., Silva, L.F.O., 2016.Potential utilization for theevaluation of particulate and gaseous pollutants at an urban site near a major high-way. Sci. Total Environ. 543 (Part A), 161–170.
Agudelo-Castañeda, D., De Paoli, F., Morgado-Gamero, W.B., Mendoza, M., Parody, A.,Maturana, A.Y., Teixeira, E.C., 2020.Assessment of the NO2distribution and relation-ship with traffic load in the Caribbean coastal city. Sci. Total Environ. 720, 137675.
Amador-Muñoz, O., Villalobos-Pietrini, R., Miranda, J., Vera-Avila, L.E., 2011.Organic com-pounds of PM2.5in Mexico Valley: spatial and temporal patterns, behavior andsources. Sci. Total Environ. 409 (8), 1453–1465.
Andreae, M.O., 2019.Emission of trace gases and aerosols from biomass burning–an up-dated assessment. Atmos. Chem. Phys. 19 (13), 8523–8546.
Austin, E., Zanobetti, A., Coull, B., Schwartz, J., Gold, D.R., Koutrakis, P., 2015.Ozone trendsand their relationship to characteristic weather patterns. J. Exposure Sci. Environ.Epidemiol. 25 (5), 535–542.
Baklanov, A., Molina, L.T., Gauss, M., 2016.Megacities, air quality and climate. Atmos. En-viron. 126, 235–249.
Barranquilla Verde, 2020a. Barranquilla en Estado de Alerta por Quemas del Vía ParqueIsla Salamanca.http://www.barranquillaverde.gov.co/noticias-detalle/barranquilla-en-estado-de-alerta-por-quemas-del-parque-isla-salamanca.
Barranquilla Verde, 2020b. Informe de Calidad de Aire–2019.http://barranquillaverde.-gov.co/storage/app/media/calidad-aire/InformeCalidaddelAire2019.pdf.
Blanchard, C.L., Tanenbaum, S.J., 2003.Differences between weekday and weekend airpollutant levels in southern California. J. Air Waste Manag. Assoc. 53 (7), 816–828.
Blanco-Donado, E., 2019.Evaluación de la Variabilidad Espacial de Black Carbon en unÁrea Urbana del Caribe Colombiano. M.S. thesis. Universidad de la Costa 113 pp.
CIOH–Centro de Investigaciones Oceanográficas e Hidrográficas, 2010. Climatología delos Principales Puestos del Caribe Colombiano, Barranquilla.https://www.cioh.org.co/meteorologia/Climatologia/ClimatologiaBarranquilla.pdf.
Clarke, K., Kwon, H.-O., Choi, S.-D., 2014.Fast and reliable source identification of criteriaair pollutants in an industrial city. Atmos. Environ. 95, 239–248.
Datos Abiertos, 2020. Parque Automotor 2019.https://www.datos.gov.co/Transporte/Parque-Automotor-Activo-Anual-de-Barranquilla-Vige/4ibb-jm7y/data
Domínguez-López, D., Adame, J.A., Hernández-Ceballos, M.A., Vaca, F., De La Morena, B.A.,Bolívar, J.P., 2014.Spatial and temporal variation of surface ozone, NO and NO2aturban, suburban, rural and industrial sites in the southwest of the Iberian Peninsula.Environ. Monit. Assess. 186, 5337–5351.
El Heraldo, 2019. Quemas en Salamanca sí afectan la calidad del aire.https://www.elheraldo.co/barranquilla/quemas-en-salamanca-si-afectan-la-calidad-del-aire-bquilla-verde-658328.
Elminir, H.K., 2005.Dependence of urban air pollutants on meteorology. Sci. Total Envi-ron. 350 (1–3), 225–237.
Franceschi, F., Cobo, M., Figueredo, M., 2018.Discovering relationships and forecastingPM10and PM2.5concentrations in Bogotá Colombia, using Artificial Neural Networks,Principal Component Analysis, and k-means clustering. Atmos. Pollut. Res. 9 (5),912–922.
Franco, J.F., Pacheco, J., Belalcázar, L.C., Behrentz, E., 2015.Characterization and sourceidentification of VOC species in Bogotá, Colombia. Atmósfera 28 (1), 1–11.
Fu, W., Chen, Z., Zhu, Z., Liu, Q., van den Bosch, C.C.K., Qi, J., Wang, M., Dang, E., Dong, J.,2018.Spatial and temporal variations of six criteria air pollutants in Fujian Province,China. Int. J. Environ. Res. Public Health 15 (12), 2846.
Galindo, N., Varea, M., Gil-Moltó, J., Yubero, E., Nicolás, J., 2011.The influence of meteorol-ogy on particulate matter concentrations at an urban mediterranean location. WaterAir Soil Pollut. 215, 365–372.
Gómez, C.D., González, C.M., Osses, M., Aristizábal, B.H., 2018.Spatial and temporal disag-gregation of the on-road vehicle emission inventory in a medium-sized Andean city.Comparison of GIS-based top-down methodologies. Atmos. Environ. 179, 142–155.
Gómez-Peláez, L.M., Santos, J.M., De Almeida Albuquerque, T.T., Costa Reis, N., Andreão,W.L., Andrade, M.F., 2020.Air quality status and trends over large cities in SouthAmerica. Environ. Sci. Pol. 114, 422–435.
Grundström, M., Hak, C., Chen, D., Hallquist, M., Pleijel, H., 2015.Variation and co-variation of PM10, particle number concentration, NOxand NO2in the urban air - re-lationships with wind speed, vertical temperature gradient and weather type. Atmos.Environ. 120, 317–327.
Hahn, I., Brixey, L.A., Wiener, R.W., Henkle, S.W., Baldauf, R., 2009.Characterization oftraffic-related PM concentration distribution andfluctuation patterns in near-highway urban residential street canyons. J. Environ. Monit. 11 (12), 2136–2145.
Hu, X.M., 2015.Boundary layer (atmospheric) and air pollution: air pollution meteorol-ogy. In: North, Gerald R., Pyle, John, Zhang, Fuqing (Eds.), Encyclopedia of Atmo-spheric Sciences, Second ed. Academic Press, Cambridge, pp. 227–236.
Jang, E., Do, W., Park, G., Kim, M., Yoo, E., 2017.Spatial and temporal variation of urban airpollutants and their concentrations in relation to meteorological conditions at foursites in Busan, South Korea. Atmos. Pollut. Res. 8 (1), 89–100.
Karl, T.G., Christian, T.J., Yokelson, R.J., Artaxo, P., Hao, W.M., Guenther, A., 2007.The trop-ical forest andfire emissions experiment: method evaluation of volatile organic com-pound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning.Atmos. Chem. Phys. 7 (22), 5883–5897.
Kavassalis, S.C., Murphy, J.G., 2017.Understanding ozone-meteorology correlations: a rolefor dry deposition. Geophys. Res. Lett. 44 (6), 2922–2931.
Kawashima, A.B., Martins, L.D., Rafee, S.A.A., Rudke, A.P., de Morais, M.V., Martins, J.A.,2020.Development of a spatialized atmospheric emission inventory for the main in-dustrial sources in Brazil. Environ. Sci. Pollut. Res. 27, 35941–35951.
Kinnon, M.M., Zhu, S., Carreras-Sospedra, M., Soukup, J.V., Dabdub, D., Samuelsen, G.S.,Brouwer, J., 2019.Considering future regional air quality impacts of the transporta-tion sector. Energy Policy 124, 63–80.
Koppmann, R., von Czapiewski, K., Reid, J.S., 2005.A review of biomass burning emissions,part I: gaseous emissions of carbon monoxide, methane, volatile organic compounds,and nitrogen containing compounds. Atmos. Chem. Phys. 5, 10455–10516.
Koren, I., Kaufman, Y.J., Washington, R., Todd, M.C., Rudich, Y., Martins, J.V., Rosenfeld, D.,2006.The Bodélé depression: a single spot in the Sahara that provides most of themineral dust to the Amazon forest. Environ. Res. Lett. 1 (1), 014005.
Kwak, H.-Y., Ko, J., Lee, S., Joh, C.-H., 2017.Identifying the correlation between rainfall,trafficflow performance and air pollution concentration in Seoul using a path analy-sis. Transp. Res. Proc. 25, 3552–3563.
Landim, A.A., Teixeira, E.C., Agudelo-Castañeda, D., Schneider, I.L., Silva, L.F.O., Wiegand, F.,Kumar, P., 2018.Spatio-temporal variations of sulfur dioxide concentrations in indus-trial and urban area via a new statistical approach. Air Qual. Atmos. Health 11,801–813.
Li, L., Wu, J., Ghosh, J.K., Ritz, B., 2013.Estimating spatiotemporal variability of ambient airpollutant concentrations with a hierarchical model. Atmos. Environ. 71, 54–63
Li, X., Ma, Y., Wang, Y., Liu, N., Hong, Y., 2017.Temporal and spatial analyses of particulatematter (PM10and PM2.5) and its relationship with meteorological parameters over anurban city in Northeast China. Atmos. Res. 198, 185–193.
Li, Q., Gabay, M., Rubin, Y., Raveh-Rubin, S., Rohatyn, S., Tatarinov, F., Rotenberg, E.,Ramati, E., Dicken, U., Preisler, Y., Fredj, E., Yakir, D., Tas, E., 2019.Investigation ofozone deposition to vegetation under warm and dry conditions near the EasternMediterranean coast. Sci. Total Environ. 658, 1316–1333.
Liu, Y., Gao, Y., Yu, N., Zhang, C., Wang, S., Ma, L., Zhao, J., Lohmann, R., 2015.Particulatematter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in anurban traffic tunnel of China: emission from on-road vehicles and gas-particlepartitioning. Chemosphere 134, 52–59.
Ma, X., Jia, H., 2016.Particulate matter and gaseous pollutions in three megacities overChina: situation and implication. Atmos. Environ. 140, 476–494.
Mi, K., Zhuang, R., Zhang, Z., Gao, J., Pei, Q., 2019.Spatiotemporal characteristics of PM2.5and its associated gas pollutants, a case in China. Sustain. Cities Soc. 45, 287–295.
Motallebi, N., Tran, H., Croes, B.E., Larsen, L.C., 2003.Day-of-week patterns of particulatematter and its chemical components at selected sites in California. J. Air WasteManag. Assoc. 53 (7), 876–888.
Nedbor-Gross, R., Henderson, B.H., Pérez-Peña, M.P., Pachón, J.E., 2017.Air quality model-ing in Bogotá, Colombia using local emissions and natural mitigation factor adjust-ment for re-suspended particulate matter. Atmos. Pollut. Res. 9 (1), 95–104.
Núñez-Blanco, Y.P., 2019.Estimación de Fuentes de Material Particulado Atmosférico(PM10,PM2.5) en la Ciudad de Barranquilla, Colombia. M.S. thesis. Universidad de laCosta 108 pp.
ONS–Observatorio Nacional de Salud, 2018. Carga de enfermedad ambiental enColombia - Informe Técnico Especial 10.https://www.ins.gov.co/Direcciones/ONS/Informes/10Carga.de.enfermedadambientalenColombia.pdf
Parques Nacionales Naturales de Colombia, 2009. Vía Parque Isla de Salamanca–ParquesNacionales Naturales de Colombia.http://www.parquesnacionales.gov.co/portal/es/ecoturismo/region-caribe/via-parque-isla-de-salamanca/.
Paschalidou, A.K., Kassomenos, P.A., Kelessis, A., 2016.Tracking the association betweenmetro-railway construction works and PM levels in an urban Mediterranean environ-ment. Sci. Total Environ. 568, 1326–1332.
Peshin, S.K., Sharma, A., Sharma, S.K., Naja, M., Mandal, T.K., 2017.Spatio-temporal varia-tion of air pollutants and the impact of anthropogenic effects on the photochemicalbuildup of ozone across Delhi-NCR. Sustain. Cities Soc. 35, 740–751.
Petit, R.H., Legrand, M., Jankowiak, I., Molinié, J., de Asselin Beauville, C., Marion, G.,Mansot, J.L., 2005.Transport of Saharan dust over the Caribbean Islands: study ofan event. J. Geophys. Res. 110, D18.
Ramírez, O., da Boit, K., Blanco, E., Silva, L.F.O., 2020.Hazardous thoracic and ultrafine par-ticles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655.
Reche, C., Moreno, T., Amato, F., Pandolfi, M., Pérez, J., de la Paz, D., Diaz, E., Gómez-Moreno, F.J., Pujadas, M., Artíñano, B., Reina, F., Orio, A., Pallarés, M., Escudero, M.,Tapia, O., Crespo, E., Vargas, R., Alastuey, A., Querol, X., 2018.Spatio-temporal patternsof high summer ozone events in the Madrid Basin, Central Spain. Atmos. Environ.185, 207–220.
Rinnan, R., Steinke, M., McGenity, T., Loreto, F., 2014.Plant volatiles in extreme terrestrialand marine environments. Plant Cell Environ. 37 (8), 1776–1789.
Rivillas-Ospina, G., Maza-Chamorro, M.A., Restrepo, S., Lithgow, D., Silva, R., Sisa, A.,Vargas, A., Sarmiento, J.P., Caes, J., Bolivar, M., Del Rio, R., Campo, E., Casas, D.,Rudas, D., 2020.Alternatives for recovering the ecosystem services and resilience ofthe Salamanca Island Natural Park, Colombia. Water 12 (5), 1513.
Rodríguez-Villamizar, L.A., Rojas-Roa, N.Y., Fernández-Niño, J.A., 2019.Short-term jointeffects of ambient air pollutants on emergency department visits for respiratoryand circulatory diseases in Colombia, 2011–2014. Environ. Pollut. 248, 380–387.
Rojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019.Ex-posure to nanometric pollutants in primary schools: environmental implications.Urban Clim. 27, 412–419.
Rovira, J., Domingo, J.L., Schuhmacher, M., 2020.Air quality, health impacts and burden ofdisease due to air pollution (PM10,PM2.5,NO2and O3): application of AirQ+ model tothe Camp de Tarragona County (Catalonia, Spain). Sci. Total Environ. 703, 135538.
Sandeep, A., Rao, T.N., Ramkiran, C.N., Rao, S.V.B., 2014.Differences in atmosphericboundary-layer characteristics between wet and dry episodes of the Indian summermonsoon. Bound.-Layer Meteorol. 153, 217–236.
Schneider, I.L., Teixeira, E.C., Oliveira, L.F.S., Wiegand, F., 2015.Atmospheric particle num-ber concentration and size distribution in a traffic–impacted area. Atmos. Pollut. Res.6(5),877–885.
Shaddick, G., Thomas, M.L., Mudu, P., Ruggeri, G., Gumy, S., 2020.Half the world’spopu-lation are exposed to increasing air pollution. npj Clim. Atmos. Sci. 3, 23.
Thurston, G.D., 2017.Outdoor air pollution: sources, atmospheric transport, and humanhealth effects. In: Quah, S.R. (Ed.), International Encyclopedia of Public Health, Seconded. vol. 5(69). Academic Press, Cambridge, pp. 367–377.
To, W.M., 2015.Greenhouse gases emissions from the logistics sector: the case of HongKong, China. J. Clean. Prod. 103, 658–664.
USEPA - United States Environmental Protection Agency, 1999.Nitrogen Oxides (NOx),Why and How They are Controlled, Epa-456/F-99-006R. U.S. Environmental Protec-tion Agency, Office of Air Quality Planning and Standards, Washington 57 pp.
USEPA–United States Environmental Protection Agency, 2006.Data Quality Assessment:Statistical Methods for Practitioners, EPA QA/G-9S. U.S. Environmental ProtectionAgency, Office of Environmental Information, Washington 198 pp.
USEPA–United States Environmental Protection Agency, 2008.Data review, verificationand validation. Quality Assurance Handbook for Air Pollution Measurement Systems,Volume II, Ambient Air Quality Monitoring Program. U.S. Environmental ProtectionAgency, Office of Air Quality Planning and Standards, Washington, pp. 1–7.
USEPA–United States Environmental Protection Agency, 2017. QA Handbook Volume II,Appendix D: Measurement Quality Objectives and Validation Templates.https://www.epa.gov/sites/production/files/2020-10/documents/app_d_validation_tem-plate_version_03_2017_for_amtic_rev_1.pdf.
Vallero, D.A., 2014.Fundamentals of Air Pollution. Academic Press, Cambridge 996 pp.
Viana, M., Pérez, C., Querol, X., Alastuey, A., Nickovic, S., Baldasano, J.M., 2005.Spatial andtemporal variability of PM levels and composition in a complex summer atmosphericscenario in Barcelona (NE Spain). Atmos. Environ. 39 (29), 5343–5361.
Wagner, P., Schäfer, K., 2017.Influence of mixing layer height on air pollutant concentra-tions in an urban street canyon. Urban Clim. 22, 64–79.
Wang, T., Xue, L., Brimblecombe, P., Lam, Y.F., Li, L., Zhang, L., 2017.Ozone pollution inChina: a review of concentrations, meteorological influences, chemical precursors,and effects. Sci. Total Environ. 575, 1582–1596.
WHO–World Health Organization, 2016a. Ambient (Outdoor) Air Pollution.https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
WHO–World Health Organization, 2016b. WHO Global Urban Ambient Air Pollution Da-tabase (update 2016).https://www.who.int/phe/health_topics/outdoorair/data-bases/cities/en/.
WHO–World Health Organization, 2018. WHO Global Ambient Air Quality Database (up-date 2018).https://www.who.int/airpollution/data/cities/en/.
Xie, Y., Zhao, B., Zhang, L., Luo, R., 2015.Spatiotemporal variations of PM2.5and PM10con-centrations between 31 Chinese cities and their relationships with SO2,NO2,COandO3. Particuology 20, 141–149.
Zárate, E., Belalcázar, L.C., Clappier, A., Manzi, V., Van den Bergh, H., 2007.Air qualitymodelling over Bogota, Colombia: combined techniques to estimate and evaluateemission inventories. Atmos. Environ. 41 (29), 6302–6318.
Zeri, M., Oliveira-Júnior, J.F., Lyra, G.B., 2011.Spatiotemporal analysis of particulate mat-ter, sulfur dioxide and carbon monoxide concentrations over the city of Rio deJaneiro, Brazil. Meteorol. Atmos. Phys. 113, 139.
Zhan, Y., Luo, Y., Deng, X., Grieneisen, M.L., Zhang, M., Di, B., 2018.Spatiotemporal predic-tion of daily ambient ozone levels across China using random forest for human expo-sure assessment. Environ. Pollut. 233, 464–473.
Zhang, K., Batterman, S., 2013.Air pollution and health risks due to vehicle traffic. Sci.Total Environ. 450–451, 307–316.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.source.spa.fl_str_mv Geoscience Frontiers
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1674987121000323
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/8cfb8c75-0d2a-48b8-a344-2de3f7c76877/download
https://repositorio.cuc.edu.co/bitstreams/fb26f6a3-696c-4aeb-9657-72f7b94a7d2d/download
https://repositorio.cuc.edu.co/bitstreams/072871a8-1bb3-4fa1-995b-617d295df885/download
https://repositorio.cuc.edu.co/bitstreams/0337e2b8-1963-406b-80e2-9ee397b0d7f4/download
https://repositorio.cuc.edu.co/bitstreams/024c8b6f-46b4-4f5e-aaf4-d83962da153a/download
bitstream.checksum.fl_str_mv e30e9215131d99561d40d6b0abbe9bad
373c9d978d50a97d36027fec97bdf569
4460e5956bc1d1639be9ae6146a50347
ae507722e8b7fe235f4ef9fef7e68c10
849448b8b2d3e3b3422d4381d0f5e2a7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760772821286912
spelling Duarte, Ana L.Schneider, Ismael L.Artaxo, PauloOliveira, Marcos L.S.2021-06-01T14:44:19Z2021-06-01T14:44:19Z2021-02-091674-9871https://hdl.handle.net/11323/8318https://doi.org/10.1016/j.gsf.2021.101168Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Air pollution has become a critical issue in urban areas, so a broad understanding of its spatiotemporal characteristics is important to develop public policies. This study analyzes the spatiotemporal variation of atmospheric particulate matter (PM10 and PM2.5) and ozone (O3) in Barranquilla, Colombia from March 2018 to June 2019 in three monitoring stations. The average concentrations observed for the Móvil, Policía, and Tres Avemarías stations, respectively, for PM10: 46.4, 51.4, and 39.7 μg/m3; for PM2.5: 16.1, 18.1, and 15.1 μg/m3 and for O3: 35.0, 26.6, and 33.6 μg/m3. The results indicated spatial and temporal variations between the stations and the pollutants evaluated. The highest PM concentrations were observed in the southern part of the city, while for ozone, higher concentrations were observed in the north. These variations are mainly associated with the influence of local sources in the environment of each site evaluated as well as the meteorological conditions and transport patterns of the study area. This study also verified the existence of differences in the concentrations of the studied pollutants between the dry and rainy seasons and the contribution of local sources as biomass burnings from the Isla Salamanca Natural Park and long-range transport of dust particles from the Sahara Desert. This study provides a scientific baseline for understanding air quality in the city, which enables policy makers to adopt efficient measures that jointly prevent and control pollution.Duarte, Ana L.Schneider, Ismael L.Artaxo, PauloOliveira, Marcos L.S.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Geoscience Frontiershttps://www.sciencedirect.com/science/article/pii/S1674987121000323Particulate matterOzoneColombian CaribbeanCoastal urban areaSpatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal cityArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAgudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Pereira, F.N., Oliveira, M.L.S.,Taffarel, S.R., Sehn, J.L., Ramos, C.G., Silva, L.F.O., 2016.Potential utilization for theevaluation of particulate and gaseous pollutants at an urban site near a major high-way. Sci. Total Environ. 543 (Part A), 161–170.Agudelo-Castañeda, D., De Paoli, F., Morgado-Gamero, W.B., Mendoza, M., Parody, A.,Maturana, A.Y., Teixeira, E.C., 2020.Assessment of the NO2distribution and relation-ship with traffic load in the Caribbean coastal city. Sci. Total Environ. 720, 137675.Amador-Muñoz, O., Villalobos-Pietrini, R., Miranda, J., Vera-Avila, L.E., 2011.Organic com-pounds of PM2.5in Mexico Valley: spatial and temporal patterns, behavior andsources. Sci. Total Environ. 409 (8), 1453–1465.Andreae, M.O., 2019.Emission of trace gases and aerosols from biomass burning–an up-dated assessment. Atmos. Chem. Phys. 19 (13), 8523–8546.Austin, E., Zanobetti, A., Coull, B., Schwartz, J., Gold, D.R., Koutrakis, P., 2015.Ozone trendsand their relationship to characteristic weather patterns. J. Exposure Sci. Environ.Epidemiol. 25 (5), 535–542.Baklanov, A., Molina, L.T., Gauss, M., 2016.Megacities, air quality and climate. Atmos. En-viron. 126, 235–249.Barranquilla Verde, 2020a. Barranquilla en Estado de Alerta por Quemas del Vía ParqueIsla Salamanca.http://www.barranquillaverde.gov.co/noticias-detalle/barranquilla-en-estado-de-alerta-por-quemas-del-parque-isla-salamanca.Barranquilla Verde, 2020b. Informe de Calidad de Aire–2019.http://barranquillaverde.-gov.co/storage/app/media/calidad-aire/InformeCalidaddelAire2019.pdf.Blanchard, C.L., Tanenbaum, S.J., 2003.Differences between weekday and weekend airpollutant levels in southern California. J. Air Waste Manag. Assoc. 53 (7), 816–828.Blanco-Donado, E., 2019.Evaluación de la Variabilidad Espacial de Black Carbon en unÁrea Urbana del Caribe Colombiano. M.S. thesis. Universidad de la Costa 113 pp.CIOH–Centro de Investigaciones Oceanográficas e Hidrográficas, 2010. Climatología delos Principales Puestos del Caribe Colombiano, Barranquilla.https://www.cioh.org.co/meteorologia/Climatologia/ClimatologiaBarranquilla.pdf.Clarke, K., Kwon, H.-O., Choi, S.-D., 2014.Fast and reliable source identification of criteriaair pollutants in an industrial city. Atmos. Environ. 95, 239–248.Datos Abiertos, 2020. Parque Automotor 2019.https://www.datos.gov.co/Transporte/Parque-Automotor-Activo-Anual-de-Barranquilla-Vige/4ibb-jm7y/dataDomínguez-López, D., Adame, J.A., Hernández-Ceballos, M.A., Vaca, F., De La Morena, B.A.,Bolívar, J.P., 2014.Spatial and temporal variation of surface ozone, NO and NO2aturban, suburban, rural and industrial sites in the southwest of the Iberian Peninsula.Environ. Monit. Assess. 186, 5337–5351.El Heraldo, 2019. Quemas en Salamanca sí afectan la calidad del aire.https://www.elheraldo.co/barranquilla/quemas-en-salamanca-si-afectan-la-calidad-del-aire-bquilla-verde-658328.Elminir, H.K., 2005.Dependence of urban air pollutants on meteorology. Sci. Total Envi-ron. 350 (1–3), 225–237.Franceschi, F., Cobo, M., Figueredo, M., 2018.Discovering relationships and forecastingPM10and PM2.5concentrations in Bogotá Colombia, using Artificial Neural Networks,Principal Component Analysis, and k-means clustering. Atmos. Pollut. Res. 9 (5),912–922.Franco, J.F., Pacheco, J., Belalcázar, L.C., Behrentz, E., 2015.Characterization and sourceidentification of VOC species in Bogotá, Colombia. Atmósfera 28 (1), 1–11.Fu, W., Chen, Z., Zhu, Z., Liu, Q., van den Bosch, C.C.K., Qi, J., Wang, M., Dang, E., Dong, J.,2018.Spatial and temporal variations of six criteria air pollutants in Fujian Province,China. Int. J. Environ. Res. Public Health 15 (12), 2846.Galindo, N., Varea, M., Gil-Moltó, J., Yubero, E., Nicolás, J., 2011.The influence of meteorol-ogy on particulate matter concentrations at an urban mediterranean location. WaterAir Soil Pollut. 215, 365–372.Gómez, C.D., González, C.M., Osses, M., Aristizábal, B.H., 2018.Spatial and temporal disag-gregation of the on-road vehicle emission inventory in a medium-sized Andean city.Comparison of GIS-based top-down methodologies. Atmos. Environ. 179, 142–155.Gómez-Peláez, L.M., Santos, J.M., De Almeida Albuquerque, T.T., Costa Reis, N., Andreão,W.L., Andrade, M.F., 2020.Air quality status and trends over large cities in SouthAmerica. Environ. Sci. Pol. 114, 422–435.Grundström, M., Hak, C., Chen, D., Hallquist, M., Pleijel, H., 2015.Variation and co-variation of PM10, particle number concentration, NOxand NO2in the urban air - re-lationships with wind speed, vertical temperature gradient and weather type. Atmos.Environ. 120, 317–327.Hahn, I., Brixey, L.A., Wiener, R.W., Henkle, S.W., Baldauf, R., 2009.Characterization oftraffic-related PM concentration distribution andfluctuation patterns in near-highway urban residential street canyons. J. Environ. Monit. 11 (12), 2136–2145.Hu, X.M., 2015.Boundary layer (atmospheric) and air pollution: air pollution meteorol-ogy. In: North, Gerald R., Pyle, John, Zhang, Fuqing (Eds.), Encyclopedia of Atmo-spheric Sciences, Second ed. Academic Press, Cambridge, pp. 227–236.Jang, E., Do, W., Park, G., Kim, M., Yoo, E., 2017.Spatial and temporal variation of urban airpollutants and their concentrations in relation to meteorological conditions at foursites in Busan, South Korea. Atmos. Pollut. Res. 8 (1), 89–100.Karl, T.G., Christian, T.J., Yokelson, R.J., Artaxo, P., Hao, W.M., Guenther, A., 2007.The trop-ical forest andfire emissions experiment: method evaluation of volatile organic com-pound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning.Atmos. Chem. Phys. 7 (22), 5883–5897.Kavassalis, S.C., Murphy, J.G., 2017.Understanding ozone-meteorology correlations: a rolefor dry deposition. Geophys. Res. Lett. 44 (6), 2922–2931.Kawashima, A.B., Martins, L.D., Rafee, S.A.A., Rudke, A.P., de Morais, M.V., Martins, J.A.,2020.Development of a spatialized atmospheric emission inventory for the main in-dustrial sources in Brazil. Environ. Sci. Pollut. Res. 27, 35941–35951.Kinnon, M.M., Zhu, S., Carreras-Sospedra, M., Soukup, J.V., Dabdub, D., Samuelsen, G.S.,Brouwer, J., 2019.Considering future regional air quality impacts of the transporta-tion sector. Energy Policy 124, 63–80.Koppmann, R., von Czapiewski, K., Reid, J.S., 2005.A review of biomass burning emissions,part I: gaseous emissions of carbon monoxide, methane, volatile organic compounds,and nitrogen containing compounds. Atmos. Chem. Phys. 5, 10455–10516.Koren, I., Kaufman, Y.J., Washington, R., Todd, M.C., Rudich, Y., Martins, J.V., Rosenfeld, D.,2006.The Bodélé depression: a single spot in the Sahara that provides most of themineral dust to the Amazon forest. Environ. Res. Lett. 1 (1), 014005.Kwak, H.-Y., Ko, J., Lee, S., Joh, C.-H., 2017.Identifying the correlation between rainfall,trafficflow performance and air pollution concentration in Seoul using a path analy-sis. Transp. Res. Proc. 25, 3552–3563.Landim, A.A., Teixeira, E.C., Agudelo-Castañeda, D., Schneider, I.L., Silva, L.F.O., Wiegand, F.,Kumar, P., 2018.Spatio-temporal variations of sulfur dioxide concentrations in indus-trial and urban area via a new statistical approach. Air Qual. Atmos. Health 11,801–813.Li, L., Wu, J., Ghosh, J.K., Ritz, B., 2013.Estimating spatiotemporal variability of ambient airpollutant concentrations with a hierarchical model. Atmos. Environ. 71, 54–63Li, X., Ma, Y., Wang, Y., Liu, N., Hong, Y., 2017.Temporal and spatial analyses of particulatematter (PM10and PM2.5) and its relationship with meteorological parameters over anurban city in Northeast China. Atmos. Res. 198, 185–193.Li, Q., Gabay, M., Rubin, Y., Raveh-Rubin, S., Rohatyn, S., Tatarinov, F., Rotenberg, E.,Ramati, E., Dicken, U., Preisler, Y., Fredj, E., Yakir, D., Tas, E., 2019.Investigation ofozone deposition to vegetation under warm and dry conditions near the EasternMediterranean coast. Sci. Total Environ. 658, 1316–1333.Liu, Y., Gao, Y., Yu, N., Zhang, C., Wang, S., Ma, L., Zhao, J., Lohmann, R., 2015.Particulatematter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in anurban traffic tunnel of China: emission from on-road vehicles and gas-particlepartitioning. Chemosphere 134, 52–59.Ma, X., Jia, H., 2016.Particulate matter and gaseous pollutions in three megacities overChina: situation and implication. Atmos. Environ. 140, 476–494.Mi, K., Zhuang, R., Zhang, Z., Gao, J., Pei, Q., 2019.Spatiotemporal characteristics of PM2.5and its associated gas pollutants, a case in China. Sustain. Cities Soc. 45, 287–295.Motallebi, N., Tran, H., Croes, B.E., Larsen, L.C., 2003.Day-of-week patterns of particulatematter and its chemical components at selected sites in California. J. Air WasteManag. Assoc. 53 (7), 876–888.Nedbor-Gross, R., Henderson, B.H., Pérez-Peña, M.P., Pachón, J.E., 2017.Air quality model-ing in Bogotá, Colombia using local emissions and natural mitigation factor adjust-ment for re-suspended particulate matter. Atmos. Pollut. Res. 9 (1), 95–104.Núñez-Blanco, Y.P., 2019.Estimación de Fuentes de Material Particulado Atmosférico(PM10,PM2.5) en la Ciudad de Barranquilla, Colombia. M.S. thesis. Universidad de laCosta 108 pp.ONS–Observatorio Nacional de Salud, 2018. Carga de enfermedad ambiental enColombia - Informe Técnico Especial 10.https://www.ins.gov.co/Direcciones/ONS/Informes/10Carga.de.enfermedadambientalenColombia.pdfParques Nacionales Naturales de Colombia, 2009. Vía Parque Isla de Salamanca–ParquesNacionales Naturales de Colombia.http://www.parquesnacionales.gov.co/portal/es/ecoturismo/region-caribe/via-parque-isla-de-salamanca/.Paschalidou, A.K., Kassomenos, P.A., Kelessis, A., 2016.Tracking the association betweenmetro-railway construction works and PM levels in an urban Mediterranean environ-ment. Sci. Total Environ. 568, 1326–1332.Peshin, S.K., Sharma, A., Sharma, S.K., Naja, M., Mandal, T.K., 2017.Spatio-temporal varia-tion of air pollutants and the impact of anthropogenic effects on the photochemicalbuildup of ozone across Delhi-NCR. Sustain. Cities Soc. 35, 740–751.Petit, R.H., Legrand, M., Jankowiak, I., Molinié, J., de Asselin Beauville, C., Marion, G.,Mansot, J.L., 2005.Transport of Saharan dust over the Caribbean Islands: study ofan event. J. Geophys. Res. 110, D18.Ramírez, O., da Boit, K., Blanco, E., Silva, L.F.O., 2020.Hazardous thoracic and ultrafine par-ticles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655.Reche, C., Moreno, T., Amato, F., Pandolfi, M., Pérez, J., de la Paz, D., Diaz, E., Gómez-Moreno, F.J., Pujadas, M., Artíñano, B., Reina, F., Orio, A., Pallarés, M., Escudero, M.,Tapia, O., Crespo, E., Vargas, R., Alastuey, A., Querol, X., 2018.Spatio-temporal patternsof high summer ozone events in the Madrid Basin, Central Spain. Atmos. Environ.185, 207–220.Rinnan, R., Steinke, M., McGenity, T., Loreto, F., 2014.Plant volatiles in extreme terrestrialand marine environments. Plant Cell Environ. 37 (8), 1776–1789.Rivillas-Ospina, G., Maza-Chamorro, M.A., Restrepo, S., Lithgow, D., Silva, R., Sisa, A.,Vargas, A., Sarmiento, J.P., Caes, J., Bolivar, M., Del Rio, R., Campo, E., Casas, D.,Rudas, D., 2020.Alternatives for recovering the ecosystem services and resilience ofthe Salamanca Island Natural Park, Colombia. Water 12 (5), 1513.Rodríguez-Villamizar, L.A., Rojas-Roa, N.Y., Fernández-Niño, J.A., 2019.Short-term jointeffects of ambient air pollutants on emergency department visits for respiratoryand circulatory diseases in Colombia, 2011–2014. Environ. Pollut. 248, 380–387.Rojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019.Ex-posure to nanometric pollutants in primary schools: environmental implications.Urban Clim. 27, 412–419.Rovira, J., Domingo, J.L., Schuhmacher, M., 2020.Air quality, health impacts and burden ofdisease due to air pollution (PM10,PM2.5,NO2and O3): application of AirQ+ model tothe Camp de Tarragona County (Catalonia, Spain). Sci. Total Environ. 703, 135538.Sandeep, A., Rao, T.N., Ramkiran, C.N., Rao, S.V.B., 2014.Differences in atmosphericboundary-layer characteristics between wet and dry episodes of the Indian summermonsoon. Bound.-Layer Meteorol. 153, 217–236.Schneider, I.L., Teixeira, E.C., Oliveira, L.F.S., Wiegand, F., 2015.Atmospheric particle num-ber concentration and size distribution in a traffic–impacted area. Atmos. Pollut. Res.6(5),877–885.Shaddick, G., Thomas, M.L., Mudu, P., Ruggeri, G., Gumy, S., 2020.Half the world’spopu-lation are exposed to increasing air pollution. npj Clim. Atmos. Sci. 3, 23.Thurston, G.D., 2017.Outdoor air pollution: sources, atmospheric transport, and humanhealth effects. In: Quah, S.R. (Ed.), International Encyclopedia of Public Health, Seconded. vol. 5(69). Academic Press, Cambridge, pp. 367–377.To, W.M., 2015.Greenhouse gases emissions from the logistics sector: the case of HongKong, China. J. Clean. Prod. 103, 658–664.USEPA - United States Environmental Protection Agency, 1999.Nitrogen Oxides (NOx),Why and How They are Controlled, Epa-456/F-99-006R. U.S. Environmental Protec-tion Agency, Office of Air Quality Planning and Standards, Washington 57 pp.USEPA–United States Environmental Protection Agency, 2006.Data Quality Assessment:Statistical Methods for Practitioners, EPA QA/G-9S. U.S. Environmental ProtectionAgency, Office of Environmental Information, Washington 198 pp.USEPA–United States Environmental Protection Agency, 2008.Data review, verificationand validation. Quality Assurance Handbook for Air Pollution Measurement Systems,Volume II, Ambient Air Quality Monitoring Program. U.S. Environmental ProtectionAgency, Office of Air Quality Planning and Standards, Washington, pp. 1–7.USEPA–United States Environmental Protection Agency, 2017. QA Handbook Volume II,Appendix D: Measurement Quality Objectives and Validation Templates.https://www.epa.gov/sites/production/files/2020-10/documents/app_d_validation_tem-plate_version_03_2017_for_amtic_rev_1.pdf.Vallero, D.A., 2014.Fundamentals of Air Pollution. Academic Press, Cambridge 996 pp.Viana, M., Pérez, C., Querol, X., Alastuey, A., Nickovic, S., Baldasano, J.M., 2005.Spatial andtemporal variability of PM levels and composition in a complex summer atmosphericscenario in Barcelona (NE Spain). Atmos. Environ. 39 (29), 5343–5361.Wagner, P., Schäfer, K., 2017.Influence of mixing layer height on air pollutant concentra-tions in an urban street canyon. Urban Clim. 22, 64–79.Wang, T., Xue, L., Brimblecombe, P., Lam, Y.F., Li, L., Zhang, L., 2017.Ozone pollution inChina: a review of concentrations, meteorological influences, chemical precursors,and effects. Sci. Total Environ. 575, 1582–1596.WHO–World Health Organization, 2016a. Ambient (Outdoor) Air Pollution.https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-healthWHO–World Health Organization, 2016b. WHO Global Urban Ambient Air Pollution Da-tabase (update 2016).https://www.who.int/phe/health_topics/outdoorair/data-bases/cities/en/.WHO–World Health Organization, 2018. WHO Global Ambient Air Quality Database (up-date 2018).https://www.who.int/airpollution/data/cities/en/.Xie, Y., Zhao, B., Zhang, L., Luo, R., 2015.Spatiotemporal variations of PM2.5and PM10con-centrations between 31 Chinese cities and their relationships with SO2,NO2,COandO3. Particuology 20, 141–149.Zárate, E., Belalcázar, L.C., Clappier, A., Manzi, V., Van den Bergh, H., 2007.Air qualitymodelling over Bogota, Colombia: combined techniques to estimate and evaluateemission inventories. Atmos. Environ. 41 (29), 6302–6318.Zeri, M., Oliveira-Júnior, J.F., Lyra, G.B., 2011.Spatiotemporal analysis of particulate mat-ter, sulfur dioxide and carbon monoxide concentrations over the city of Rio deJaneiro, Brazil. Meteorol. Atmos. Phys. 113, 139.Zhan, Y., Luo, Y., Deng, X., Grieneisen, M.L., Zhang, M., Di, B., 2018.Spatiotemporal predic-tion of daily ambient ozone levels across China using random forest for human expo-sure assessment. Environ. Pollut. 233, 464–473.Zhang, K., Batterman, S., 2013.Air pollution and health risks due to vehicle traffic. Sci.Total Environ. 450–451, 307–316.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8cfb8c75-0d2a-48b8-a344-2de3f7c76877/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALSpatiotemporal assessment of particulate matter (PM10and PM2.5)andozone in a Caribbean urban coastal city.pdfSpatiotemporal assessment of particulate matter (PM10and PM2.5)andozone in a Caribbean urban coastal city.pdfapplication/pdf576596https://repositorio.cuc.edu.co/bitstreams/fb26f6a3-696c-4aeb-9657-72f7b94a7d2d/download373c9d978d50a97d36027fec97bdf569MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/072871a8-1bb3-4fa1-995b-617d295df885/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILSpatiotemporal assessment of particulate matter (PM10and PM2.5)andozone in a Caribbean urban coastal city.pdf.jpgSpatiotemporal assessment of particulate matter (PM10and PM2.5)andozone in a Caribbean urban coastal city.pdf.jpgimage/jpeg76136https://repositorio.cuc.edu.co/bitstreams/0337e2b8-1963-406b-80e2-9ee397b0d7f4/downloadae507722e8b7fe235f4ef9fef7e68c10MD54TEXTSpatiotemporal assessment of particulate matter (PM10and PM2.5)andozone in a Caribbean urban coastal city.pdf.txtSpatiotemporal assessment of particulate matter (PM10and PM2.5)andozone in a Caribbean urban coastal city.pdf.txttext/plain62787https://repositorio.cuc.edu.co/bitstreams/024c8b6f-46b4-4f5e-aaf4-d83962da153a/download849448b8b2d3e3b3422d4381d0f5e2a7MD5511323/8318oai:repositorio.cuc.edu.co:11323/83182024-09-17 11:05:04.047http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==