Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder
Adequate animal manure disposal became a challenge in agriculture. Liquid swine waste (LSW), easily used in agriculture, presents disadvantages due to the high volume and low nutrient concentrations. Metabasalt powder, a residue of amethyst mining, was evaluated as an adsorbent agent of nutrients (C...
- Autores:
-
Perdoncini, Daiana Micheli
Dalacorte, Luana
Silva Oliveira, Luis Felipe
Gindri Ramos, Claudete
Campanhola Bortoluzzi, Edson
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9473
- Acceso en línea:
- https://hdl.handle.net/11323/9473
https://doi.org/10.1007/s11270-022-05663-0
https://repositorio.cuc.edu.co/
- Palabra clave:
- Metabasalt
Clay minerals
Sorption
Ions
Manure disposal
- Rights
- embargoedAccess
- License
- © 2022 Springer Nature Switzerland AG. Part of Springer Nature.
id |
RCUC2_194e996602171721faeb0ea865105aef |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9473 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder |
title |
Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder |
spellingShingle |
Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder Metabasalt Clay minerals Sorption Ions Manure disposal |
title_short |
Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder |
title_full |
Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder |
title_fullStr |
Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder |
title_full_unstemmed |
Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder |
title_sort |
Adsorption of pollutants from liquid swine manure through the application of metabasalt rock powder |
dc.creator.fl_str_mv |
Perdoncini, Daiana Micheli Dalacorte, Luana Silva Oliveira, Luis Felipe Gindri Ramos, Claudete Campanhola Bortoluzzi, Edson |
dc.contributor.author.spa.fl_str_mv |
Perdoncini, Daiana Micheli Dalacorte, Luana Silva Oliveira, Luis Felipe Gindri Ramos, Claudete Campanhola Bortoluzzi, Edson |
dc.subject.proposal.eng.fl_str_mv |
Metabasalt Clay minerals Sorption Ions Manure disposal |
topic |
Metabasalt Clay minerals Sorption Ions Manure disposal |
description |
Adequate animal manure disposal became a challenge in agriculture. Liquid swine waste (LSW), easily used in agriculture, presents disadvantages due to the high volume and low nutrient concentrations. Metabasalt powder, a residue of amethyst mining, was evaluated as an adsorbent agent of nutrients (Cu, Zn, P, and K) from LSW. Seven doses of metabasalt powder were tested in proportion with LSW (0, 4, 10, 20, 40, 80, and 160 kg m−3), and during four contact times (CT) (9, 21, 42, and 84 days) and ions were dosed in the liquid and solid fractions. Copper and phosphorus concentrations in the liquid fraction were lower at 21 days of contact. The lowest concentration of zinc in the liquid fraction was observed at the dose of 10 kg m−3 of metabasalt powder, and at 9 days of CT. The K concentrations in the liquid fraction diminished linearly with the metabasalt doses, in which the major dose presented 51% of K compared to the control. The application of metabasalt as an adsorbent agent reduced the contaminant charge in the liquid fraction of LSW, suggesting safe water disposal while promoting ion accumulation in the solid fraction. The use of metabasalt powder became a useful strategy to make LSW pre-treatment on-farm. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-24T16:49:17Z |
dc.date.available.none.fl_str_mv |
2022-08-24T16:49:17Z 2023 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Micheli Perdoncini, D., Dalacorte, L., Felipe Silva Oliveira, L. et al. Adsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder. Water Air Soil Pollut 233, 191 (2022). https://doi.org/10.1007/s11270-022-05663-0 |
dc.identifier.issn.spa.fl_str_mv |
0049-6979 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9473 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1007/s11270-022-05663-0 |
dc.identifier.doi.spa.fl_str_mv |
10.1007/s11270-022-05663-0 |
dc.identifier.eissn.spa.fl_str_mv |
1573-2932 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Micheli Perdoncini, D., Dalacorte, L., Felipe Silva Oliveira, L. et al. Adsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder. Water Air Soil Pollut 233, 191 (2022). https://doi.org/10.1007/s11270-022-05663-0 0049-6979 10.1007/s11270-022-05663-0 1573-2932 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9473 https://doi.org/10.1007/s11270-022-05663-0 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Water, Air, and Soil Pollution |
dc.relation.references.spa.fl_str_mv |
Aguiar, M. R. M. P., Novaes, A. C., & Guarino, A. W. S. (2002). Remoção de metais pesados de efluentes industriais por aluminossilicatos. Quimica Nova, 25, 1145–1154. https://doi.org/10.1590/S0100-40422002000700015 Basso, C. J., Ceretta, C. A., Durigon, R., Poletto, N., & Girotto, E. (2005). Dejeto líquido de suínos: II - perdas de nitrogênio e fósforo por percolação no solo sob plantio direto. Ciencia Rural, 35, 1305–1312. https://doi.org/10.1590/S0103-84782005000600012 Belli Filho, P., Castilhos, A. B., Jr., Costa, R. H. R., Soares, S. R., & Perdomo, C. C. (2001). Tecnologias para o tratamento de dejetos de suínos. Rev. Bras. Eng. Agríc. Ambient., 5, 166–170. https://doi.org/10.1590/S1415-43662001000100032 Bittencourt, B. A., Ellwanger, M. V., Nascimento, W. A., Belchior, L. F., Araújo, E. M., & Melo, T. J. A. (2009). Moldagem por compressão a frio do polietileno de ultra alto peso molecular. Parte 1: Influência do tamanho, distribuição e morfologia da partícula na densidade a verde. Polímeros., 19, 224–230. https://doi.org/10.1590/S0104-14282009000300011 Boitt, G., Schmitt, D. E., Gatiboni, L. C., Wakelin, S. A., Black, A., Sacomori, W., Cassol, P. C., & Condron, L. M. (2018). Fate of phosphorus applied to soil in pig slurry under cropping in southern Brazil. Geoderma, 321, 164–172. https://doi.org/10.1016/j.geoderma.2018.02.010 Bortoluzzi, E. C., Pérez, C. A. S., Ardisson, J. D., Tiecher, T., & Caner, L. (2015). Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils. Applied Clay Science, 104, 196–204. https://doi.org/10.1016/j.clay.2014.11.032 Bortoluzzi, E. C., Tessier, D., Rheinheimer, D. S., & Julien, J. L. (2006). The cation exchange capacity of a sandy soil in southern Brazil: An estimation of permanent charge and pH-dependent charges. European Journal of Soil Science, 57, 356–364. https://doi.org/10.1111/j.1365-2389.2005.00746.x Bourliva, A., Christophoridis, C., Papadopoulou, L., Giouri, K., Papadopoulos, A., Mitsika, E., & Fytianos, K. (2017). Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki. Greece. Environ. Geochem. Health., 39, 611–634. https://doi.org/10.1007/s10653-016-9836-y Cabral, F., Vasconcelos, E., & Cordovil, C. M. S. (1998). Effects of solid phase from pig slurry on iron, copper, zinc, and manganese content of soil and wheat plants. Journal of Plant Nutrition, 21, 1955–1996. https://doi.org/10.1080/01904169809365536 Cassol, P. C., Gianello, C., & Costa, V. E. U. (2001). Frações de fósforo em estrumes e sua eficiência como adubo fosfatado. Rev. Bras. Cienc. Solo., 25, 635–644. https://doi.org/10.1590/S0100-06832001000300012 Chen, W. C., & Yeh, T. T. (2019). An unpresented approach to ameliorate swine waste contamination. Advances in Materials Science, 4, 1–3. https://doi.org/10.15761/AMS.1000158 Churchman, G. J., Gates, W. P., Theng, B. K. G., & Yuan, G. (2013). Chapter 11.1 Clays and clay minerals for pollution control. Dev Clay Sci, 1, 625–663. https://doi.org/10.1016/S1572-4352(05)01020-2 Coelho, A. C. V., Santos, P. S., & Santos, H. (2007). Argilas especiais: O que são, caracterização e propriedades. Quimica Nova, 30, 146–152. https://doi.org/10.1590/s0100-40422007000100026 Conama, (2011). National Council for the Environment, In: Resolução Conama 430, Diário Oficial da União, Brasília, 2011. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646 Conceição, F. T., Pichinelli, B. C., Silva, M. S. G., Antunes, M. L. P., Lopes, M. S., & Moruzzi, R. B. (2017). Adsorção de Cd2+, Ni2+ e Zn2+ em soluções aquosas usando anidrita e lama vermelha. Eng. Sanit. Ambient., 22, 665–670. https://doi.org/10.1590/s1413-41522017146698 Dalacorte, L., & Bortoluzzi, E. C. (2021). Sorption of copper and zinc in metabasalt powder at different pH and contact times. International Journal of Environmental Engineering, 11(2), 93–105. https://doi.org/10.1504/IJEE.2021.10042156 Dalacorte, L., Escosteguy, P. A. V., Bortoluzzi, E. C. (2019). Sorption of copper and zinc from aqueous solution by metabasalt residue and its mineralogical behavior. Water Air Soil Pollut. 230. https://doi.org/10.1007/s11270-019-4141-x Dalmora, A. C., Ramos, C. G., Oliveira, M. L. S., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2020a). Application of andesite rock as a clean source of fertilizer for eucalyptus crop: Evidence of sustainability. Journal of Cleaner Production, 256, 120432 Dalmora, A. C., Ramos, C. G., Plata, L. G., da Costa, M. L., Kautzmann, R. M., & Oliveira, L. F. S. (2020b). Understanding the mobility of potential nutrients in rock mining by-products: An opportunity for more sustainable agriculture and mining. Science of the Total Environment, 710, 136240 de Medeiros, D. S., Sanchotene, D. M., Ramos, C. G., Oliveira, L. F. S., Sampaio, C. H., & Kautzmann, R. M. (2021). Soybean crops cultivated with dacite rock by-product: A proof of a cleaner technology to soil remineralization. Journal of Environmental Chemical Engineering, 9, 106742. https://doi.org/10.1016/j.jece.2021.106742 Dizadji, N., Rashtchi, M., Dehpouri, S., & Nouri, N. (2013). Experimental investigation of adsorption of copper from aqueous solution using vermiculite and clinoptilolite. Int. J. Environ. Res., 7, 887–894. https://doi.org/10.22059/IJER.2013.670 Fajardo-Zapata, A. L., Méndez-Casallas, F. J., & Molina, L. H. (2011). Residuos de fármacos anabolizantes en carnes destinadas al consumo humano. Universitas Scientiarum, 16, 77–91. https://doi.org/10.11144/javeriana.sc16-1.road Ferrari, V., Taffarel, S. R., Espinosa-Fuentes, E., Oliveira, M. L., Saikia, B. K., & Oliveira, L. F. (2019). Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. Journal of Cleaner Production, 208, 297–306 Frigo, K. D. A., Feiden, A., Sampaio, S. C., Alberton, G. C., Schneider, L. T., Bonassa, G., Frigo, E. P., & Santos, R. F. (2017). Treatments and utilization of swine waste in Brazil. African Journal of Agricultural Research, 12, 542–549. https://doi.org/10.5897/AJAR2016.11775 Ginder-Vogel, M., Stewart, B., & Fendorf, S. (2010). Kinetic and mechanistic constraints on the oxidation of biogenic uraninite by ferrihydrite. Environmental Science and Technology, 44, 163–169 Hartmann, L. A. (2010). Geodes with amethysts formed by hot water in the dinosaurs time. In: L.A. Hartmann. Geologia da riqueza do Rio Grande do Sul em geodos de Ametista e Ágata. Porto Alegre UFRGS, 1, 15–26 Korchagin, J., Caner, L., & Bortoluzzi, E. C. (2019). Variability of amethyst mining waste: A mineralogical and geochemical approach to evaluate the potential use in agriculture. Journal of Cleaner Production, 210, 749–758. https://doi.org/10.1016/j.jclepro.2018.11.039 Lopes, C., Campos, M. L., Silveira, C. B., Gatiboni, L. C., Miquelutti, D. J., Cassol, P. C., & Medeiros, I. (2014). Adsorção de Cu2+ e Zn2+ num Latossolo Vermelho tratado com dejetos suínos. Rev. Ceres., 61, 997–1005. https://doi.org/10.1590/0034-737x201461060016 MAPA, (2014). Ministry of Agriculture, Livestock and Supply, Manual de métodos analíticos oficiais para fertilizante e corretivos, 2014. http://www.agricultura.gov.br/assuntos/laboratorios/arquivos-publicacoes-laboratorio/manual-_in-5_-analiticos-oficiais-para-fertilizantes-e-corretivos_com_capa_final_03.pdf Mellis, E. V., & Rodella, A. A. (2008). Influência do tempo de agitação na adsorção de Cd, Cu, Ni e Zn em Latossolo tratado com lodo de esgoto. Rev. Bragantia., 67, 977–982. https://doi.org/10.1590/s0006-87052008000400021 Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216. https://doi.org/10.1007/s10311-010-0297-8 Natal-da-Luz, T., Tidona, S., Bruno Jesus, B., Morais, P. V., & Sousa, J. P. (2009). The use of sewage sludge as soil amendment. The Need for an Ecotoxicological Evaluation J Soils Sediments, 2009(9), 246–260. https://doi.org/10.1007/s11368-009-0077-x Özacar, M., Şengil, I. A., & Türkmenler, H. (2008). Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chemical Engineering Journal, 143, 32–42. https://doi.org/10.1016/j.cej.2007.12.005 Parfitt, R. L. (1989). Phosphate reactions with natural allophane, ferrihydrita and goethita. Journal of Soil Science, 40, 359–369. https://doi.org/10.1111/j.1365-2389.1989.tb01280.x Perez, C., Antelo, J., Fiol, S., & Arce, F. (2014). Modelling oxyanion adsorption on ferralic soil, part 1: Parameters validation with phosphate ion. Environmental Toxicology and Chemistry, 33, 2208–2216. https://doi.org/10.1002/etc.2612 Pereira, H. A., Hernandes, P. R. T., Netto, M. S., Reske, G. D., Vieceli, V., Oliveira, L. F. S., & Dotto, G. L. (2021). Adsorbents for glyphosate removal in contaminated waters: a review. Environmental Chemistry Letters 19, 1525–1543. https://doi.org/10.1007/s10311-020-01108-4 Plata, L. G., Ramos, C. G., Oliveira, M. L. S., & Oliveira, L. F. S. (2021). Release kinetics of multi-nutrients from volcanic rock mining by-products: Evidences for their use as a soil remineralizer. Journal of Cleaner Production, 279, 123668 Pompermaier, A., Varela, A. C. C., Fortuna, M., Mendonça-Soares, S., Koakoski, G., Aguirre, R., Oliveira, T. A., Sordi, E., Moterle, D. F., Pohl, A. R., Rech, V. C., Bortoluzzi, E. C., & Barcellos, L. J. G. (2021). Water and suspended sediment runoff from vineyard watersheds affecting the behavior and physiology of zebrafish. Science of the Total Environment, 757, 143794. https://doi.org/10.1016/j.scitotenv.2020.143794 Ramos, C. G., de Mello, A. G., & Kautzmann, R. M. (2014). A preliminary study of acid volcanic rocks for stonemeal application. Environ. Nanotechnol. Monit. Manag., 1, 30–35 Ramos, C. G., Querol, X., Oliveira, M. L. S., Pires, K., Kautzmann, R. M., & Silva, L. F. (2015). A preliminary evaluation of volcanic rock powder for application in agriculture as soil aremineralizer. Science of the Total Environment, 512–513, 371–380 Ramos, C. G., Querol, X., Dalmora, A. C., de Jesus Pires, K. C., Schneider, I. A. H., Oliveira, L. F. S., & Kautzmann, R. M. (2017). Evaluation of the potential of volcanic rock waste fromsouthern Brazil as a natural soil fertilizer. Journal of Cleaner Production, 142, 2700–2706 Ramos, C. G., de Medeiros, D. D. S., Gomez, L., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2019). Evaluation of soil re-mineralizer from by-product of volcanic rock mining: Experimental proof using black oats and maize crops. Nat. Res. Res. 1–18. https://doi.org/10.1007/s11053-019-09529-x Ramos, C. G., Oliveira, M. L. S., Pena, M. F., Cantillo, A. M., Ayarza, L. P. L., Korchagin, J., & Bortoluzzi, E. C. (2021). Nanoparticles generated during volcanic rock exploitation: An overview. Journal of Environmental Chemical Engineering, 9, 106441. https://doi.org/10.1016/j.jece.2021.106441 Ramos, C. G., Hower, J. C., Blanco, E., Oliveira, M. L. S., & Theodoro, S. H. (2022). Possibilities of using silicate rock powder: An overview. Geosci. Frontiers., 12, 101185. https://doi.org/10.1016/j.gsf.2021.101185 Sellaoui, L., Hessou, E. P., Badawi, M., Netto, M. S., Dotto, G. L., Silva, L. F. O., & Chen, Z. (2021). Trapping of Ag+, Cu2+, and Co2+ by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation. Chemical Engineering Journal, 420, 127712 Sheen, S., Hong, C., Koh, M. T., Su, C., & Harada Y. (1994). Swine waste treatment in Taiwan, 1994. https://www.fftc.org.tw/en/publications/main/1337 Tiecher, T., Zafar, M., Mallmann, F. J. K., Bortoluzzi, E. C., Bender, M. A., Ciotti, L. H., & dos Santos, D. R. (2014). Animal manure phosphorus characterization by sequential chemical fractionation, release kinetics and 31P-NMR analysis. Rev. Bras. Cienc. Solo., 38, 1506–1514. https://doi.org/10.1590/S0100-06832014000500016 Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462. https://doi.org/10.1016/j.cej.2016.09.029 Webster, R. (2001). Statistics to support soil research and their presentation. European Journal of Soil Science, June 2001, 52, 331±340 https://doi.org/10.1046/j.1365-2389.2001.00383.x |
dc.relation.citationissue.spa.fl_str_mv |
191 |
dc.relation.citationvolume.spa.fl_str_mv |
233 |
dc.rights.spa.fl_str_mv |
© 2022 Springer Nature Switzerland AG. Part of Springer Nature. Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
© 2022 Springer Nature Switzerland AG. Part of Springer Nature. Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
1 página |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Netherlands |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/article/10.1007/s11270-022-05663-0 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/dcbbf29a-164d-4fe4-b073-a56905f455dd/download https://repositorio.cuc.edu.co/bitstreams/ce9ac480-30df-426d-b144-b0809671a08a/download https://repositorio.cuc.edu.co/bitstreams/67b3549f-b661-4557-915e-d05eca3db7da/download https://repositorio.cuc.edu.co/bitstreams/ecef68de-9d25-46cd-b758-9af91eedff3e/download |
bitstream.checksum.fl_str_mv |
0d8d746eac85409eaeb90beb5ba5eda8 e30e9215131d99561d40d6b0abbe9bad 25b27db891afb0b5b5c358b2edac88d4 f98264b57bee7acb1f337c59d8ec1d87 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760724177846272 |
spelling |
Perdoncini, Daiana MicheliDalacorte, LuanaSilva Oliveira, Luis FelipeGindri Ramos, ClaudeteCampanhola Bortoluzzi, Edson2022-08-24T16:49:17Z20232022-08-24T16:49:17Z2022Micheli Perdoncini, D., Dalacorte, L., Felipe Silva Oliveira, L. et al. Adsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder. Water Air Soil Pollut 233, 191 (2022). https://doi.org/10.1007/s11270-022-05663-00049-6979https://hdl.handle.net/11323/9473https://doi.org/10.1007/s11270-022-05663-010.1007/s11270-022-05663-01573-2932Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Adequate animal manure disposal became a challenge in agriculture. Liquid swine waste (LSW), easily used in agriculture, presents disadvantages due to the high volume and low nutrient concentrations. Metabasalt powder, a residue of amethyst mining, was evaluated as an adsorbent agent of nutrients (Cu, Zn, P, and K) from LSW. Seven doses of metabasalt powder were tested in proportion with LSW (0, 4, 10, 20, 40, 80, and 160 kg m−3), and during four contact times (CT) (9, 21, 42, and 84 days) and ions were dosed in the liquid and solid fractions. Copper and phosphorus concentrations in the liquid fraction were lower at 21 days of contact. The lowest concentration of zinc in the liquid fraction was observed at the dose of 10 kg m−3 of metabasalt powder, and at 9 days of CT. The K concentrations in the liquid fraction diminished linearly with the metabasalt doses, in which the major dose presented 51% of K compared to the control. The application of metabasalt as an adsorbent agent reduced the contaminant charge in the liquid fraction of LSW, suggesting safe water disposal while promoting ion accumulation in the solid fraction. The use of metabasalt powder became a useful strategy to make LSW pre-treatment on-farm.1 páginaapplication/pdfengSpringer NetherlandsNetherlands© 2022 Springer Nature Switzerland AG. Part of Springer Nature.Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfAdsorption of pollutants from liquid swine manure through the application of metabasalt rock powderArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_b1a7d7d4d402bccehttps://link.springer.com/article/10.1007/s11270-022-05663-0Water, Air, and Soil PollutionAguiar, M. R. M. P., Novaes, A. C., & Guarino, A. W. S. (2002). Remoção de metais pesados de efluentes industriais por aluminossilicatos. Quimica Nova, 25, 1145–1154. https://doi.org/10.1590/S0100-40422002000700015Basso, C. J., Ceretta, C. A., Durigon, R., Poletto, N., & Girotto, E. (2005). Dejeto líquido de suínos: II - perdas de nitrogênio e fósforo por percolação no solo sob plantio direto. Ciencia Rural, 35, 1305–1312. https://doi.org/10.1590/S0103-84782005000600012Belli Filho, P., Castilhos, A. B., Jr., Costa, R. H. R., Soares, S. R., & Perdomo, C. C. (2001). Tecnologias para o tratamento de dejetos de suínos. Rev. Bras. Eng. Agríc. Ambient., 5, 166–170. https://doi.org/10.1590/S1415-43662001000100032Bittencourt, B. A., Ellwanger, M. V., Nascimento, W. A., Belchior, L. F., Araújo, E. M., & Melo, T. J. A. (2009). Moldagem por compressão a frio do polietileno de ultra alto peso molecular. Parte 1: Influência do tamanho, distribuição e morfologia da partícula na densidade a verde. Polímeros., 19, 224–230. https://doi.org/10.1590/S0104-14282009000300011Boitt, G., Schmitt, D. E., Gatiboni, L. C., Wakelin, S. A., Black, A., Sacomori, W., Cassol, P. C., & Condron, L. M. (2018). Fate of phosphorus applied to soil in pig slurry under cropping in southern Brazil. Geoderma, 321, 164–172. https://doi.org/10.1016/j.geoderma.2018.02.010Bortoluzzi, E. C., Pérez, C. A. S., Ardisson, J. D., Tiecher, T., & Caner, L. (2015). Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils. Applied Clay Science, 104, 196–204. https://doi.org/10.1016/j.clay.2014.11.032Bortoluzzi, E. C., Tessier, D., Rheinheimer, D. S., & Julien, J. L. (2006). The cation exchange capacity of a sandy soil in southern Brazil: An estimation of permanent charge and pH-dependent charges. European Journal of Soil Science, 57, 356–364. https://doi.org/10.1111/j.1365-2389.2005.00746.xBourliva, A., Christophoridis, C., Papadopoulou, L., Giouri, K., Papadopoulos, A., Mitsika, E., & Fytianos, K. (2017). Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki. Greece. Environ. Geochem. Health., 39, 611–634. https://doi.org/10.1007/s10653-016-9836-yCabral, F., Vasconcelos, E., & Cordovil, C. M. S. (1998). Effects of solid phase from pig slurry on iron, copper, zinc, and manganese content of soil and wheat plants. Journal of Plant Nutrition, 21, 1955–1996. https://doi.org/10.1080/01904169809365536Cassol, P. C., Gianello, C., & Costa, V. E. U. (2001). Frações de fósforo em estrumes e sua eficiência como adubo fosfatado. Rev. Bras. Cienc. Solo., 25, 635–644. https://doi.org/10.1590/S0100-06832001000300012Chen, W. C., & Yeh, T. T. (2019). An unpresented approach to ameliorate swine waste contamination. Advances in Materials Science, 4, 1–3. https://doi.org/10.15761/AMS.1000158Churchman, G. J., Gates, W. P., Theng, B. K. G., & Yuan, G. (2013). Chapter 11.1 Clays and clay minerals for pollution control. Dev Clay Sci, 1, 625–663. https://doi.org/10.1016/S1572-4352(05)01020-2Coelho, A. C. V., Santos, P. S., & Santos, H. (2007). Argilas especiais: O que são, caracterização e propriedades. Quimica Nova, 30, 146–152. https://doi.org/10.1590/s0100-40422007000100026Conama, (2011). National Council for the Environment, In: Resolução Conama 430, Diário Oficial da União, Brasília, 2011. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646Conceição, F. T., Pichinelli, B. C., Silva, M. S. G., Antunes, M. L. P., Lopes, M. S., & Moruzzi, R. B. (2017). Adsorção de Cd2+, Ni2+ e Zn2+ em soluções aquosas usando anidrita e lama vermelha. Eng. Sanit. Ambient., 22, 665–670. https://doi.org/10.1590/s1413-41522017146698Dalacorte, L., & Bortoluzzi, E. C. (2021). Sorption of copper and zinc in metabasalt powder at different pH and contact times. International Journal of Environmental Engineering, 11(2), 93–105. https://doi.org/10.1504/IJEE.2021.10042156Dalacorte, L., Escosteguy, P. A. V., Bortoluzzi, E. C. (2019). Sorption of copper and zinc from aqueous solution by metabasalt residue and its mineralogical behavior. Water Air Soil Pollut. 230. https://doi.org/10.1007/s11270-019-4141-xDalmora, A. C., Ramos, C. G., Oliveira, M. L. S., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2020a). Application of andesite rock as a clean source of fertilizer for eucalyptus crop: Evidence of sustainability. Journal of Cleaner Production, 256, 120432Dalmora, A. C., Ramos, C. G., Plata, L. G., da Costa, M. L., Kautzmann, R. M., & Oliveira, L. F. S. (2020b). Understanding the mobility of potential nutrients in rock mining by-products: An opportunity for more sustainable agriculture and mining. Science of the Total Environment, 710, 136240de Medeiros, D. S., Sanchotene, D. M., Ramos, C. G., Oliveira, L. F. S., Sampaio, C. H., & Kautzmann, R. M. (2021). Soybean crops cultivated with dacite rock by-product: A proof of a cleaner technology to soil remineralization. Journal of Environmental Chemical Engineering, 9, 106742. https://doi.org/10.1016/j.jece.2021.106742Dizadji, N., Rashtchi, M., Dehpouri, S., & Nouri, N. (2013). Experimental investigation of adsorption of copper from aqueous solution using vermiculite and clinoptilolite. Int. J. Environ. Res., 7, 887–894. https://doi.org/10.22059/IJER.2013.670Fajardo-Zapata, A. L., Méndez-Casallas, F. J., & Molina, L. H. (2011). Residuos de fármacos anabolizantes en carnes destinadas al consumo humano. Universitas Scientiarum, 16, 77–91. https://doi.org/10.11144/javeriana.sc16-1.roadFerrari, V., Taffarel, S. R., Espinosa-Fuentes, E., Oliveira, M. L., Saikia, B. K., & Oliveira, L. F. (2019). Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. Journal of Cleaner Production, 208, 297–306Frigo, K. D. A., Feiden, A., Sampaio, S. C., Alberton, G. C., Schneider, L. T., Bonassa, G., Frigo, E. P., & Santos, R. F. (2017). Treatments and utilization of swine waste in Brazil. African Journal of Agricultural Research, 12, 542–549. https://doi.org/10.5897/AJAR2016.11775Ginder-Vogel, M., Stewart, B., & Fendorf, S. (2010). Kinetic and mechanistic constraints on the oxidation of biogenic uraninite by ferrihydrite. Environmental Science and Technology, 44, 163–169Hartmann, L. A. (2010). Geodes with amethysts formed by hot water in the dinosaurs time. In: L.A. Hartmann. Geologia da riqueza do Rio Grande do Sul em geodos de Ametista e Ágata. Porto Alegre UFRGS, 1, 15–26Korchagin, J., Caner, L., & Bortoluzzi, E. C. (2019). Variability of amethyst mining waste: A mineralogical and geochemical approach to evaluate the potential use in agriculture. Journal of Cleaner Production, 210, 749–758. https://doi.org/10.1016/j.jclepro.2018.11.039Lopes, C., Campos, M. L., Silveira, C. B., Gatiboni, L. C., Miquelutti, D. J., Cassol, P. C., & Medeiros, I. (2014). Adsorção de Cu2+ e Zn2+ num Latossolo Vermelho tratado com dejetos suínos. Rev. Ceres., 61, 997–1005. https://doi.org/10.1590/0034-737x201461060016MAPA, (2014). Ministry of Agriculture, Livestock and Supply, Manual de métodos analíticos oficiais para fertilizante e corretivos, 2014. http://www.agricultura.gov.br/assuntos/laboratorios/arquivos-publicacoes-laboratorio/manual-_in-5_-analiticos-oficiais-para-fertilizantes-e-corretivos_com_capa_final_03.pdfMellis, E. V., & Rodella, A. A. (2008). Influência do tempo de agitação na adsorção de Cd, Cu, Ni e Zn em Latossolo tratado com lodo de esgoto. Rev. Bragantia., 67, 977–982. https://doi.org/10.1590/s0006-87052008000400021Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216. https://doi.org/10.1007/s10311-010-0297-8Natal-da-Luz, T., Tidona, S., Bruno Jesus, B., Morais, P. V., & Sousa, J. P. (2009). The use of sewage sludge as soil amendment. The Need for an Ecotoxicological Evaluation J Soils Sediments, 2009(9), 246–260. https://doi.org/10.1007/s11368-009-0077-xÖzacar, M., Şengil, I. A., & Türkmenler, H. (2008). Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chemical Engineering Journal, 143, 32–42. https://doi.org/10.1016/j.cej.2007.12.005Parfitt, R. L. (1989). Phosphate reactions with natural allophane, ferrihydrita and goethita. Journal of Soil Science, 40, 359–369. https://doi.org/10.1111/j.1365-2389.1989.tb01280.xPerez, C., Antelo, J., Fiol, S., & Arce, F. (2014). Modelling oxyanion adsorption on ferralic soil, part 1: Parameters validation with phosphate ion. Environmental Toxicology and Chemistry, 33, 2208–2216. https://doi.org/10.1002/etc.2612Pereira, H. A., Hernandes, P. R. T., Netto, M. S., Reske, G. D., Vieceli, V., Oliveira, L. F. S., & Dotto, G. L. (2021). Adsorbents for glyphosate removal in contaminated waters: a review. Environmental Chemistry Letters 19, 1525–1543. https://doi.org/10.1007/s10311-020-01108-4Plata, L. G., Ramos, C. G., Oliveira, M. L. S., & Oliveira, L. F. S. (2021). Release kinetics of multi-nutrients from volcanic rock mining by-products: Evidences for their use as a soil remineralizer. Journal of Cleaner Production, 279, 123668Pompermaier, A., Varela, A. C. C., Fortuna, M., Mendonça-Soares, S., Koakoski, G., Aguirre, R., Oliveira, T. A., Sordi, E., Moterle, D. F., Pohl, A. R., Rech, V. C., Bortoluzzi, E. C., & Barcellos, L. J. G. (2021). Water and suspended sediment runoff from vineyard watersheds affecting the behavior and physiology of zebrafish. Science of the Total Environment, 757, 143794. https://doi.org/10.1016/j.scitotenv.2020.143794Ramos, C. G., de Mello, A. G., & Kautzmann, R. M. (2014). A preliminary study of acid volcanic rocks for stonemeal application. Environ. Nanotechnol. Monit. Manag., 1, 30–35Ramos, C. G., Querol, X., Oliveira, M. L. S., Pires, K., Kautzmann, R. M., & Silva, L. F. (2015). A preliminary evaluation of volcanic rock powder for application in agriculture as soil aremineralizer. Science of the Total Environment, 512–513, 371–380Ramos, C. G., Querol, X., Dalmora, A. C., de Jesus Pires, K. C., Schneider, I. A. H., Oliveira, L. F. S., & Kautzmann, R. M. (2017). Evaluation of the potential of volcanic rock waste fromsouthern Brazil as a natural soil fertilizer. Journal of Cleaner Production, 142, 2700–2706Ramos, C. G., de Medeiros, D. D. S., Gomez, L., Oliveira, L. F. S., Schneider, I. A. H., & Kautzmann, R. M. (2019). Evaluation of soil re-mineralizer from by-product of volcanic rock mining: Experimental proof using black oats and maize crops. Nat. Res. Res. 1–18. https://doi.org/10.1007/s11053-019-09529-xRamos, C. G., Oliveira, M. L. S., Pena, M. F., Cantillo, A. M., Ayarza, L. P. L., Korchagin, J., & Bortoluzzi, E. C. (2021). Nanoparticles generated during volcanic rock exploitation: An overview. Journal of Environmental Chemical Engineering, 9, 106441. https://doi.org/10.1016/j.jece.2021.106441Ramos, C. G., Hower, J. C., Blanco, E., Oliveira, M. L. S., & Theodoro, S. H. (2022). Possibilities of using silicate rock powder: An overview. Geosci. Frontiers., 12, 101185. https://doi.org/10.1016/j.gsf.2021.101185Sellaoui, L., Hessou, E. P., Badawi, M., Netto, M. S., Dotto, G. L., Silva, L. F. O., & Chen, Z. (2021). Trapping of Ag+, Cu2+, and Co2+ by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation. Chemical Engineering Journal, 420, 127712Sheen, S., Hong, C., Koh, M. T., Su, C., & Harada Y. (1994). Swine waste treatment in Taiwan, 1994. https://www.fftc.org.tw/en/publications/main/1337Tiecher, T., Zafar, M., Mallmann, F. J. K., Bortoluzzi, E. C., Bender, M. A., Ciotti, L. H., & dos Santos, D. R. (2014). Animal manure phosphorus characterization by sequential chemical fractionation, release kinetics and 31P-NMR analysis. Rev. Bras. Cienc. Solo., 38, 1506–1514. https://doi.org/10.1590/S0100-06832014000500016Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462. https://doi.org/10.1016/j.cej.2016.09.029Webster, R. (2001). Statistics to support soil research and their presentation. European Journal of Soil Science, June 2001, 52, 331±340 https://doi.org/10.1046/j.1365-2389.2001.00383.x191233MetabasaltClay mineralsSorptionIonsManure disposalPublicationORIGINALAdsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder.pdfAdsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder.pdfapplication/pdf101784https://repositorio.cuc.edu.co/bitstreams/dcbbf29a-164d-4fe4-b073-a56905f455dd/download0d8d746eac85409eaeb90beb5ba5eda8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/ce9ac480-30df-426d-b144-b0809671a08a/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTAdsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder.pdf.txtAdsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder.pdf.txttext/plain1605https://repositorio.cuc.edu.co/bitstreams/67b3549f-b661-4557-915e-d05eca3db7da/download25b27db891afb0b5b5c358b2edac88d4MD53THUMBNAILAdsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder.pdf.jpgAdsorption of Pollutants from Liquid Swine Manure Through the Application of Metabasalt Rock Powder.pdf.jpgimage/jpeg12883https://repositorio.cuc.edu.co/bitstreams/ecef68de-9d25-46cd-b758-9af91eedff3e/downloadf98264b57bee7acb1f337c59d8ec1d87MD5411323/9473oai:repositorio.cuc.edu.co:11323/94732024-09-17 10:48:59.928https://creativecommons.org/licenses/by/4.0/© 2022 Springer Nature Switzerland AG. Part of Springer Nature.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |