Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado

The current paper exposes a technological solution for monitoring heating, ventilating and air conditioning systems, aka HVAC. For this, it is used wireless sensors to build a network that will monitor atmospheric variables such as temperature and relativity humidity, in places that have installed t...

Full description

Autores:
Comas Gonzalez, Zhoe Vanessa
Simancas García, José Luis
Velez Zapata, Jaime
Bernal Rueda, Victor Enmanuel
Percia Velasquez, Iran Samir
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1170
Acceso en línea:
https://hdl.handle.net/11323/1170
https://repositorio.cuc.edu.co/
Palabra clave:
variables atmosféricas
redes de sensores inalámbricos
sistema HVAC
ZigBee
Atmospheric variables
wireless sensor network
HVAC system
Zigbee
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_1a29b914e05ccbe4fab0989c4a7f4ead
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1170
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado
dc.title.translated.eng.fl_str_mv Wireless sensor networks for monitoring HVAC systems
title Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado
spellingShingle Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado
variables atmosféricas
redes de sensores inalámbricos
sistema HVAC
ZigBee
Atmospheric variables
wireless sensor network
HVAC system
Zigbee
title_short Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado
title_full Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado
title_fullStr Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado
title_full_unstemmed Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado
title_sort Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado
dc.creator.fl_str_mv Comas Gonzalez, Zhoe Vanessa
Simancas García, José Luis
Velez Zapata, Jaime
Bernal Rueda, Victor Enmanuel
Percia Velasquez, Iran Samir
dc.contributor.author.spa.fl_str_mv Comas Gonzalez, Zhoe Vanessa
Simancas García, José Luis
Velez Zapata, Jaime
Bernal Rueda, Victor Enmanuel
Percia Velasquez, Iran Samir
dc.subject.eng.fl_str_mv variables atmosféricas
redes de sensores inalámbricos
sistema HVAC
ZigBee
Atmospheric variables
wireless sensor network
HVAC system
Zigbee
topic variables atmosféricas
redes de sensores inalámbricos
sistema HVAC
ZigBee
Atmospheric variables
wireless sensor network
HVAC system
Zigbee
description The current paper exposes a technological solution for monitoring heating, ventilating and air conditioning systems, aka HVAC. For this, it is used wireless sensors to build a network that will monitor atmospheric variables such as temperature and relativity humidity, in places that have installed this type of systems.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-16T21:38:22Z
dc.date.available.none.fl_str_mv 2018-11-16T21:38:22Z
dc.date.issued.none.fl_str_mv 2018-07-10
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0798-1015
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/1170
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0798-1015
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/1170
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Avvenuti, M., Cresci, S., Marchetti, A., & Tesconi, M. (2014). Earthquake emergency management by social sensing. In Earthquake emergency management by social sensing (pp. 587–592). Budapest: IEEE. https://doi.org/10.1109/PerComW.2014.6815272 Belhadj, C. A., Hamanah, W. M., Kassas, M. (2017). LabVIEW based real time Monitoring of HVAC System for Residential Load. 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), 66–71. https://doi.org/doi: 10.1109/CIVEMSA.2017.7995303 Cama-Pinto, A., Piñeres-Espitia, G., Caicedo-Ortiz, J., Ramírez-Cerpa, E., Betancur-Agudelo, L., & Gómez-Mula, F. (2017). Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules. International Journal of Distributed Sensor Networks, 13(7). https://doi.org/10.1177/1550147717722691 Cama-Pinto, A., Comas-González, Z., Piñeres-Espitia, G., Gómez-Mula, F., Vélez-Zapata, J. (2017). Diseño de una red de monitorización de variables meteorológicas relacionadas a los tornados en Barranquilla-Colombia y su área metropolitana. Ingeniare. Revista Chilena de Ingeniería, 25, 585–598. Cuifen, L., Xiaoqin, Z., & Yanping, L. (2010). The electric meter reading system in rural areas based on wireless micro-computer. 2010 International Conference On Computer Design and Applications, 109–111. https://doi.org/doi: 10.1109/ICCDA.2010.5541117 Dhar, N.K., Verma, N. K, Behera, L. (2018). Adaptive Critic-Based Event-Triggered Control for HVAC System. IEEE Transactions on Industrial Informatics, 14(1), 178–188. https://doi.org/doi: 10.1109/TII.2017.2725899 Ezzedine, T, Zrelli, A. (2017). Efficient measurement of temperature, humidity and strain variation by modeling reflection Bragg grating spectrum in WSN. Optik - International Journal for Light and Electron Optics, 135, 454–462. https://doi.org/https://doi.org/10.1016/j.ijleo.2017.01.061 Ghosh, A, Chakraborty, N. (2016). Design of smart grid in an University Campus using ZigBee mesh networks. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 1–6. https://doi.org/doi: 10.1109/ICPEICES.2016.7853432 Hernández-Velásquez, V., y Alvarado-Bawab, M. (2017). Control on-off de temperatura y potencia para el mejoramiento de las condiciones de procesos asistidos con microondas. Ingecuc, 13(2), 53–59. https://doi.org/http://dx.doi.org/10.17981/ingecuc.13.2.2017.06 Hersent, O., Boswarthick, D., Elloumi, O. (2012). Zigbee. In The Internet of Things:Key Applications and Protocols (1st ed., p. 376). Wiley Telecom. https://doi.org/10.1002/9781119958352.ch7 Jhang, W-H., Chen, L-B., Chang, W.-J. (2017). Design of a low-cost level-triggered Zigbee network multi-application sensor in smart homes. 2017 6th International Symposium on Next Generation Electronics (ISNE), 1–3. https://doi.org/doi: 10.1109/ISNE.2017.7968729 Kumar, T., Mane, P. B. (2016). ZigBee topology: A survey. 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 164– 166. https://doi.org/doi: 10.1109/ICCICCT.2016.7987937 Lazarescu, M. T. (2013). Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(1), 45–54. https://doi.org/10.1109/JETCAS.2013.2243032 Meléndez-Pertuz, F., Vélez-Díaz, J., Caicedo-Ortiz, J., Fernadez-Vélez, A. (2017). LabVIEW use in modeling and performance test bit error rate of a communication system with high order QAM modulation 2 4 1 and coding Reed-Solomon for undergraduate teaching. Revista Técnica de La Facultad de Ingeniería. 40(3). Mihail-Florin, S.; Husu, A., Ionuţ-Adrian, M., Fidel, N., Cobianu, C. (2017). Design and implementation of an HVAC System for converting a decommissioned hangar in a conference room with a capacity of 800 seats. 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 667–672. https://doi.org/doi: 10.1109/ATEE.2017.7905037 Muhammad A. A., Peyman T., Nasser Y, Saeed S. (2016). An efficient medium access control protocol for WSN-UAV. Ad Hoc Networks, 52, 146–159. https://doi.org/https://doi.org/10.1016/j.adhoc.2016.09.007. Paez-Logreira, H., Ramirez-Cerpa, E., Diaz-Charris, L., & Lopez-Torres, S. (2017). Control automático del set-point de un sistema de HVAC con Arduino , para un consumo energético eficiente y racional. Revista Espacios, 38(61), 5–18. Recuperado de: http://www.revistaespacios.com/a17v38n61/a17v38n61p05.pdf Piñeres-Espitia, G., & Mejía, Á. (2013). Plataformas tecnológicas aplicadas al monitoreo climático Technological platforms applied the climatic monitoring. Prospectiva, 11(2), 78–87. https://doi.org/http://dx.doi.org/10.15665/rp.v11i2.42 Shahzad, F. (2013). Satellite monitoring of Wireless Sensor Networks (WSNs). Procedia Computer Science, 21, 479–484. https://doi.org/10.1016/j.procs.2013.09.065 Shkurti, L. (2017). Development of Ambient Environmental Monitoring System Through Wireless Sensor Network ( WSN ) U sing NodeMCU and “ WSN Monitoring ,” (June), 11–15. Wen, Y., & Burke, W. (2013). Real-time dynamic house thermal model identification for predicting hvac energy consumption. IEEE Green Technologies Conference, 367–372. https://doi.org/10.1109/GreenTech.2013.63 Yashen, L.; Barooah, P.; Meyn, S. (2015). Experimental Evaluation of Frequency Regulation From Commercial Building HVAC Systems. IEEE Transactions on Smart Grid, 6(2), 776–783. https://doi.org/doi: 10.1109/TSG.2014.2381596
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Espacios
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/0fa630b0-e67f-4a4a-b526-079c782c0cfc/download
https://repositorio.cuc.edu.co/bitstreams/29ed8099-db73-4194-84d5-a2521d465bdb/download
https://repositorio.cuc.edu.co/bitstreams/62726524-c87e-45ab-9379-de6c5e8c4f0a/download
https://repositorio.cuc.edu.co/bitstreams/ab0d19a8-c1fb-4a60-ac9b-c8763ffa1748/download
bitstream.checksum.fl_str_mv 9155e60693a1fd1dc61128d2c734d585
8a4605be74aa9ea9d79846c1fba20a33
f35444e9f30894bd06e72ff41dcfb412
351714219367779b7ea2cd8a3f07909a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760812983844864
spelling Comas Gonzalez, Zhoe VanessaSimancas García, José LuisVelez Zapata, JaimeBernal Rueda, Victor EnmanuelPercia Velasquez, Iran Samir2018-11-16T21:38:22Z2018-11-16T21:38:22Z2018-07-100798-1015https://hdl.handle.net/11323/1170Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The current paper exposes a technological solution for monitoring heating, ventilating and air conditioning systems, aka HVAC. For this, it is used wireless sensors to build a network that will monitor atmospheric variables such as temperature and relativity humidity, in places that have installed this type of systems.El presente artículo expone una solución tecnológica para monitorizar sistemas de aire acondicionado, ventilación y calefacción, conocido como HVAC por sus siglas en inglés; en el que se propone el uso de sensores inalámbricos para construir una red que monitoriza variables atmosféricas como la temperatura y humedad relativa, en los recintos que cuenten con éstos sistemas.Comas Gonzalez, Zhoe Vanessa-0000-0001-7151-5245-600Simancas García, José Luis-f2410c5f-9d04-4adb-b290-5d1288318cdf-0Velez Zapata, Jaime-65ad333e-ded3-46fe-9327-a1e038a3f9d6-0Bernal Rueda, Victor Enmanuel-1937bef0-a4c8-429f-a8b0-df1f66cd4189-0Percia Velasquez, Iran Samir-062d7139-0e07-401d-b7c5-221153d11d26-0spaEspaciosAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2variables atmosféricasredes de sensores inalámbricossistema HVACZigBeeAtmospheric variableswireless sensor networkHVAC systemZigbeeRedes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionadoWireless sensor networks for monitoring HVAC systemsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAvvenuti, M., Cresci, S., Marchetti, A., & Tesconi, M. (2014). Earthquake emergency management by social sensing. In Earthquake emergency management by social sensing (pp. 587–592). Budapest: IEEE. https://doi.org/10.1109/PerComW.2014.6815272 Belhadj, C. A., Hamanah, W. M., Kassas, M. (2017). LabVIEW based real time Monitoring of HVAC System for Residential Load. 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), 66–71. https://doi.org/doi: 10.1109/CIVEMSA.2017.7995303 Cama-Pinto, A., Piñeres-Espitia, G., Caicedo-Ortiz, J., Ramírez-Cerpa, E., Betancur-Agudelo, L., & Gómez-Mula, F. (2017). Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules. International Journal of Distributed Sensor Networks, 13(7). https://doi.org/10.1177/1550147717722691 Cama-Pinto, A., Comas-González, Z., Piñeres-Espitia, G., Gómez-Mula, F., Vélez-Zapata, J. (2017). Diseño de una red de monitorización de variables meteorológicas relacionadas a los tornados en Barranquilla-Colombia y su área metropolitana. Ingeniare. Revista Chilena de Ingeniería, 25, 585–598. Cuifen, L., Xiaoqin, Z., & Yanping, L. (2010). The electric meter reading system in rural areas based on wireless micro-computer. 2010 International Conference On Computer Design and Applications, 109–111. https://doi.org/doi: 10.1109/ICCDA.2010.5541117 Dhar, N.K., Verma, N. K, Behera, L. (2018). Adaptive Critic-Based Event-Triggered Control for HVAC System. IEEE Transactions on Industrial Informatics, 14(1), 178–188. https://doi.org/doi: 10.1109/TII.2017.2725899 Ezzedine, T, Zrelli, A. (2017). Efficient measurement of temperature, humidity and strain variation by modeling reflection Bragg grating spectrum in WSN. Optik - International Journal for Light and Electron Optics, 135, 454–462. https://doi.org/https://doi.org/10.1016/j.ijleo.2017.01.061 Ghosh, A, Chakraborty, N. (2016). Design of smart grid in an University Campus using ZigBee mesh networks. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 1–6. https://doi.org/doi: 10.1109/ICPEICES.2016.7853432 Hernández-Velásquez, V., y Alvarado-Bawab, M. (2017). Control on-off de temperatura y potencia para el mejoramiento de las condiciones de procesos asistidos con microondas. Ingecuc, 13(2), 53–59. https://doi.org/http://dx.doi.org/10.17981/ingecuc.13.2.2017.06 Hersent, O., Boswarthick, D., Elloumi, O. (2012). Zigbee. In The Internet of Things:Key Applications and Protocols (1st ed., p. 376). Wiley Telecom. https://doi.org/10.1002/9781119958352.ch7 Jhang, W-H., Chen, L-B., Chang, W.-J. (2017). Design of a low-cost level-triggered Zigbee network multi-application sensor in smart homes. 2017 6th International Symposium on Next Generation Electronics (ISNE), 1–3. https://doi.org/doi: 10.1109/ISNE.2017.7968729 Kumar, T., Mane, P. B. (2016). ZigBee topology: A survey. 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 164– 166. https://doi.org/doi: 10.1109/ICCICCT.2016.7987937 Lazarescu, M. T. (2013). Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(1), 45–54. https://doi.org/10.1109/JETCAS.2013.2243032 Meléndez-Pertuz, F., Vélez-Díaz, J., Caicedo-Ortiz, J., Fernadez-Vélez, A. (2017). LabVIEW use in modeling and performance test bit error rate of a communication system with high order QAM modulation 2 4 1 and coding Reed-Solomon for undergraduate teaching. Revista Técnica de La Facultad de Ingeniería. 40(3). Mihail-Florin, S.; Husu, A., Ionuţ-Adrian, M., Fidel, N., Cobianu, C. (2017). Design and implementation of an HVAC System for converting a decommissioned hangar in a conference room with a capacity of 800 seats. 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 667–672. https://doi.org/doi: 10.1109/ATEE.2017.7905037 Muhammad A. A., Peyman T., Nasser Y, Saeed S. (2016). An efficient medium access control protocol for WSN-UAV. Ad Hoc Networks, 52, 146–159. https://doi.org/https://doi.org/10.1016/j.adhoc.2016.09.007. Paez-Logreira, H., Ramirez-Cerpa, E., Diaz-Charris, L., & Lopez-Torres, S. (2017). Control automático del set-point de un sistema de HVAC con Arduino , para un consumo energético eficiente y racional. Revista Espacios, 38(61), 5–18. Recuperado de: http://www.revistaespacios.com/a17v38n61/a17v38n61p05.pdf Piñeres-Espitia, G., & Mejía, Á. (2013). Plataformas tecnológicas aplicadas al monitoreo climático Technological platforms applied the climatic monitoring. Prospectiva, 11(2), 78–87. https://doi.org/http://dx.doi.org/10.15665/rp.v11i2.42 Shahzad, F. (2013). Satellite monitoring of Wireless Sensor Networks (WSNs). Procedia Computer Science, 21, 479–484. https://doi.org/10.1016/j.procs.2013.09.065 Shkurti, L. (2017). Development of Ambient Environmental Monitoring System Through Wireless Sensor Network ( WSN ) U sing NodeMCU and “ WSN Monitoring ,” (June), 11–15. Wen, Y., & Burke, W. (2013). Real-time dynamic house thermal model identification for predicting hvac energy consumption. IEEE Green Technologies Conference, 367–372. https://doi.org/10.1109/GreenTech.2013.63 Yashen, L.; Barooah, P.; Meyn, S. (2015). Experimental Evaluation of Frequency Regulation From Commercial Building HVAC Systems. IEEE Transactions on Smart Grid, 6(2), 776–783. https://doi.org/doi: 10.1109/TSG.2014.2381596PublicationORIGINALRedes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado.pdfRedes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado.pdfapplication/pdf1211259https://repositorio.cuc.edu.co/bitstreams/0fa630b0-e67f-4a4a-b526-079c782c0cfc/download9155e60693a1fd1dc61128d2c734d585MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/29ed8099-db73-4194-84d5-a2521d465bdb/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILRedes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado.pdf.jpgRedes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado.pdf.jpgimage/jpeg78657https://repositorio.cuc.edu.co/bitstreams/62726524-c87e-45ab-9379-de6c5e8c4f0a/downloadf35444e9f30894bd06e72ff41dcfb412MD54TEXTRedes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado.pdf.txtRedes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado.pdf.txttext/plain27019https://repositorio.cuc.edu.co/bitstreams/ab0d19a8-c1fb-4a60-ac9b-c8763ffa1748/download351714219367779b7ea2cd8a3f07909aMD5511323/1170oai:repositorio.cuc.edu.co:11323/11702024-09-17 12:48:36.942open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=