Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado
The current paper exposes a technological solution for monitoring heating, ventilating and air conditioning systems, aka HVAC. For this, it is used wireless sensors to build a network that will monitor atmospheric variables such as temperature and relativity humidity, in places that have installed t...
- Autores:
-
Comas Gonzalez, Zhoe Vanessa
Simancas García, José Luis
Velez Zapata, Jaime
Bernal Rueda, Victor Enmanuel
Percia Velasquez, Iran Samir
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1170
- Acceso en línea:
- https://hdl.handle.net/11323/1170
https://repositorio.cuc.edu.co/
- Palabra clave:
- variables atmosféricas
redes de sensores inalámbricos
sistema HVAC
ZigBee
Atmospheric variables
wireless sensor network
HVAC system
Zigbee
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_1a29b914e05ccbe4fab0989c4a7f4ead |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1170 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado |
dc.title.translated.eng.fl_str_mv |
Wireless sensor networks for monitoring HVAC systems |
title |
Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado |
spellingShingle |
Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado variables atmosféricas redes de sensores inalámbricos sistema HVAC ZigBee Atmospheric variables wireless sensor network HVAC system Zigbee |
title_short |
Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado |
title_full |
Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado |
title_fullStr |
Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado |
title_full_unstemmed |
Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado |
title_sort |
Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado |
dc.creator.fl_str_mv |
Comas Gonzalez, Zhoe Vanessa Simancas García, José Luis Velez Zapata, Jaime Bernal Rueda, Victor Enmanuel Percia Velasquez, Iran Samir |
dc.contributor.author.spa.fl_str_mv |
Comas Gonzalez, Zhoe Vanessa Simancas García, José Luis Velez Zapata, Jaime Bernal Rueda, Victor Enmanuel Percia Velasquez, Iran Samir |
dc.subject.eng.fl_str_mv |
variables atmosféricas redes de sensores inalámbricos sistema HVAC ZigBee Atmospheric variables wireless sensor network HVAC system Zigbee |
topic |
variables atmosféricas redes de sensores inalámbricos sistema HVAC ZigBee Atmospheric variables wireless sensor network HVAC system Zigbee |
description |
The current paper exposes a technological solution for monitoring heating, ventilating and air conditioning systems, aka HVAC. For this, it is used wireless sensors to build a network that will monitor atmospheric variables such as temperature and relativity humidity, in places that have installed this type of systems. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-16T21:38:22Z |
dc.date.available.none.fl_str_mv |
2018-11-16T21:38:22Z |
dc.date.issued.none.fl_str_mv |
2018-07-10 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
0798-1015 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1170 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0798-1015 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1170 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Avvenuti, M., Cresci, S., Marchetti, A., & Tesconi, M. (2014). Earthquake emergency management by social sensing. In Earthquake emergency management by social sensing (pp. 587–592). Budapest: IEEE. https://doi.org/10.1109/PerComW.2014.6815272 Belhadj, C. A., Hamanah, W. M., Kassas, M. (2017). LabVIEW based real time Monitoring of HVAC System for Residential Load. 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), 66–71. https://doi.org/doi: 10.1109/CIVEMSA.2017.7995303 Cama-Pinto, A., Piñeres-Espitia, G., Caicedo-Ortiz, J., Ramírez-Cerpa, E., Betancur-Agudelo, L., & Gómez-Mula, F. (2017). Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules. International Journal of Distributed Sensor Networks, 13(7). https://doi.org/10.1177/1550147717722691 Cama-Pinto, A., Comas-González, Z., Piñeres-Espitia, G., Gómez-Mula, F., Vélez-Zapata, J. (2017). Diseño de una red de monitorización de variables meteorológicas relacionadas a los tornados en Barranquilla-Colombia y su área metropolitana. Ingeniare. Revista Chilena de Ingeniería, 25, 585–598. Cuifen, L., Xiaoqin, Z., & Yanping, L. (2010). The electric meter reading system in rural areas based on wireless micro-computer. 2010 International Conference On Computer Design and Applications, 109–111. https://doi.org/doi: 10.1109/ICCDA.2010.5541117 Dhar, N.K., Verma, N. K, Behera, L. (2018). Adaptive Critic-Based Event-Triggered Control for HVAC System. IEEE Transactions on Industrial Informatics, 14(1), 178–188. https://doi.org/doi: 10.1109/TII.2017.2725899 Ezzedine, T, Zrelli, A. (2017). Efficient measurement of temperature, humidity and strain variation by modeling reflection Bragg grating spectrum in WSN. Optik - International Journal for Light and Electron Optics, 135, 454–462. https://doi.org/https://doi.org/10.1016/j.ijleo.2017.01.061 Ghosh, A, Chakraborty, N. (2016). Design of smart grid in an University Campus using ZigBee mesh networks. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 1–6. https://doi.org/doi: 10.1109/ICPEICES.2016.7853432 Hernández-Velásquez, V., y Alvarado-Bawab, M. (2017). Control on-off de temperatura y potencia para el mejoramiento de las condiciones de procesos asistidos con microondas. Ingecuc, 13(2), 53–59. https://doi.org/http://dx.doi.org/10.17981/ingecuc.13.2.2017.06 Hersent, O., Boswarthick, D., Elloumi, O. (2012). Zigbee. In The Internet of Things:Key Applications and Protocols (1st ed., p. 376). Wiley Telecom. https://doi.org/10.1002/9781119958352.ch7 Jhang, W-H., Chen, L-B., Chang, W.-J. (2017). Design of a low-cost level-triggered Zigbee network multi-application sensor in smart homes. 2017 6th International Symposium on Next Generation Electronics (ISNE), 1–3. https://doi.org/doi: 10.1109/ISNE.2017.7968729 Kumar, T., Mane, P. B. (2016). ZigBee topology: A survey. 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 164– 166. https://doi.org/doi: 10.1109/ICCICCT.2016.7987937 Lazarescu, M. T. (2013). Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(1), 45–54. https://doi.org/10.1109/JETCAS.2013.2243032 Meléndez-Pertuz, F., Vélez-Díaz, J., Caicedo-Ortiz, J., Fernadez-Vélez, A. (2017). LabVIEW use in modeling and performance test bit error rate of a communication system with high order QAM modulation 2 4 1 and coding Reed-Solomon for undergraduate teaching. Revista Técnica de La Facultad de Ingeniería. 40(3). Mihail-Florin, S.; Husu, A., Ionuţ-Adrian, M., Fidel, N., Cobianu, C. (2017). Design and implementation of an HVAC System for converting a decommissioned hangar in a conference room with a capacity of 800 seats. 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 667–672. https://doi.org/doi: 10.1109/ATEE.2017.7905037 Muhammad A. A., Peyman T., Nasser Y, Saeed S. (2016). An efficient medium access control protocol for WSN-UAV. Ad Hoc Networks, 52, 146–159. https://doi.org/https://doi.org/10.1016/j.adhoc.2016.09.007. Paez-Logreira, H., Ramirez-Cerpa, E., Diaz-Charris, L., & Lopez-Torres, S. (2017). Control automático del set-point de un sistema de HVAC con Arduino , para un consumo energético eficiente y racional. Revista Espacios, 38(61), 5–18. Recuperado de: http://www.revistaespacios.com/a17v38n61/a17v38n61p05.pdf Piñeres-Espitia, G., & Mejía, Á. (2013). Plataformas tecnológicas aplicadas al monitoreo climático Technological platforms applied the climatic monitoring. Prospectiva, 11(2), 78–87. https://doi.org/http://dx.doi.org/10.15665/rp.v11i2.42 Shahzad, F. (2013). Satellite monitoring of Wireless Sensor Networks (WSNs). Procedia Computer Science, 21, 479–484. https://doi.org/10.1016/j.procs.2013.09.065 Shkurti, L. (2017). Development of Ambient Environmental Monitoring System Through Wireless Sensor Network ( WSN ) U sing NodeMCU and “ WSN Monitoring ,” (June), 11–15. Wen, Y., & Burke, W. (2013). Real-time dynamic house thermal model identification for predicting hvac energy consumption. IEEE Green Technologies Conference, 367–372. https://doi.org/10.1109/GreenTech.2013.63 Yashen, L.; Barooah, P.; Meyn, S. (2015). Experimental Evaluation of Frequency Regulation From Commercial Building HVAC Systems. IEEE Transactions on Smart Grid, 6(2), 776–783. https://doi.org/doi: 10.1109/TSG.2014.2381596 |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Espacios |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/0fa630b0-e67f-4a4a-b526-079c782c0cfc/download https://repositorio.cuc.edu.co/bitstreams/29ed8099-db73-4194-84d5-a2521d465bdb/download https://repositorio.cuc.edu.co/bitstreams/62726524-c87e-45ab-9379-de6c5e8c4f0a/download https://repositorio.cuc.edu.co/bitstreams/ab0d19a8-c1fb-4a60-ac9b-c8763ffa1748/download |
bitstream.checksum.fl_str_mv |
9155e60693a1fd1dc61128d2c734d585 8a4605be74aa9ea9d79846c1fba20a33 f35444e9f30894bd06e72ff41dcfb412 351714219367779b7ea2cd8a3f07909a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760812983844864 |
spelling |
Comas Gonzalez, Zhoe VanessaSimancas García, José LuisVelez Zapata, JaimeBernal Rueda, Victor EnmanuelPercia Velasquez, Iran Samir2018-11-16T21:38:22Z2018-11-16T21:38:22Z2018-07-100798-1015https://hdl.handle.net/11323/1170Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The current paper exposes a technological solution for monitoring heating, ventilating and air conditioning systems, aka HVAC. For this, it is used wireless sensors to build a network that will monitor atmospheric variables such as temperature and relativity humidity, in places that have installed this type of systems.El presente artículo expone una solución tecnológica para monitorizar sistemas de aire acondicionado, ventilación y calefacción, conocido como HVAC por sus siglas en inglés; en el que se propone el uso de sensores inalámbricos para construir una red que monitoriza variables atmosféricas como la temperatura y humedad relativa, en los recintos que cuenten con éstos sistemas.Comas Gonzalez, Zhoe Vanessa-0000-0001-7151-5245-600Simancas García, José Luis-f2410c5f-9d04-4adb-b290-5d1288318cdf-0Velez Zapata, Jaime-65ad333e-ded3-46fe-9327-a1e038a3f9d6-0Bernal Rueda, Victor Enmanuel-1937bef0-a4c8-429f-a8b0-df1f66cd4189-0Percia Velasquez, Iran Samir-062d7139-0e07-401d-b7c5-221153d11d26-0spaEspaciosAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2variables atmosféricasredes de sensores inalámbricossistema HVACZigBeeAtmospheric variableswireless sensor networkHVAC systemZigbeeRedes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionadoWireless sensor networks for monitoring HVAC systemsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAvvenuti, M., Cresci, S., Marchetti, A., & Tesconi, M. (2014). Earthquake emergency management by social sensing. In Earthquake emergency management by social sensing (pp. 587–592). Budapest: IEEE. https://doi.org/10.1109/PerComW.2014.6815272 Belhadj, C. A., Hamanah, W. M., Kassas, M. (2017). LabVIEW based real time Monitoring of HVAC System for Residential Load. 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), 66–71. https://doi.org/doi: 10.1109/CIVEMSA.2017.7995303 Cama-Pinto, A., Piñeres-Espitia, G., Caicedo-Ortiz, J., Ramírez-Cerpa, E., Betancur-Agudelo, L., & Gómez-Mula, F. (2017). Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules. International Journal of Distributed Sensor Networks, 13(7). https://doi.org/10.1177/1550147717722691 Cama-Pinto, A., Comas-González, Z., Piñeres-Espitia, G., Gómez-Mula, F., Vélez-Zapata, J. (2017). Diseño de una red de monitorización de variables meteorológicas relacionadas a los tornados en Barranquilla-Colombia y su área metropolitana. Ingeniare. Revista Chilena de Ingeniería, 25, 585–598. Cuifen, L., Xiaoqin, Z., & Yanping, L. (2010). The electric meter reading system in rural areas based on wireless micro-computer. 2010 International Conference On Computer Design and Applications, 109–111. https://doi.org/doi: 10.1109/ICCDA.2010.5541117 Dhar, N.K., Verma, N. K, Behera, L. (2018). Adaptive Critic-Based Event-Triggered Control for HVAC System. IEEE Transactions on Industrial Informatics, 14(1), 178–188. https://doi.org/doi: 10.1109/TII.2017.2725899 Ezzedine, T, Zrelli, A. (2017). Efficient measurement of temperature, humidity and strain variation by modeling reflection Bragg grating spectrum in WSN. Optik - International Journal for Light and Electron Optics, 135, 454–462. https://doi.org/https://doi.org/10.1016/j.ijleo.2017.01.061 Ghosh, A, Chakraborty, N. (2016). Design of smart grid in an University Campus using ZigBee mesh networks. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 1–6. https://doi.org/doi: 10.1109/ICPEICES.2016.7853432 Hernández-Velásquez, V., y Alvarado-Bawab, M. (2017). Control on-off de temperatura y potencia para el mejoramiento de las condiciones de procesos asistidos con microondas. Ingecuc, 13(2), 53–59. https://doi.org/http://dx.doi.org/10.17981/ingecuc.13.2.2017.06 Hersent, O., Boswarthick, D., Elloumi, O. (2012). Zigbee. In The Internet of Things:Key Applications and Protocols (1st ed., p. 376). Wiley Telecom. https://doi.org/10.1002/9781119958352.ch7 Jhang, W-H., Chen, L-B., Chang, W.-J. (2017). Design of a low-cost level-triggered Zigbee network multi-application sensor in smart homes. 2017 6th International Symposium on Next Generation Electronics (ISNE), 1–3. https://doi.org/doi: 10.1109/ISNE.2017.7968729 Kumar, T., Mane, P. B. (2016). ZigBee topology: A survey. 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 164– 166. https://doi.org/doi: 10.1109/ICCICCT.2016.7987937 Lazarescu, M. T. (2013). Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(1), 45–54. https://doi.org/10.1109/JETCAS.2013.2243032 Meléndez-Pertuz, F., Vélez-Díaz, J., Caicedo-Ortiz, J., Fernadez-Vélez, A. (2017). LabVIEW use in modeling and performance test bit error rate of a communication system with high order QAM modulation 2 4 1 and coding Reed-Solomon for undergraduate teaching. Revista Técnica de La Facultad de Ingeniería. 40(3). Mihail-Florin, S.; Husu, A., Ionuţ-Adrian, M., Fidel, N., Cobianu, C. (2017). Design and implementation of an HVAC System for converting a decommissioned hangar in a conference room with a capacity of 800 seats. 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 667–672. https://doi.org/doi: 10.1109/ATEE.2017.7905037 Muhammad A. A., Peyman T., Nasser Y, Saeed S. (2016). An efficient medium access control protocol for WSN-UAV. Ad Hoc Networks, 52, 146–159. https://doi.org/https://doi.org/10.1016/j.adhoc.2016.09.007. Paez-Logreira, H., Ramirez-Cerpa, E., Diaz-Charris, L., & Lopez-Torres, S. (2017). Control automático del set-point de un sistema de HVAC con Arduino , para un consumo energético eficiente y racional. Revista Espacios, 38(61), 5–18. Recuperado de: http://www.revistaespacios.com/a17v38n61/a17v38n61p05.pdf Piñeres-Espitia, G., & Mejía, Á. (2013). Plataformas tecnológicas aplicadas al monitoreo climático Technological platforms applied the climatic monitoring. Prospectiva, 11(2), 78–87. https://doi.org/http://dx.doi.org/10.15665/rp.v11i2.42 Shahzad, F. (2013). Satellite monitoring of Wireless Sensor Networks (WSNs). Procedia Computer Science, 21, 479–484. https://doi.org/10.1016/j.procs.2013.09.065 Shkurti, L. (2017). Development of Ambient Environmental Monitoring System Through Wireless Sensor Network ( WSN ) U sing NodeMCU and “ WSN Monitoring ,” (June), 11–15. Wen, Y., & Burke, W. (2013). Real-time dynamic house thermal model identification for predicting hvac energy consumption. IEEE Green Technologies Conference, 367–372. https://doi.org/10.1109/GreenTech.2013.63 Yashen, L.; Barooah, P.; Meyn, S. (2015). Experimental Evaluation of Frequency Regulation From Commercial Building HVAC Systems. IEEE Transactions on Smart Grid, 6(2), 776–783. https://doi.org/doi: 10.1109/TSG.2014.2381596PublicationORIGINALRedes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado.pdfRedes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado.pdfapplication/pdf1211259https://repositorio.cuc.edu.co/bitstreams/0fa630b0-e67f-4a4a-b526-079c782c0cfc/download9155e60693a1fd1dc61128d2c734d585MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/29ed8099-db73-4194-84d5-a2521d465bdb/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILRedes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado.pdf.jpgRedes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado.pdf.jpgimage/jpeg78657https://repositorio.cuc.edu.co/bitstreams/62726524-c87e-45ab-9379-de6c5e8c4f0a/downloadf35444e9f30894bd06e72ff41dcfb412MD54TEXTRedes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado.pdf.txtRedes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado.pdf.txttext/plain27019https://repositorio.cuc.edu.co/bitstreams/ab0d19a8-c1fb-4a60-ac9b-c8763ffa1748/download351714219367779b7ea2cd8a3f07909aMD5511323/1170oai:repositorio.cuc.edu.co:11323/11702024-09-17 12:48:36.942open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |