Determination of the most relevant features to improve the performance of RF classifier in human activity recognition

The impact that neurodegenerative diseases have in our society, have made human activity recognition (HAR) arise as a relevant field of study. The quality of life of people with such conditions, can be significantly improved with the outcomes of the projects within this area. The application of mach...

Full description

Autores:
Jiménez-Gómez, Geovanna
Navarro-Escorcia, Daniela
Neira Rodado, Dionicio
Cleland, Ian
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8843
Acceso en línea:
https://hdl.handle.net/11323/8843
https://repositorio.cuc.edu.co/
Palabra clave:
HAR
Machine learning
Feature selection
RF classifier
Rights
embargoedAccess
License
CC0 1.0 Universal
id RCUC2_1897b07e33699e8bd5ce4ace3b1e0c6c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8843
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Determination of the most relevant features to improve the performance of RF classifier in human activity recognition
title Determination of the most relevant features to improve the performance of RF classifier in human activity recognition
spellingShingle Determination of the most relevant features to improve the performance of RF classifier in human activity recognition
HAR
Machine learning
Feature selection
RF classifier
title_short Determination of the most relevant features to improve the performance of RF classifier in human activity recognition
title_full Determination of the most relevant features to improve the performance of RF classifier in human activity recognition
title_fullStr Determination of the most relevant features to improve the performance of RF classifier in human activity recognition
title_full_unstemmed Determination of the most relevant features to improve the performance of RF classifier in human activity recognition
title_sort Determination of the most relevant features to improve the performance of RF classifier in human activity recognition
dc.creator.fl_str_mv Jiménez-Gómez, Geovanna
Navarro-Escorcia, Daniela
Neira Rodado, Dionicio
Cleland, Ian
dc.contributor.author.spa.fl_str_mv Jiménez-Gómez, Geovanna
Navarro-Escorcia, Daniela
Neira Rodado, Dionicio
Cleland, Ian
dc.subject.spa.fl_str_mv HAR
Machine learning
Feature selection
RF classifier
topic HAR
Machine learning
Feature selection
RF classifier
description The impact that neurodegenerative diseases have in our society, have made human activity recognition (HAR) arise as a relevant field of study. The quality of life of people with such conditions, can be significantly improved with the outcomes of the projects within this area. The application of machine learning techniques on data from low level sensors such as accelerometers is the base of HAR. To improve the performance of these classifiers, it is necessary to carry out an adequate training process. To improve the training process, an analysis of the different features used in literature to tackle these problems was performed on datasets constructed with students performing 18 different activities of daily living. The outcome of the process shows that an adequate selection of features improves the performance of Random Forest from 94.6% to 97.2%. It was also found that 78 features explain 80% of the variability.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-08T13:11:42Z
dc.date.available.none.fl_str_mv 2021-11-08T13:11:42Z
dc.date.issued.none.fl_str_mv 2021-09-17
dc.date.embargoEnd.none.fl_str_mv 2022-09-17
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 978-303084339-7
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8843
dc.identifier.doi.spa.fl_str_mv 10.1007/978-3-030-84340-3_3
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 978-303084339-7
10.1007/978-3-030-84340-3_3
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8843
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Dementia: https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed 15 May 2021
Prince, M., Wimo, A., Guerchet, M., Ali, G.-C., Wu, Y.-T., Prina, M.: World Alzheimer Report 2015, The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends, p. 87
Prince, M., Comas-Herrera, A., Knapp, M., Guerchet, M., Karagiannidou, M.: World Alzheimer Report 2016 Improving Healthcare for People Living with Dementia Coverage, QualIty and Costs Now and in the Future
De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J.M., Espinilla, M.: Sensor-based datasets for human activity recognition - a systematic review of literature. IEEE Access 6, 59192–59210 (2018). https://ezproxy.cuc.edu.co:2067/10.1109/ACCESS.2018.2873502
Aparisi, F., Carlos, J., Díaz, G.: Aumento de la potencia del gráfico de control multivariante T 2 de Hotelling utilizando señales adicionales de falta de control (2001)
Noor, M.H.M., Salcic, Z., Wang, K.I.K.: Adaptive sliding window segmentation for physical activity recognition using a single tri-axial accelerometer. Perv. Mob. Comput. 38, 41–59 (2017). https://ezproxy.cuc.edu.co:2067/10.1016/j.pmcj.2016.09.009
Cerasuolo, J.O., et al.: Population-based stroke and dementia incidence trends: age and sex variations. Alzheimers Dement. 13(10), 1081–1088 (2017). https://ezproxy.cuc.edu.co:2067/10.1016/j.jalz.2017.02.010
Neira-Rodado, D., Nugent, C., Cleland, I., Velasquez, J., Viloria, A.: Evaluating the impact of a two-stage multivariate data cleansing approach to improve to the performance of machine learning classifiers: a case study in human activity recognition. Sensors 20(7), 2020 (1858). https://ezproxy.cuc.edu.co:2067/10.3390/s20071858
Ni, Q., García Hernando, A., de la Cruz, I.: The elderly’s independent living in smart homes: a characterization of activities and sensing infrastructure survey to facilitate services development. Sensors 15(5), 11312–11362 (2015). https://ezproxy.cuc.edu.co:2067/10.3390/s150511312
Mukhopadhyay, S.C.: Wearable sensors for human activity monitoring: a review. IEEE Sens. J. 15(3), 1321–1330 (2015). https://ezproxy.cuc.edu.co:2067/10.1109/JSEN.2014.2370945
Chen, L., Hoey, J., Chris, N., Cook, D., Yu, Z.: Sensor-based activity recognition. IEEE Trans. 42(6), 790–808 (2012)
Kleinberger, T., Becker, M., Ras, E., Holzinger, A., Müller, P.: Ambient intelligence in assisted living: enable elderly people to handle future interfaces. In: Stephanidis, Constantine (ed.) UAHCI 2007. LNCS, vol. 4555, pp. 103–112. Springer, Heidelberg (2007). https://ezproxy.cuc.edu.co:2067/10.1007/978-3-540-73281-5_11
Chen, Y., Xue, Y.: A deep learning approach to human activity recognition based on single accelerometer. In: Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, pp. 1488–1492 (2016). https://ezproxy.cuc.edu.co:2067/10.1109/SMC.2015.263
Qi, W., Su, H., Yang, C., Ferrigno, G., De Momi, E., Aliverti, A.: A fast and robust deep convolutional neural networks for complex human activity recognition using smartphone. Sensors (Switzerland) 19(17), 3731 (2019). https://ezproxy.cuc.edu.co:2067/10.3390/s19173731
Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012). https://ezproxy.cuc.edu.co:2067/10.1145/2347736.2347755
Pires, I., et al.: From data acquisition to data fusion: a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices. Sensors 16(2), 184 (2016). https://ezproxy.cuc.edu.co:2067/10.3390/s16020184
Veeriah, V., Zhuang, N., Qi, G.-J.: Differential recurrent neural networks for action recognition (2015)
Janidarmian, M., Roshan Fekr, A., Radecka, K., Zilic, Z.: A comprehensive analysis on wearable acceleration sensors in human activity recognition. Sensors 17(3), 529 (2017). https://ezproxy.cuc.edu.co:2067/10.3390/s17030529
Tian, Y., Zhang, J., Wang, J., Geng, Y., Wang, X.: Robust human activity recognition using single accelerometer via wavelet energy spectrum features and ensemble feature selection. Syst. Sci. Contr. Eng. 8(1), 83–96 (2020). https://ezproxy.cuc.edu.co:2067/10.1080/21642583.2020.1723142
Li, F., Shirahama, K., Nisar, M.A., Köping, L., Grzegorzek, M.: Comparison of feature learning methods for human activity recognition using wearable sensors. Sensors 18(3), 679 (2018). https://ezproxy.cuc.edu.co:2067/10.3390/s18020679
Irvine, N.: The Impact of Dataset Quality on the Performance of Data-Driven Approaches for Human Activity Recognition, pp. 1–8
Cornacchia, M., Ozcan, K., Zheng, Y., Velipasalar, S.: A survey on activity detection and classification using wearable sensors. IEEE Sens. J. 17(2), 386–403 (2017). https://ezproxy.cuc.edu.co:2067/10.1109/JSEN.2016.2628346
Koziarski, M., Krawczyk, B., Woźniak, M.: The deterministic subspace method for constructing classifier ensembles. Pattern Anal. Appl. 20(4), 981–990 (2017). https://ezproxy.cuc.edu.co:2067/10.1007/s10044-017-0655-2
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer International Publishing
dc.source.spa.fl_str_mv Lecture Notes in Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.springerprofessional.de/en/determination-of-the-most-relevant-features-to-improve-the-perfo/19669904
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/e6128738-9b55-4699-9628-202ad383743b/download
https://repositorio.cuc.edu.co/bitstreams/22867305-e2cf-4d71-b933-5e6d3de5483f/download
https://repositorio.cuc.edu.co/bitstreams/474cb7ec-7c3a-4304-97f5-0c458389d65b/download
https://repositorio.cuc.edu.co/bitstreams/5ee44446-c495-46c2-9322-6c805e019f69/download
https://repositorio.cuc.edu.co/bitstreams/fc2f5ce6-0e84-4c07-9850-578b14991b4a/download
bitstream.checksum.fl_str_mv d69fd0e806211a6300b9ec57058b6f19
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
b14e1c50f5cd3484b36e3d955c3edbfd
165dc7d09cecabc44f32d98ed7774b53
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166880959922176
spelling Jiménez-Gómez, GeovannaNavarro-Escorcia, DanielaNeira Rodado, DionicioCleland, Ian2021-11-08T13:11:42Z2021-11-08T13:11:42Z2021-09-172022-09-17978-303084339-7https://hdl.handle.net/11323/884310.1007/978-3-030-84340-3_3Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The impact that neurodegenerative diseases have in our society, have made human activity recognition (HAR) arise as a relevant field of study. The quality of life of people with such conditions, can be significantly improved with the outcomes of the projects within this area. The application of machine learning techniques on data from low level sensors such as accelerometers is the base of HAR. To improve the performance of these classifiers, it is necessary to carry out an adequate training process. To improve the training process, an analysis of the different features used in literature to tackle these problems was performed on datasets constructed with students performing 18 different activities of daily living. The outcome of the process shows that an adequate selection of features improves the performance of Random Forest from 94.6% to 97.2%. It was also found that 78 features explain 80% of the variability.Jiménez-Gómez, GeovannaNavarro-Escorcia, DanielaNeira Rodado, Dionicio-will be generated-orcid-0000-0003-0837-7083-600Cleland, Ian-will be generated-orcid-0000-0003-2368-7354-600application/pdfengSpringer International PublishingCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfLecture Notes in Computer Sciencehttps://www.springerprofessional.de/en/determination-of-the-most-relevant-features-to-improve-the-perfo/19669904HARMachine learningFeature selectionRF classifierDetermination of the most relevant features to improve the performance of RF classifier in human activity recognitionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionDementia: https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed 15 May 2021Prince, M., Wimo, A., Guerchet, M., Ali, G.-C., Wu, Y.-T., Prina, M.: World Alzheimer Report 2015, The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends, p. 87Prince, M., Comas-Herrera, A., Knapp, M., Guerchet, M., Karagiannidou, M.: World Alzheimer Report 2016 Improving Healthcare for People Living with Dementia Coverage, QualIty and Costs Now and in the FutureDe-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J.M., Espinilla, M.: Sensor-based datasets for human activity recognition - a systematic review of literature. IEEE Access 6, 59192–59210 (2018). https://ezproxy.cuc.edu.co:2067/10.1109/ACCESS.2018.2873502Aparisi, F., Carlos, J., Díaz, G.: Aumento de la potencia del gráfico de control multivariante T 2 de Hotelling utilizando señales adicionales de falta de control (2001)Noor, M.H.M., Salcic, Z., Wang, K.I.K.: Adaptive sliding window segmentation for physical activity recognition using a single tri-axial accelerometer. Perv. Mob. Comput. 38, 41–59 (2017). https://ezproxy.cuc.edu.co:2067/10.1016/j.pmcj.2016.09.009Cerasuolo, J.O., et al.: Population-based stroke and dementia incidence trends: age and sex variations. Alzheimers Dement. 13(10), 1081–1088 (2017). https://ezproxy.cuc.edu.co:2067/10.1016/j.jalz.2017.02.010Neira-Rodado, D., Nugent, C., Cleland, I., Velasquez, J., Viloria, A.: Evaluating the impact of a two-stage multivariate data cleansing approach to improve to the performance of machine learning classifiers: a case study in human activity recognition. Sensors 20(7), 2020 (1858). https://ezproxy.cuc.edu.co:2067/10.3390/s20071858Ni, Q., García Hernando, A., de la Cruz, I.: The elderly’s independent living in smart homes: a characterization of activities and sensing infrastructure survey to facilitate services development. Sensors 15(5), 11312–11362 (2015). https://ezproxy.cuc.edu.co:2067/10.3390/s150511312Mukhopadhyay, S.C.: Wearable sensors for human activity monitoring: a review. IEEE Sens. J. 15(3), 1321–1330 (2015). https://ezproxy.cuc.edu.co:2067/10.1109/JSEN.2014.2370945Chen, L., Hoey, J., Chris, N., Cook, D., Yu, Z.: Sensor-based activity recognition. IEEE Trans. 42(6), 790–808 (2012)Kleinberger, T., Becker, M., Ras, E., Holzinger, A., Müller, P.: Ambient intelligence in assisted living: enable elderly people to handle future interfaces. In: Stephanidis, Constantine (ed.) UAHCI 2007. LNCS, vol. 4555, pp. 103–112. Springer, Heidelberg (2007). https://ezproxy.cuc.edu.co:2067/10.1007/978-3-540-73281-5_11Chen, Y., Xue, Y.: A deep learning approach to human activity recognition based on single accelerometer. In: Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, pp. 1488–1492 (2016). https://ezproxy.cuc.edu.co:2067/10.1109/SMC.2015.263Qi, W., Su, H., Yang, C., Ferrigno, G., De Momi, E., Aliverti, A.: A fast and robust deep convolutional neural networks for complex human activity recognition using smartphone. Sensors (Switzerland) 19(17), 3731 (2019). https://ezproxy.cuc.edu.co:2067/10.3390/s19173731Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012). https://ezproxy.cuc.edu.co:2067/10.1145/2347736.2347755Pires, I., et al.: From data acquisition to data fusion: a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices. Sensors 16(2), 184 (2016). https://ezproxy.cuc.edu.co:2067/10.3390/s16020184Veeriah, V., Zhuang, N., Qi, G.-J.: Differential recurrent neural networks for action recognition (2015)Janidarmian, M., Roshan Fekr, A., Radecka, K., Zilic, Z.: A comprehensive analysis on wearable acceleration sensors in human activity recognition. Sensors 17(3), 529 (2017). https://ezproxy.cuc.edu.co:2067/10.3390/s17030529Tian, Y., Zhang, J., Wang, J., Geng, Y., Wang, X.: Robust human activity recognition using single accelerometer via wavelet energy spectrum features and ensemble feature selection. Syst. Sci. Contr. Eng. 8(1), 83–96 (2020). https://ezproxy.cuc.edu.co:2067/10.1080/21642583.2020.1723142Li, F., Shirahama, K., Nisar, M.A., Köping, L., Grzegorzek, M.: Comparison of feature learning methods for human activity recognition using wearable sensors. Sensors 18(3), 679 (2018). https://ezproxy.cuc.edu.co:2067/10.3390/s18020679Irvine, N.: The Impact of Dataset Quality on the Performance of Data-Driven Approaches for Human Activity Recognition, pp. 1–8Cornacchia, M., Ozcan, K., Zheng, Y., Velipasalar, S.: A survey on activity detection and classification using wearable sensors. IEEE Sens. J. 17(2), 386–403 (2017). https://ezproxy.cuc.edu.co:2067/10.1109/JSEN.2016.2628346Koziarski, M., Krawczyk, B., Woźniak, M.: The deterministic subspace method for constructing classifier ensembles. Pattern Anal. Appl. 20(4), 981–990 (2017). https://ezproxy.cuc.edu.co:2067/10.1007/s10044-017-0655-2PublicationORIGINALDETERMINATION OF THE MOST RELEVANT FEATURES TO IMPROVE THE PERFORMANCE OF RF CLASSIFIER IN HUMAN ACTIVITY RECOGNITION.pdfDETERMINATION OF THE MOST RELEVANT FEATURES TO IMPROVE THE PERFORMANCE OF RF CLASSIFIER IN HUMAN ACTIVITY RECOGNITION.pdfapplication/pdf28853https://repositorio.cuc.edu.co/bitstreams/e6128738-9b55-4699-9628-202ad383743b/downloadd69fd0e806211a6300b9ec57058b6f19MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/22867305-e2cf-4d71-b933-5e6d3de5483f/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/474cb7ec-7c3a-4304-97f5-0c458389d65b/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILDETERMINATION OF THE MOST RELEVANT FEATURES TO IMPROVE THE PERFORMANCE OF RF CLASSIFIER IN HUMAN ACTIVITY RECOGNITION.pdf.jpgDETERMINATION OF THE MOST RELEVANT FEATURES TO IMPROVE THE PERFORMANCE OF RF CLASSIFIER IN HUMAN ACTIVITY RECOGNITION.pdf.jpgimage/jpeg46803https://repositorio.cuc.edu.co/bitstreams/5ee44446-c495-46c2-9322-6c805e019f69/downloadb14e1c50f5cd3484b36e3d955c3edbfdMD54TEXTDETERMINATION OF THE MOST RELEVANT FEATURES TO IMPROVE THE PERFORMANCE OF RF CLASSIFIER IN HUMAN ACTIVITY RECOGNITION.pdf.txtDETERMINATION OF THE MOST RELEVANT FEATURES TO IMPROVE THE PERFORMANCE OF RF CLASSIFIER IN HUMAN ACTIVITY RECOGNITION.pdf.txttext/plain1235https://repositorio.cuc.edu.co/bitstreams/fc2f5ce6-0e84-4c07-9850-578b14991b4a/download165dc7d09cecabc44f32d98ed7774b53MD5511323/8843oai:repositorio.cuc.edu.co:11323/88432024-09-17 14:21:27.17http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==