Wireless sensor network for forest fire detection

Some methods for fire detection include monitoring from watch towers and the use of satellite images [1] [2]. Unfortunately, these are not efficient due to several reasons, such as high infrastructure costs (sophisticated equipment), the fact that they require a large number of trained personnel and...

Full description

Autores:
Varela, Noel
Díaz-Martinez, Jorge L
Ospino, Adalberto
Lizardo Zelaya, Nelson Alberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7652
Acceso en línea:
https://hdl.handle.net/11323/7652
https://doi.org/10.1016/j.procs.2020.07.061
https://repositorio.cuc.edu.co/
Palabra clave:
Data analysis
Wireless sensor network
Forest fire detection
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_1a4b413384e414144dc527ae4eb6f0f8
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7652
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Wireless sensor network for forest fire detection
title Wireless sensor network for forest fire detection
spellingShingle Wireless sensor network for forest fire detection
Data analysis
Wireless sensor network
Forest fire detection
title_short Wireless sensor network for forest fire detection
title_full Wireless sensor network for forest fire detection
title_fullStr Wireless sensor network for forest fire detection
title_full_unstemmed Wireless sensor network for forest fire detection
title_sort Wireless sensor network for forest fire detection
dc.creator.fl_str_mv Varela, Noel
Díaz-Martinez, Jorge L
Ospino, Adalberto
Lizardo Zelaya, Nelson Alberto
dc.contributor.author.spa.fl_str_mv Varela, Noel
Díaz-Martinez, Jorge L
Ospino, Adalberto
Lizardo Zelaya, Nelson Alberto
dc.subject.spa.fl_str_mv Data analysis
Wireless sensor network
Forest fire detection
topic Data analysis
Wireless sensor network
Forest fire detection
description Some methods for fire detection include monitoring from watch towers and the use of satellite images [1] [2]. Unfortunately, these are not efficient due to several reasons, such as high infrastructure costs (sophisticated equipment), the fact that they require a large number of trained personnel and that they make real-time monitoring difficult, since when the phenomenon is detected, its speed of propagation has produced uncontrollable levels of damage. This paper proposes a method for detecting forest fires, using a network of wireless sensors and information fusion methods.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-04T21:15:02Z
dc.date.available.none.fl_str_mv 2021-01-04T21:15:02Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1877-0509
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7652
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.procs.2020.07.061
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1877-0509
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7652
https://doi.org/10.1016/j.procs.2020.07.061
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Noureddine, H., & Bouabdellah, K. (2020). Field Experiment Testbed for Forest Fire Detection using Wireless Multimedia Sensor Network. International Journal of Sensors Wireless Communications and Control, 10(1), 3-14.
[2] Grover, K., Kahali, D., Verma, S., & Subramanian, B. (2020). WSN-Based System for Forest Fire Detection and Mitigation. In Emerging Technologies for Agriculture and Environment (pp. 249-260). Springer, Singapore.
[3] Chauhan, A., Semwal, S., & Chawhan, R. (2013, December). Artificial neural network-based forest fire detection system using wireless sensor network. In 2013 Annual IEEE India Conference (INDICON) (pp. 1-6). IEEE.
[4] Ghugar, U., & Pradhan, J. (2020). ML-IDS: MAC Layer Trust-Based Intrusion Detection System for Wireless Sensor Networks. In Computational Intelligence in Data Mining (pp. 427-434). Springer, Singapore.
[5]Nugroho, A. A., Iwan, I., Azizah, K. I. N., & Raswa, F. H. (2019). Peatland Forest Fire Prevention Using Wireless Sensor Network Based on Naïve Bayes Classifier. KnE Social Sciences, 20-34.
[6]Biswas, P., & Samanta, T. (2020). True Event-Driven and Fault-Tolerant Routing in Wireless Sensor Network. Wireless Personal Communications, 1-23.
[7] Dubey, V., Kumar, P., & Chauhan, N. (2019). Forest fire detection system using IoT and artificial neural network. In International Conference on Innovative Computing and Communications (pp. 323-337). Springer, Singapore.
[8] Zhang, J., Li, W., Yin, Z., Liu, S., & Guo, X. (2009, May). Forest fire detection system based on wireless sensor network. In 2009 4th IEEE conference on industrial electronics and applications (pp. 520-523). IEEE.
[9] Aliady, W. A., & Al-Ahmadi, S. A. (2019). Energy Preserving Secure Measure Against Wormhole Attack in Wireless Sensor Networks. IEEE Access, 7, 84132-84141.
[10] Hariyawan, M. Y., Gunawan, A., & Putra, E. H. (2013). Wireless sensor network for forest fire detection. Telkomnika, 11(3), 563.
[11] Mohapatra, S., & Khilar, P. M. (2020). Fault Diagnosis in Wireless Sensor Network Using Self/Non-self-Discrimination Principle. In Progress in Computing, Analytics and Networking (pp. 161-168). Springer, Singapore.
[12] Saidi, H., Gretete, D., & Addaim, A. (2020). Game Theory for Wireless Sensor Network Security. In Fourth International Congress on Information and Communication Technology (pp. 259-269). Springer, Singapore.
[13] Aliady, W. A., & Al-Ahmadi, S. A. (2019). Energy Preserving Secure Measure Against Wormhole Attack in Wireless Sensor Networks. IEEE Access, 7, 84132-84141.
[14] Viloria, A., Hernandez-P, H., Lezama, O. B. P., & Orozco, V. D. (2020). Electric Consumption Pattern from Big Data (pp. 479–485). https://doi.org/10.1007/978-981-15-3125-5_47.
[15] Sanchez, L., Vásquez, C., Viloria, A., & Cmeza-Estrada. (2018). Conglomerates of Latin American countries and public policies for the sustainable development of the electric power generation sector. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10943 LNCS, pp. 759–766). Springer Verlag. https://doi.org/10.1007/978-3- 319-93803-5_71
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050920317427
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/eaf5c417-f03f-438a-ad69-f9f59758a343/download
https://repositorio.cuc.edu.co/bitstreams/f9940e1e-7075-4fa4-9fc5-062769603481/download
https://repositorio.cuc.edu.co/bitstreams/942c2dd9-e65f-4445-a099-4225c7dfd368/download
https://repositorio.cuc.edu.co/bitstreams/1a511721-7302-4f8b-934e-3d9aa1460c9b/download
https://repositorio.cuc.edu.co/bitstreams/57274dd3-b611-40d2-bafe-b6cb1b1b9ef3/download
bitstream.checksum.fl_str_mv 83df3cc0c7e6ab3c30ec2e07c353b501
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
0f47120592b5c5eb91509a9a0df5afab
bbe40287fb9312389483c8755bb8f397
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166907984871424
spelling Varela, NoelDíaz-Martinez, Jorge LOspino, AdalbertoLizardo Zelaya, Nelson Alberto2021-01-04T21:15:02Z2021-01-04T21:15:02Z20201877-0509https://hdl.handle.net/11323/7652https://doi.org/10.1016/j.procs.2020.07.061Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Some methods for fire detection include monitoring from watch towers and the use of satellite images [1] [2]. Unfortunately, these are not efficient due to several reasons, such as high infrastructure costs (sophisticated equipment), the fact that they require a large number of trained personnel and that they make real-time monitoring difficult, since when the phenomenon is detected, its speed of propagation has produced uncontrollable levels of damage. This paper proposes a method for detecting forest fires, using a network of wireless sensors and information fusion methods.Varela, NoelDíaz-Martinez, Jorge LOspino, Adalberto-will be generated-orcid-0000-0003-1466-0424-600Lizardo Zelaya, Nelson Alberto-will be generated-orcid-0000-0002-3963-5690-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050920317427Data analysisWireless sensor networkForest fire detectionWireless sensor network for forest fire detectionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Noureddine, H., & Bouabdellah, K. (2020). Field Experiment Testbed for Forest Fire Detection using Wireless Multimedia Sensor Network. International Journal of Sensors Wireless Communications and Control, 10(1), 3-14.[2] Grover, K., Kahali, D., Verma, S., & Subramanian, B. (2020). WSN-Based System for Forest Fire Detection and Mitigation. In Emerging Technologies for Agriculture and Environment (pp. 249-260). Springer, Singapore.[3] Chauhan, A., Semwal, S., & Chawhan, R. (2013, December). Artificial neural network-based forest fire detection system using wireless sensor network. In 2013 Annual IEEE India Conference (INDICON) (pp. 1-6). IEEE.[4] Ghugar, U., & Pradhan, J. (2020). ML-IDS: MAC Layer Trust-Based Intrusion Detection System for Wireless Sensor Networks. In Computational Intelligence in Data Mining (pp. 427-434). Springer, Singapore.[5]Nugroho, A. A., Iwan, I., Azizah, K. I. N., & Raswa, F. H. (2019). Peatland Forest Fire Prevention Using Wireless Sensor Network Based on Naïve Bayes Classifier. KnE Social Sciences, 20-34.[6]Biswas, P., & Samanta, T. (2020). True Event-Driven and Fault-Tolerant Routing in Wireless Sensor Network. Wireless Personal Communications, 1-23.[7] Dubey, V., Kumar, P., & Chauhan, N. (2019). Forest fire detection system using IoT and artificial neural network. In International Conference on Innovative Computing and Communications (pp. 323-337). Springer, Singapore.[8] Zhang, J., Li, W., Yin, Z., Liu, S., & Guo, X. (2009, May). Forest fire detection system based on wireless sensor network. In 2009 4th IEEE conference on industrial electronics and applications (pp. 520-523). IEEE.[9] Aliady, W. A., & Al-Ahmadi, S. A. (2019). Energy Preserving Secure Measure Against Wormhole Attack in Wireless Sensor Networks. IEEE Access, 7, 84132-84141.[10] Hariyawan, M. Y., Gunawan, A., & Putra, E. H. (2013). Wireless sensor network for forest fire detection. Telkomnika, 11(3), 563.[11] Mohapatra, S., & Khilar, P. M. (2020). Fault Diagnosis in Wireless Sensor Network Using Self/Non-self-Discrimination Principle. In Progress in Computing, Analytics and Networking (pp. 161-168). Springer, Singapore.[12] Saidi, H., Gretete, D., & Addaim, A. (2020). Game Theory for Wireless Sensor Network Security. In Fourth International Congress on Information and Communication Technology (pp. 259-269). Springer, Singapore.[13] Aliady, W. A., & Al-Ahmadi, S. A. (2019). Energy Preserving Secure Measure Against Wormhole Attack in Wireless Sensor Networks. IEEE Access, 7, 84132-84141.[14] Viloria, A., Hernandez-P, H., Lezama, O. B. P., & Orozco, V. D. (2020). Electric Consumption Pattern from Big Data (pp. 479–485). https://doi.org/10.1007/978-981-15-3125-5_47.[15] Sanchez, L., Vásquez, C., Viloria, A., & Cmeza-Estrada. (2018). Conglomerates of Latin American countries and public policies for the sustainable development of the electric power generation sector. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10943 LNCS, pp. 759–766). Springer Verlag. https://doi.org/10.1007/978-3- 319-93803-5_71PublicationORIGINALWireless sensor network for forest fire detection.pdfWireless sensor network for forest fire detection.pdfapplication/pdf564314https://repositorio.cuc.edu.co/bitstreams/eaf5c417-f03f-438a-ad69-f9f59758a343/download83df3cc0c7e6ab3c30ec2e07c353b501MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/f9940e1e-7075-4fa4-9fc5-062769603481/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/942c2dd9-e65f-4445-a099-4225c7dfd368/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILWireless sensor network for forest fire detection.pdf.jpgWireless sensor network for forest fire detection.pdf.jpgimage/jpeg44499https://repositorio.cuc.edu.co/bitstreams/1a511721-7302-4f8b-934e-3d9aa1460c9b/download0f47120592b5c5eb91509a9a0df5afabMD54TEXTWireless sensor network for forest fire detection.pdf.txtWireless sensor network for forest fire detection.pdf.txttext/plain24281https://repositorio.cuc.edu.co/bitstreams/57274dd3-b611-40d2-bafe-b6cb1b1b9ef3/downloadbbe40287fb9312389483c8755bb8f397MD5511323/7652oai:repositorio.cuc.edu.co:11323/76522024-09-17 14:24:46.473http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==