Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder

Adequate animal manure disposal became a challenge in agriculture. Liquid swine waste (LSW), easily used in agriculture, presents disadvantages due to the high volume and low nutrient concentrations. Metabasalt powder, a residue of amethyst mining, was evaluated as an adsorbent agent of nutrients (C...

Full description

Autores:
Perdoncini, Daiana Micheli
Dalacorte, Luana
Silva Oliveira, Luis Felipe
Gindri Ramos, Claudete
Campanhola Bortoluzzi, Edson
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9473
Acceso en línea:
https://hdl.handle.net/11323/9473
https://doi.org/10.1007/s11270-022-05663-0
https://repositorio.cuc.edu.co/
Palabra clave:
Metabasalt
Clay minerals
Sorption
Ions
Manure disposal
Rights
embargoedAccess
License
© 2022 Springer Nature Switzerland AG. Part of Springer Nature.
id RCUC2_194e996602171721faeb0ea865105aef
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9473
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder
title Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder
spellingShingle Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder
Metabasalt
Clay minerals
Sorption
Ions
Manure disposal
title_short Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder
title_full Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder
title_fullStr Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder
title_full_unstemmed Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder
title_sort Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder
dc.creator.fl_str_mv Perdoncini, Daiana Micheli
Dalacorte, Luana
Silva Oliveira, Luis Felipe
Gindri Ramos, Claudete
Campanhola Bortoluzzi, Edson
dc.contributor.author.spa.fl_str_mv Perdoncini, Daiana Micheli
Dalacorte, Luana
Silva Oliveira, Luis Felipe
Gindri Ramos, Claudete
Campanhola Bortoluzzi, Edson
dc.subject.proposal.eng.fl_str_mv Metabasalt
Clay minerals
Sorption
Ions
Manure disposal
topic Metabasalt
Clay minerals
Sorption
Ions
Manure disposal
description Adequate animal manure disposal became a challenge in agriculture. Liquid swine waste (LSW), easily used in agriculture, presents disadvantages due to the high volume and low nutrient concentrations. Metabasalt powder, a residue of amethyst mining, was evaluated as an adsorbent agent of nutrients (Cu, Zn, P, and K) from LSW. Seven doses of metabasalt powder were tested in proportion with LSW (0, 4, 10, 20, 40, 80, and 160 kg m−3), and during four contact times (CT) (9, 21, 42, and 84 days) and ions were dosed in the liquid and solid fractions. Copper and phosphorus concentrations in the liquid fraction were lower at 21 days of contact. The lowest concentration of zinc in the liquid fraction was observed at the dose of 10 kg m−3 of metabasalt powder, and at 9 days of CT. The K concentrations in the liquid fraction diminished linearly with the metabasalt doses, in which the major dose presented 51% of K compared to the control. The application of metabasalt as an adsorbent agent reduced the contaminant charge in the liquid fraction of LSW, suggesting safe water disposal while promoting ion accumulation in the solid fraction. The use of metabasalt powder became a useful strategy to make LSW pre-treatment on-farm.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-24T16:49:17Z
dc.date.available.none.fl_str_mv 2022-08-24T16:49:17Z
2023
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Micheli Perdoncini, D., Dalacorte, L., Felipe Silva Oliveira, L. et al. Adsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder. Water Air Soil Pollut 233, 191 (2022). https://doi.org/10.1007/s11270-022-05663-0
dc.identifier.issn.spa.fl_str_mv 0049-6979
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9473
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1007/s11270-022-05663-0
dc.identifier.doi.spa.fl_str_mv 10.1007/s11270-022-05663-0
dc.identifier.eissn.spa.fl_str_mv 1573-2932
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Micheli Perdoncini, D., Dalacorte, L., Felipe Silva Oliveira, L. et al. Adsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder. Water Air Soil Pollut 233, 191 (2022). https://doi.org/10.1007/s11270-022-05663-0
0049-6979
10.1007/s11270-022-05663-0
1573-2932
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9473
https://doi.org/10.1007/s11270-022-05663-0
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Water, Air, and Soil Pollution
dc.relation.references.spa.fl_str_mv Aguiar, M. R. M. P., Novaes, A. C., & Guarino, A. W. S. (2002). Remoção de metais pesados de efluentes industriais por aluminossilicatos. Quimica Nova, 25, 1145–1154. https://doi.org/10.1590/S0100-40422002000700015
Basso, C. J., Ceretta, C. A., Durigon, R., Poletto, N., & Girotto, E. (2005). Dejeto líquido de suínos: II - perdas de nitrogênio e fósforo por percolação no solo sob plantio direto. Ciencia Rural, 35, 1305–1312. https://doi.org/10.1590/S0103-84782005000600012
Belli Filho, P., Castilhos, A. B., Jr., Costa, R. H. R., Soares, S. R., & Perdomo, C. C. (2001). Tecnologias para o tratamento de dejetos de suínos. Rev. Bras. Eng. Agríc. Ambient., 5, 166–170. https://doi.org/10.1590/S1415-43662001000100032
Bittencourt, B. A., Ellwanger, M. V., Nascimento, W. A., Belchior, L. F., Araújo, E. M., & Melo, T. J. A. (2009). Moldagem por compressão a frio do polietileno de ultra alto peso molecular. Parte 1: Influência do tamanho, distribuição e morfologia da partícula na densidade a verde. Polímeros., 19, 224–230. https://doi.org/10.1590/S0104-14282009000300011
Boitt, G., Schmitt, D. E., Gatiboni, L. C., Wakelin, S. A., Black, A., Sacomori, W., Cassol, P. C., & Condron, L. M. (2018). Fate of phosphorus applied to soil in pig slurry under cropping in southern Brazil. Geoderma, 321, 164–172. https://doi.org/10.1016/j.geoderma.2018.02.010
Bortoluzzi, E. C., Pérez, C. A. S., Ardisson, J. D., Tiecher, T., & Caner, L. (2015). Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils. Applied Clay Science, 104, 196–204. https://doi.org/10.1016/j.clay.2014.11.032
Bortoluzzi, E. C., Tessier, D., Rheinheimer, D. S., & Julien, J. L. (2006). The cation exchange capacity of a sandy soil in southern Brazil: An estimation of permanent charge and pH-dependent charges. European Journal of Soil Science, 57, 356–364. https://doi.org/10.1111/j.1365-2389.2005.00746.x
Bourliva, A., Christophoridis, C., Papadopoulou, L., Giouri, K., Papadopoulos, A., Mitsika, E., & Fytianos, K. (2017). Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki. Greece. Environ. Geochem. Health., 39, 611–634. https://doi.org/10.1007/s10653-016-9836-y
Cabral, F., Vasconcelos, E., & Cordovil, C. M. S. (1998). Effects of solid phase from pig slurry on iron, copper, zinc, and manganese content of soil and wheat plants. Journal of Plant Nutrition, 21, 1955–1996. https://doi.org/10.1080/01904169809365536
Cassol, P. C., Gianello, C., & Costa, V. E. U. (2001). Frações de fósforo em estrumes e sua eficiência como adubo fosfatado. Rev. Bras. Cienc. Solo., 25, 635–644. https://doi.org/10.1590/S0100-06832001000300012
Chen, W. C., & Yeh, T. T. (2019). An unpresented approach to ameliorate swine waste contamination. Advances in Materials Science, 4, 1–3. https://doi.org/10.15761/AMS.1000158
Churchman, G. J., Gates, W. P., Theng, B. K. G., & Yuan, G. (2013). Chapter 11.1 Clays and clay minerals for pollution control. Dev Clay Sci, 1, 625–663. https://doi.org/10.1016/S1572-4352(05)01020-2
Coelho, A. C. V., Santos, P. S., & Santos, H. (2007). Argilas especiais: O que são, caracterização e propriedades. Quimica Nova, 30, 146–152. https://doi.org/10.1590/s0100-40422007000100026
Conama, (2011). National Council for the Environment, In: Resolução Conama 430, Diário Oficial da União, Brasília, 2011. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646
Conceição, F. T., Pichinelli, B. C., Silva, M. S. G., Antunes, M. L. P., Lopes, M. S., & Moruzzi, R. B. (2017). Adsorção de Cd2+, Ni2+ e Zn2+ em soluções aquosas usando anidrita e lama vermelha. Eng. Sanit. Ambient., 22, 665–670. https://doi.org/10.1590/s1413-41522017146698
Dalacorte, L., & Bortoluzzi, E. C. (2021). Sorption of copper and zinc in metabasalt powder at different pH and contact times. International Journal of Environmental Engineering, 11(2), 93–105. https://doi.org/10.1504/IJEE.2021.10042156
Dalacorte, L., Escosteguy, P. A. V., Bortoluzzi, E. C. (2019). Sorption of copper and zinc from aqueous solution by metabasalt residue and its mineralogical behavior. Water Air Soil Pollut. 230. https://doi.org/10.1007/s11270-019-4141-x
Dalmora, A. C., Ramos, C. G., Oliveira, M. L. S., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2020a). Application of andesite rock as a clean source of fertilizer for eucalyptus crop: Evidence of sustainability. Journal of Cleaner Production, 256, 120432
Dalmora, A. C., Ramos, C. G., Plata, L. G., da Costa, M. L., Kautzmann, R. M., & Oliveira, L. F. S. (2020b). Understanding the mobility of potential nutrients in rock mining by-products: An opportunity for more sustainable agriculture and mining. Science of the Total Environment, 710, 136240
de Medeiros, D. S., Sanchotene, D. M., Ramos, C. G., Oliveira, L. F. S., Sampaio, C. H., & Kautzmann, R. M. (2021). Soybean crops cultivated with dacite rock by-product: A proof of a cleaner technology to soil remineralization. Journal of Environmental Chemical Engineering, 9, 106742. https://doi.org/10.1016/j.jece.2021.106742
Dizadji, N., Rashtchi, M., Dehpouri, S., & Nouri, N. (2013). Experimental investigation of adsorption of copper from aqueous solution using vermiculite and clinoptilolite. Int. J. Environ. Res., 7, 887–894. https://doi.org/10.22059/IJER.2013.670
Fajardo-Zapata, A. L., Méndez-Casallas, F. J., & Molina, L. H. (2011). Residuos de fármacos anabolizantes en carnes destinadas al consumo humano. Universitas Scientiarum, 16, 77–91. https://doi.org/10.11144/javeriana.sc16-1.road
Ferrari, V., Taffarel, S. R., Espinosa-Fuentes, E., Oliveira, M. L., Saikia, B. K., & Oliveira, L. F. (2019). Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. Journal of Cleaner Production, 208, 297–306
Frigo, K. D. A., Feiden, A., Sampaio, S. C., Alberton, G. C., Schneider, L. T., Bonassa, G., Frigo, E. P., & Santos, R. F. (2017). Treatments and utilization of swine waste in Brazil. African Journal of Agricultural Research, 12, 542–549. https://doi.org/10.5897/AJAR2016.11775
Ginder-Vogel, M., Stewart, B., & Fendorf, S. (2010). Kinetic and mechanistic constraints on the oxidation of biogenic uraninite by ferrihydrite. Environmental Science and Technology, 44, 163–169
Hartmann, L. A. (2010). Geodes with amethysts formed by hot water in the dinosaurs time. In: L.A. Hartmann. Geologia da riqueza do Rio Grande do Sul em geodos de Ametista e Ágata. Porto Alegre UFRGS, 1, 15–26
Korchagin, J., Caner, L., & Bortoluzzi, E. C. (2019). Variability of amethyst mining waste: A mineralogical and geochemical approach to evaluate the potential use in agriculture. Journal of Cleaner Production, 210, 749–758. https://doi.org/10.1016/j.jclepro.2018.11.039
Lopes, C., Campos, M. L., Silveira, C. B., Gatiboni, L. C., Miquelutti, D. J., Cassol, P. C., & Medeiros, I. (2014). Adsorção de Cu2+ e Zn2+ num Latossolo Vermelho tratado com dejetos suínos. Rev. Ceres., 61, 997–1005. https://doi.org/10.1590/0034-737x201461060016
MAPA, (2014). Ministry of Agriculture, Livestock and Supply, Manual de métodos analíticos oficiais para fertilizante e corretivos, 2014. http://www.agricultura.gov.br/assuntos/laboratorios/arquivos-publicacoes-laboratorio/manual-_in-5_-analiticos-oficiais-para-fertilizantes-e-corretivos_com_capa_final_03.pdf
Mellis, E. V., & Rodella, A. A. (2008). Influência do tempo de agitação na adsorção de Cd, Cu, Ni e Zn em Latossolo tratado com lodo de esgoto. Rev. Bragantia., 67, 977–982. https://doi.org/10.1590/s0006-87052008000400021
Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216. https://doi.org/10.1007/s10311-010-0297-8
Natal-da-Luz, T., Tidona, S., Bruno Jesus, B., Morais, P. V., & Sousa, J. P. (2009). The use of sewage sludge as soil amendment. The Need for an Ecotoxicological Evaluation J Soils Sediments, 2009(9), 246–260. https://doi.org/10.1007/s11368-009-0077-x
Özacar, M., Şengil, I. A., & Türkmenler, H. (2008). Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chemical Engineering Journal, 143, 32–42. https://doi.org/10.1016/j.cej.2007.12.005
Parfitt, R. L. (1989). Phosphate reactions with natural allophane, ferrihydrita and goethita. Journal of Soil Science, 40, 359–369. https://doi.org/10.1111/j.1365-2389.1989.tb01280.x
Perez, C., Antelo, J., Fiol, S., & Arce, F. (2014). Modelling oxyanion adsorption on ferralic soil, part 1: Parameters validation with phosphate ion. Environmental Toxicology and Chemistry, 33, 2208–2216. https://doi.org/10.1002/etc.2612
Pereira, H. A., Hernandes, P. R. T., Netto, M. S., Reske, G. D., Vieceli, V., Oliveira, L. F. S., & Dotto, G. L. (2021). Adsorbents for glyphosate removal in contaminated waters: a review. Environmental Chemistry Letters 19, 1525–1543. https://doi.org/10.1007/s10311-020-01108-4
Plata, L. G., Ramos, C. G., Oliveira, M. L. S., & Oliveira, L. F. S. (2021). Release kinetics of multi-nutrients from volcanic rock mining by-products: Evidences for their use as a soil remineralizer. Journal of Cleaner Production, 279, 123668
Pompermaier, A., Varela, A. C. C., Fortuna, M., Mendonça-Soares, S., Koakoski, G., Aguirre, R., Oliveira, T. A., Sordi, E., Moterle, D. F., Pohl, A. R., Rech, V. C., Bortoluzzi, E. C., & Barcellos, L. J. G. (2021). Water and suspended sediment runoff from vineyard watersheds affecting the behavior and physiology of zebrafish. Science of the Total Environment, 757, 143794. https://doi.org/10.1016/j.scitotenv.2020.143794
Ramos, C. G., de Mello, A. G., & Kautzmann, R. M. (2014). A preliminary study of acid volcanic rocks for stonemeal application. Environ. Nanotechnol. Monit. Manag., 1, 30–35
Ramos, C. G., Querol, X., Oliveira, M. L. S., Pires, K., Kautzmann, R. M., & Silva, L. F. (2015). A preliminary evaluation of volcanic rock powder for application in agriculture as soil aremineralizer. Science of the Total Environment, 512–513, 371–380
Ramos, C. G., Querol, X., Dalmora, A. C., de Jesus Pires, K. C., Schneider, I. A. H., Oliveira, L. F. S., & Kautzmann, R. M. (2017). Evaluation of the potential of volcanic rock waste fromsouthern Brazil as a natural soil fertilizer. Journal of Cleaner Production, 142, 2700–2706
Ramos, C. G., de Medeiros, D. D. S., Gomez, L., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2019). Evaluation of soil re-mineralizer from by-product of volcanic rock mining: Experimental proof using black oats and maize crops. Nat. Res. Res. 1–18. https://doi.org/10.1007/s11053-019-09529-x
Ramos, C. G., Oliveira, M. L. S., Pena, M. F., Cantillo, A. M., Ayarza, L. P. L., Korchagin, J., & Bortoluzzi, E. C. (2021). Nanoparticles generated during volcanic rock exploitation: An overview. Journal of Environmental Chemical Engineering, 9, 106441. https://doi.org/10.1016/j.jece.2021.106441
Ramos, C. G., Hower, J. C., Blanco, E., Oliveira, M. L. S., & Theodoro, S. H. (2022). Possibilities of using silicate rock powder: An overview. Geosci. Frontiers., 12, 101185. https://doi.org/10.1016/j.gsf.2021.101185
Sellaoui, L., Hessou, E. P., Badawi, M., Netto, M. S., Dotto, G. L., Silva, L. F. O., & Chen, Z. (2021). Trapping of Ag+, Cu2+, and Co2+ by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation. Chemical Engineering Journal, 420, 127712
Sheen, S., Hong, C., Koh, M. T., Su, C., & Harada Y. (1994). Swine waste treatment in Taiwan, 1994. https://www.fftc.org.tw/en/publications/main/1337
Tiecher, T., Zafar, M., Mallmann, F. J. K., Bortoluzzi, E. C., Bender, M. A., Ciotti, L. H., & dos Santos, D. R. (2014). Animal manure phosphorus characterization by sequential chemical fractionation, release kinetics and 31P-NMR analysis. Rev. Bras. Cienc. Solo., 38, 1506–1514. https://doi.org/10.1590/S0100-06832014000500016
Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462. https://doi.org/10.1016/j.cej.2016.09.029
Webster, R. (2001). Statistics to support soil research and their presentation. European Journal of Soil Science, June 2001, 52, 331±340 https://doi.org/10.1046/j.1365-2389.2001.00383.x
dc.relation.citationissue.spa.fl_str_mv 191
dc.relation.citationvolume.spa.fl_str_mv 233
dc.rights.spa.fl_str_mv © 2022 Springer Nature Switzerland AG. Part of Springer Nature.
Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv © 2022 Springer Nature Switzerland AG. Part of Springer Nature.
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 1 página
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Netherlands
dc.publisher.place.spa.fl_str_mv Netherlands
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/article/10.1007/s11270-022-05663-0
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/9473/1/Adsorption%20of%20Pollutants%20from%20Liquid%20Swine%20Manure%20Through%20the%20Application%20of%20Metabasalt%20Rock%20Powder.pdf
https://repositorio.cuc.edu.co/bitstream/11323/9473/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/9473/3/Adsorption%20of%20Pollutants%20from%20Liquid%20Swine%20Manure%20Through%20the%20Application%20of%20Metabasalt%20Rock%20Powder.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/9473/4/Adsorption%20of%20Pollutants%20from%20Liquid%20Swine%20Manure%20Through%20the%20Application%20of%20Metabasalt%20Rock%20Powder.pdf.jpg
bitstream.checksum.fl_str_mv 0d8d746eac85409eaeb90beb5ba5eda8
e30e9215131d99561d40d6b0abbe9bad
25b27db891afb0b5b5c358b2edac88d4
f98264b57bee7acb1f337c59d8ec1d87
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400053378744320
spelling Perdoncini, Daiana Micheli215813b51b18817fe211c999ebefe135600Dalacorte, Luana1576329f870e6c251cf2e7938b763b34Silva Oliveira, Luis Felipe615225808861349d2b8b4aa0934855d9Gindri Ramos, Claudeteda4b19e3af0a7680696b035190234d04600Campanhola Bortoluzzi, Edson35960ff876634e015cc372307b979bef6002022-08-24T16:49:17Z20232022-08-24T16:49:17Z2022Micheli Perdoncini, D., Dalacorte, L., Felipe Silva Oliveira, L. et al. Adsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder. Water Air Soil Pollut 233, 191 (2022). https://doi.org/10.1007/s11270-022-05663-00049-6979https://hdl.handle.net/11323/9473https://doi.org/10.1007/s11270-022-05663-010.1007/s11270-022-05663-01573-2932Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Adequate animal manure disposal became a challenge in agriculture. Liquid swine waste (LSW), easily used in agriculture, presents disadvantages due to the high volume and low nutrient concentrations. Metabasalt powder, a residue of amethyst mining, was evaluated as an adsorbent agent of nutrients (Cu, Zn, P, and K) from LSW. Seven doses of metabasalt powder were tested in proportion with LSW (0, 4, 10, 20, 40, 80, and 160 kg m−3), and during four contact times (CT) (9, 21, 42, and 84 days) and ions were dosed in the liquid and solid fractions. Copper and phosphorus concentrations in the liquid fraction were lower at 21 days of contact. The lowest concentration of zinc in the liquid fraction was observed at the dose of 10 kg m−3 of metabasalt powder, and at 9 days of CT. The K concentrations in the liquid fraction diminished linearly with the metabasalt doses, in which the major dose presented 51% of K compared to the control. The application of metabasalt as an adsorbent agent reduced the contaminant charge in the liquid fraction of LSW, suggesting safe water disposal while promoting ion accumulation in the solid fraction. The use of metabasalt powder became a useful strategy to make LSW pre-treatment on-farm.1 páginaapplication/pdfengSpringer NetherlandsNetherlands© 2022 Springer Nature Switzerland AG. Part of Springer Nature.Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfAdsorption of pollutants from liquid swine manure through the application of metabasalt rock powderArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_b1a7d7d4d402bccehttps://link.springer.com/article/10.1007/s11270-022-05663-0Water, Air, and Soil PollutionAguiar, M. R. M. P., Novaes, A. C., & Guarino, A. W. S. (2002). Remoção de metais pesados de efluentes industriais por aluminossilicatos. Quimica Nova, 25, 1145–1154. https://doi.org/10.1590/S0100-40422002000700015Basso, C. J., Ceretta, C. A., Durigon, R., Poletto, N., & Girotto, E. (2005). Dejeto líquido de suínos: II - perdas de nitrogênio e fósforo por percolação no solo sob plantio direto. Ciencia Rural, 35, 1305–1312. https://doi.org/10.1590/S0103-84782005000600012Belli Filho, P., Castilhos, A. B., Jr., Costa, R. H. R., Soares, S. R., & Perdomo, C. C. (2001). Tecnologias para o tratamento de dejetos de suínos. Rev. Bras. Eng. Agríc. Ambient., 5, 166–170. https://doi.org/10.1590/S1415-43662001000100032Bittencourt, B. A., Ellwanger, M. V., Nascimento, W. A., Belchior, L. F., Araújo, E. M., & Melo, T. J. A. (2009). Moldagem por compressão a frio do polietileno de ultra alto peso molecular. Parte 1: Influência do tamanho, distribuição e morfologia da partícula na densidade a verde. Polímeros., 19, 224–230. https://doi.org/10.1590/S0104-14282009000300011Boitt, G., Schmitt, D. E., Gatiboni, L. C., Wakelin, S. A., Black, A., Sacomori, W., Cassol, P. C., & Condron, L. M. (2018). Fate of phosphorus applied to soil in pig slurry under cropping in southern Brazil. Geoderma, 321, 164–172. https://doi.org/10.1016/j.geoderma.2018.02.010Bortoluzzi, E. C., Pérez, C. A. S., Ardisson, J. D., Tiecher, T., & Caner, L. (2015). Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils. Applied Clay Science, 104, 196–204. https://doi.org/10.1016/j.clay.2014.11.032Bortoluzzi, E. C., Tessier, D., Rheinheimer, D. S., & Julien, J. L. (2006). The cation exchange capacity of a sandy soil in southern Brazil: An estimation of permanent charge and pH-dependent charges. European Journal of Soil Science, 57, 356–364. https://doi.org/10.1111/j.1365-2389.2005.00746.xBourliva, A., Christophoridis, C., Papadopoulou, L., Giouri, K., Papadopoulos, A., Mitsika, E., & Fytianos, K. (2017). Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki. Greece. Environ. Geochem. Health., 39, 611–634. https://doi.org/10.1007/s10653-016-9836-yCabral, F., Vasconcelos, E., & Cordovil, C. M. S. (1998). Effects of solid phase from pig slurry on iron, copper, zinc, and manganese content of soil and wheat plants. Journal of Plant Nutrition, 21, 1955–1996. https://doi.org/10.1080/01904169809365536Cassol, P. C., Gianello, C., & Costa, V. E. U. (2001). Frações de fósforo em estrumes e sua eficiência como adubo fosfatado. Rev. Bras. Cienc. Solo., 25, 635–644. https://doi.org/10.1590/S0100-06832001000300012Chen, W. C., & Yeh, T. T. (2019). An unpresented approach to ameliorate swine waste contamination. Advances in Materials Science, 4, 1–3. https://doi.org/10.15761/AMS.1000158Churchman, G. J., Gates, W. P., Theng, B. K. G., & Yuan, G. (2013). Chapter 11.1 Clays and clay minerals for pollution control. Dev Clay Sci, 1, 625–663. https://doi.org/10.1016/S1572-4352(05)01020-2Coelho, A. C. V., Santos, P. S., & Santos, H. (2007). Argilas especiais: O que são, caracterização e propriedades. Quimica Nova, 30, 146–152. https://doi.org/10.1590/s0100-40422007000100026Conama, (2011). National Council for the Environment, In: Resolução Conama 430, Diário Oficial da União, Brasília, 2011. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646Conceição, F. T., Pichinelli, B. C., Silva, M. S. G., Antunes, M. L. P., Lopes, M. S., & Moruzzi, R. B. (2017). Adsorção de Cd2+, Ni2+ e Zn2+ em soluções aquosas usando anidrita e lama vermelha. Eng. Sanit. Ambient., 22, 665–670. https://doi.org/10.1590/s1413-41522017146698Dalacorte, L., & Bortoluzzi, E. C. (2021). Sorption of copper and zinc in metabasalt powder at different pH and contact times. International Journal of Environmental Engineering, 11(2), 93–105. https://doi.org/10.1504/IJEE.2021.10042156Dalacorte, L., Escosteguy, P. A. V., Bortoluzzi, E. C. (2019). Sorption of copper and zinc from aqueous solution by metabasalt residue and its mineralogical behavior. Water Air Soil Pollut. 230. https://doi.org/10.1007/s11270-019-4141-xDalmora, A. C., Ramos, C. G., Oliveira, M. L. S., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2020a). Application of andesite rock as a clean source of fertilizer for eucalyptus crop: Evidence of sustainability. Journal of Cleaner Production, 256, 120432Dalmora, A. C., Ramos, C. G., Plata, L. G., da Costa, M. L., Kautzmann, R. M., & Oliveira, L. F. S. (2020b). Understanding the mobility of potential nutrients in rock mining by-products: An opportunity for more sustainable agriculture and mining. Science of the Total Environment, 710, 136240de Medeiros, D. S., Sanchotene, D. M., Ramos, C. G., Oliveira, L. F. S., Sampaio, C. H., & Kautzmann, R. M. (2021). Soybean crops cultivated with dacite rock by-product: A proof of a cleaner technology to soil remineralization. Journal of Environmental Chemical Engineering, 9, 106742. https://doi.org/10.1016/j.jece.2021.106742Dizadji, N., Rashtchi, M., Dehpouri, S., & Nouri, N. (2013). Experimental investigation of adsorption of copper from aqueous solution using vermiculite and clinoptilolite. Int. J. Environ. Res., 7, 887–894. https://doi.org/10.22059/IJER.2013.670Fajardo-Zapata, A. L., Méndez-Casallas, F. J., & Molina, L. H. (2011). Residuos de fármacos anabolizantes en carnes destinadas al consumo humano. Universitas Scientiarum, 16, 77–91. https://doi.org/10.11144/javeriana.sc16-1.roadFerrari, V., Taffarel, S. R., Espinosa-Fuentes, E., Oliveira, M. L., Saikia, B. K., & Oliveira, L. F. (2019). Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. Journal of Cleaner Production, 208, 297–306Frigo, K. D. A., Feiden, A., Sampaio, S. C., Alberton, G. C., Schneider, L. T., Bonassa, G., Frigo, E. P., & Santos, R. F. (2017). Treatments and utilization of swine waste in Brazil. African Journal of Agricultural Research, 12, 542–549. https://doi.org/10.5897/AJAR2016.11775Ginder-Vogel, M., Stewart, B., & Fendorf, S. (2010). Kinetic and mechanistic constraints on the oxidation of biogenic uraninite by ferrihydrite. Environmental Science and Technology, 44, 163–169Hartmann, L. A. (2010). Geodes with amethysts formed by hot water in the dinosaurs time. In: L.A. Hartmann. Geologia da riqueza do Rio Grande do Sul em geodos de Ametista e Ágata. Porto Alegre UFRGS, 1, 15–26Korchagin, J., Caner, L., & Bortoluzzi, E. C. (2019). Variability of amethyst mining waste: A mineralogical and geochemical approach to evaluate the potential use in agriculture. Journal of Cleaner Production, 210, 749–758. https://doi.org/10.1016/j.jclepro.2018.11.039Lopes, C., Campos, M. L., Silveira, C. B., Gatiboni, L. C., Miquelutti, D. J., Cassol, P. C., & Medeiros, I. (2014). Adsorção de Cu2+ e Zn2+ num Latossolo Vermelho tratado com dejetos suínos. Rev. Ceres., 61, 997–1005. https://doi.org/10.1590/0034-737x201461060016MAPA, (2014). Ministry of Agriculture, Livestock and Supply, Manual de métodos analíticos oficiais para fertilizante e corretivos, 2014. http://www.agricultura.gov.br/assuntos/laboratorios/arquivos-publicacoes-laboratorio/manual-_in-5_-analiticos-oficiais-para-fertilizantes-e-corretivos_com_capa_final_03.pdfMellis, E. V., & Rodella, A. A. (2008). Influência do tempo de agitação na adsorção de Cd, Cu, Ni e Zn em Latossolo tratado com lodo de esgoto. Rev. Bragantia., 67, 977–982. https://doi.org/10.1590/s0006-87052008000400021Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216. https://doi.org/10.1007/s10311-010-0297-8Natal-da-Luz, T., Tidona, S., Bruno Jesus, B., Morais, P. V., & Sousa, J. P. (2009). The use of sewage sludge as soil amendment. The Need for an Ecotoxicological Evaluation J Soils Sediments, 2009(9), 246–260. https://doi.org/10.1007/s11368-009-0077-xÖzacar, M., Şengil, I. A., & Türkmenler, H. (2008). Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chemical Engineering Journal, 143, 32–42. https://doi.org/10.1016/j.cej.2007.12.005Parfitt, R. L. (1989). Phosphate reactions with natural allophane, ferrihydrita and goethita. Journal of Soil Science, 40, 359–369. https://doi.org/10.1111/j.1365-2389.1989.tb01280.xPerez, C., Antelo, J., Fiol, S., & Arce, F. (2014). Modelling oxyanion adsorption on ferralic soil, part 1: Parameters validation with phosphate ion. Environmental Toxicology and Chemistry, 33, 2208–2216. https://doi.org/10.1002/etc.2612Pereira, H. A., Hernandes, P. R. T., Netto, M. S., Reske, G. D., Vieceli, V., Oliveira, L. F. S., & Dotto, G. L. (2021). Adsorbents for glyphosate removal in contaminated waters: a review. Environmental Chemistry Letters 19, 1525–1543. https://doi.org/10.1007/s10311-020-01108-4Plata, L. G., Ramos, C. G., Oliveira, M. L. S., & Oliveira, L. F. S. (2021). Release kinetics of multi-nutrients from volcanic rock mining by-products: Evidences for their use as a soil remineralizer. Journal of Cleaner Production, 279, 123668Pompermaier, A., Varela, A. C. C., Fortuna, M., Mendonça-Soares, S., Koakoski, G., Aguirre, R., Oliveira, T. A., Sordi, E., Moterle, D. F., Pohl, A. R., Rech, V. C., Bortoluzzi, E. C., & Barcellos, L. J. G. (2021). Water and suspended sediment runoff from vineyard watersheds affecting the behavior and physiology of zebrafish. Science of the Total Environment, 757, 143794. https://doi.org/10.1016/j.scitotenv.2020.143794Ramos, C. G., de Mello, A. G., & Kautzmann, R. M. (2014). A preliminary study of acid volcanic rocks for stonemeal application. Environ. Nanotechnol. Monit. Manag., 1, 30–35Ramos, C. G., Querol, X., Oliveira, M. L. S., Pires, K., Kautzmann, R. M., & Silva, L. F. (2015). A preliminary evaluation of volcanic rock powder for application in agriculture as soil aremineralizer. Science of the Total Environment, 512–513, 371–380Ramos, C. G., Querol, X., Dalmora, A. C., de Jesus Pires, K. C., Schneider, I. A. H., Oliveira, L. F. S., & Kautzmann, R. M. (2017). Evaluation of the potential of volcanic rock waste fromsouthern Brazil as a natural soil fertilizer. Journal of Cleaner Production, 142, 2700–2706Ramos, C. G., de Medeiros, D. D. S., Gomez, L., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2019). Evaluation of soil re-mineralizer from by-product of volcanic rock mining: Experimental proof using black oats and maize crops. Nat. Res. Res. 1–18. https://doi.org/10.1007/s11053-019-09529-xRamos, C. G., Oliveira, M. L. S., Pena, M. F., Cantillo, A. M., Ayarza, L. P. L., Korchagin, J., & Bortoluzzi, E. C. (2021). Nanoparticles generated during volcanic rock exploitation: An overview. Journal of Environmental Chemical Engineering, 9, 106441. https://doi.org/10.1016/j.jece.2021.106441Ramos, C. G., Hower, J. C., Blanco, E., Oliveira, M. L. S., & Theodoro, S. H. (2022). Possibilities of using silicate rock powder: An overview. Geosci. Frontiers., 12, 101185. https://doi.org/10.1016/j.gsf.2021.101185Sellaoui, L., Hessou, E. P., Badawi, M., Netto, M. S., Dotto, G. L., Silva, L. F. O., & Chen, Z. (2021). Trapping of Ag+, Cu2+, and Co2+ by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation. Chemical Engineering Journal, 420, 127712Sheen, S., Hong, C., Koh, M. T., Su, C., & Harada Y. (1994). Swine waste treatment in Taiwan, 1994. https://www.fftc.org.tw/en/publications/main/1337Tiecher, T., Zafar, M., Mallmann, F. J. K., Bortoluzzi, E. C., Bender, M. A., Ciotti, L. H., & dos Santos, D. R. (2014). Animal manure phosphorus characterization by sequential chemical fractionation, release kinetics and 31P-NMR analysis. Rev. Bras. Cienc. Solo., 38, 1506–1514. https://doi.org/10.1590/S0100-06832014000500016Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462. https://doi.org/10.1016/j.cej.2016.09.029Webster, R. (2001). Statistics to support soil research and their presentation. European Journal of Soil Science, June 2001, 52, 331±340 https://doi.org/10.1046/j.1365-2389.2001.00383.x191233MetabasaltClay mineralsSorptionIonsManure disposalORIGINALAdsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder.pdfAdsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder.pdfapplication/pdf101784https://repositorio.cuc.edu.co/bitstream/11323/9473/1/Adsorption%20of%20Pollutants%20from%20Liquid%20Swine%20Manure%20Through%20the%20Application%20of%20Metabasalt%20Rock%20Powder.pdf0d8d746eac85409eaeb90beb5ba5eda8MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/9473/2/license.txte30e9215131d99561d40d6b0abbe9badMD52open accessTEXTAdsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder.pdf.txtAdsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder.pdf.txttext/plain1605https://repositorio.cuc.edu.co/bitstream/11323/9473/3/Adsorption%20of%20Pollutants%20from%20Liquid%20Swine%20Manure%20Through%20the%20Application%20of%20Metabasalt%20Rock%20Powder.pdf.txt25b27db891afb0b5b5c358b2edac88d4MD53open accessTHUMBNAILAdsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder.pdf.jpgAdsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder.pdf.jpgimage/jpeg12883https://repositorio.cuc.edu.co/bitstream/11323/9473/4/Adsorption%20of%20Pollutants%20from%20Liquid%20Swine%20Manure%20Through%20the%20Application%20of%20Metabasalt%20Rock%20Powder.pdf.jpgf98264b57bee7acb1f337c59d8ec1d87MD54open access11323/9473oai:repositorio.cuc.edu.co:11323/94732023-12-14 12:20:31.162An error occurred on the license name.|||https://creativecommons.org/licenses/by/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==