Efficiency of mining algorithms in academic indicators
Data Mining is the process of analyzing data using automated methodologies to find hidden patterns [1]. Data mining processes aim at the use of the dataset generated by a process or business in order to obtain information that supports decision making at executive levels [2] [3] through the automati...
- Autores:
-
amelec, viloria
Hernandez Palma, Hugo Gaspar
Niebles Núñez, William
Gaitán, Mercedes
Pineda Lezama, Bonerge
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6186
- Acceso en línea:
- https://hdl.handle.net/11323/6186
https://repositorio.cuc.edu.co/
- Palabra clave:
- Data Mining
Mining algorithms
Academic indicators
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_1808c5bec0a6356dd3b25ff77f92cf88 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6186 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efficiency of mining algorithms in academic indicators |
title |
Efficiency of mining algorithms in academic indicators |
spellingShingle |
Efficiency of mining algorithms in academic indicators Data Mining Mining algorithms Academic indicators |
title_short |
Efficiency of mining algorithms in academic indicators |
title_full |
Efficiency of mining algorithms in academic indicators |
title_fullStr |
Efficiency of mining algorithms in academic indicators |
title_full_unstemmed |
Efficiency of mining algorithms in academic indicators |
title_sort |
Efficiency of mining algorithms in academic indicators |
dc.creator.fl_str_mv |
amelec, viloria Hernandez Palma, Hugo Gaspar Niebles Núñez, William Gaitán, Mercedes Pineda Lezama, Bonerge |
dc.contributor.author.spa.fl_str_mv |
amelec, viloria Hernandez Palma, Hugo Gaspar Niebles Núñez, William Gaitán, Mercedes Pineda Lezama, Bonerge |
dc.subject.spa.fl_str_mv |
Data Mining Mining algorithms Academic indicators |
topic |
Data Mining Mining algorithms Academic indicators |
description |
Data Mining is the process of analyzing data using automated methodologies to find hidden patterns [1]. Data mining processes aim at the use of the dataset generated by a process or business in order to obtain information that supports decision making at executive levels [2] [3] through the automation of the process of finding predictable information in large databases and answer to questions that traditionally required intense manual analysis [4]. Due to its definition, data mining is applicable to educational processes, and an example of that is the emergence of a research branch named Educational Data Mining, in which patterns and prediction search techniques are used to find information that contributes to improving educational quality [5]. This paper presents a performance study of data mining algorithms: Decision Tree and Logistic Regression, applied to data generated by the academic function at a higher education institution. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-15T17:00:57Z |
dc.date.available.none.fl_str_mv |
2020-04-15T17:00:57Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1742-6588 1742-6596 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6186 |
dc.identifier.doi.spa.fl_str_mv |
doi:10.1088/1742-6596/1432/1/012030 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1742-6588 1742-6596 doi:10.1088/1742-6596/1432/1/012030 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/6186 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Han, Jiawei. Introduction to Data Mining. San Francisco: Morgan Kaufmann, 2006. págs. 1-20. [2] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24. [3] Huebner, Richard. A survey of educational data-mining research. Norwich: Norwich University, 2013. pág. 13. [4] Maclennan, Jamie. Data Mining with Microsoft SQL Server 2008. Indianapolis, EEUU, Wiley Publishing Inc. 2008. págs. 39-53. [5] Vallejos, Sofía. Minería de Datos. Corrientes, Argentina, Universidad Nacional de Noreste, 2006, págs. 11-16. [6] Viloria, A. "Commercial strategies providers pharmaceutical chains for logistics cost reduction." Indian Journal of Science and Technology 8, no. 1 (2016). [7] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371. [8] Karatzoglou A., Smola A., Hornik K. and Zeileis A. kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9), 1-20, 2004. [9] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009. [10] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012. [11] Venugopal K, K.G. Srinivasa and L. M. Patnaik. Soft Computing for Data Mining Applications. Springer Berlin Heidelberg: Springer-Verlag. ISBN 978-3-642-00192-5, pp 354, 2009. [12] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012. [13] Chapman B, G. Jost and R Van der Pas. Using OpenMP: Portable Shared Memory Parallel Programming Scientific and Engineering Computation. The MIT Press.Massachusetts Institutte of Technology. ISBN 978-0- 262-53302-7. pp 349. 2008. [14] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24. [15] Ceruto T, O. Lapeira, A. Rosete and R. ESPÍN.Discovery of fuzzy predicates in database. Advances in Intelligent Systems Research (AISR Journal), vol. 51, No 1, pp. 45-54, ISSN 19516851, Atlantis Press, 2013. [16] Amelec, V., & Alexander, P. (2015). Improvements in the automatic distribution process of finished product for pet food category in multinational company. Advanced Science Letters, 21(5), 1419-1421. [16] Ruß G. Data Mining of Agricultural Yield Data: A Comparison of Regression Models, In: Perner P. (eds) Advances in Data Mining. Applications and Theoretical Aspects, ICDM 2009. Lecture Notes in Computer Science, vol 5633. [17] Taylor S. and Letham B. prophet: Automatic Forecasting Procedure. R package version 0.1. 2017 [18] Wuo W., Xue H. An incorporative statistic and neural approach for crop yield modelling and forecasting, Neural Computing and Applications, 21(1): 109–117, 2012. [19] Ji, B., Sun Y., Yang S. and Wan J. Artificial neural networks for rice yield prediction in mountainous regions, Journal of Agricultural Science, 145: 249-26, 2007. [20] Karatzoglou A., Smola A., Hornik K. and Zeileis A. kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9), 1-20, 2004 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Journal of Physics: Conference Series |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/49260263-c9cf-48f2-8c9d-910c44b1370f/download https://repositorio.cuc.edu.co/bitstreams/fbb497d2-9bfa-44b8-8b53-4b241d06fc74/download https://repositorio.cuc.edu.co/bitstreams/5eac4e6a-2427-45c6-b7b2-84a1dc5d4642/download https://repositorio.cuc.edu.co/bitstreams/0ff13821-9cd6-4385-8844-2096a922dcfa/download https://repositorio.cuc.edu.co/bitstreams/87bbf8d5-cac7-4eaf-a71a-282e2bf2dec1/download https://repositorio.cuc.edu.co/bitstreams/a340e334-7539-443f-807d-9d2035cad263/download https://repositorio.cuc.edu.co/bitstreams/2b88bb2b-e8d7-4dc5-a116-e253c46bfd11/download |
bitstream.checksum.fl_str_mv |
62efb28920df8ebf85e7cce817a8b356 ed2e7a45fdad5e917bae0e7c420b8e99 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 aa468115cc1140a8dbeeb7b1aca5c845 aa468115cc1140a8dbeeb7b1aca5c845 c61222f67d3be9ec35a8f94aad706c9d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760762825211904 |
spelling |
amelec, viloriaHernandez Palma, Hugo GasparNiebles Núñez, WilliamGaitán, MercedesPineda Lezama, Bonerge2020-04-15T17:00:57Z2020-04-15T17:00:57Z20201742-65881742-6596https://hdl.handle.net/11323/6186doi:10.1088/1742-6596/1432/1/012030Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Data Mining is the process of analyzing data using automated methodologies to find hidden patterns [1]. Data mining processes aim at the use of the dataset generated by a process or business in order to obtain information that supports decision making at executive levels [2] [3] through the automation of the process of finding predictable information in large databases and answer to questions that traditionally required intense manual analysis [4]. Due to its definition, data mining is applicable to educational processes, and an example of that is the emergence of a research branch named Educational Data Mining, in which patterns and prediction search techniques are used to find information that contributes to improving educational quality [5]. This paper presents a performance study of data mining algorithms: Decision Tree and Logistic Regression, applied to data generated by the academic function at a higher education institution.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Hernandez Palma, Hugo Gaspar-will be generated-orcid-0000-0002-3873-0530-600Niebles Núñez, WilliamGaitán, MercedesPineda Lezama, BonergeengJournal of Physics: Conference SeriesCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Data MiningMining algorithmsAcademic indicatorsEfficiency of mining algorithms in academic indicatorsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Han, Jiawei. Introduction to Data Mining. San Francisco: Morgan Kaufmann, 2006. págs. 1-20.[2] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24.[3] Huebner, Richard. A survey of educational data-mining research. Norwich: Norwich University, 2013. pág. 13.[4] Maclennan, Jamie. Data Mining with Microsoft SQL Server 2008. Indianapolis, EEUU, Wiley Publishing Inc. 2008. págs. 39-53.[5] Vallejos, Sofía. Minería de Datos. Corrientes, Argentina, Universidad Nacional de Noreste, 2006, págs. 11-16.[6] Viloria, A. "Commercial strategies providers pharmaceutical chains for logistics cost reduction." Indian Journal of Science and Technology 8, no. 1 (2016).[7] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371.[8] Karatzoglou A., Smola A., Hornik K. and Zeileis A. kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9), 1-20, 2004.[9] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009.[10] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012.[11] Venugopal K, K.G. Srinivasa and L. M. Patnaik. Soft Computing for Data Mining Applications. Springer Berlin Heidelberg: Springer-Verlag. ISBN 978-3-642-00192-5, pp 354, 2009.[12] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012.[13] Chapman B, G. Jost and R Van der Pas. Using OpenMP: Portable Shared Memory Parallel Programming Scientific and Engineering Computation. The MIT Press.Massachusetts Institutte of Technology. ISBN 978-0- 262-53302-7. pp 349. 2008.[14] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24.[15] Ceruto T, O. Lapeira, A. Rosete and R. ESPÍN.Discovery of fuzzy predicates in database. Advances in Intelligent Systems Research (AISR Journal), vol. 51, No 1, pp. 45-54, ISSN 19516851, Atlantis Press, 2013.[16] Amelec, V., & Alexander, P. (2015). Improvements in the automatic distribution process of finished product for pet food category in multinational company. Advanced Science Letters, 21(5), 1419-1421.[16] Ruß G. Data Mining of Agricultural Yield Data: A Comparison of Regression Models, In: Perner P. (eds) Advances in Data Mining. Applications and Theoretical Aspects, ICDM 2009. Lecture Notes in Computer Science, vol 5633.[17] Taylor S. and Letham B. prophet: Automatic Forecasting Procedure. R package version 0.1. 2017[18] Wuo W., Xue H. An incorporative statistic and neural approach for crop yield modelling and forecasting, Neural Computing and Applications, 21(1): 109–117, 2012.[19] Ji, B., Sun Y., Yang S. and Wan J. Artificial neural networks for rice yield prediction in mountainous regions, Journal of Agricultural Science, 145: 249-26, 2007.[20] Karatzoglou A., Smola A., Hornik K. and Zeileis A. kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9), 1-20, 2004PublicationORIGINALEfficiency of Mining Algorithms in Academic Indicators.pdfEfficiency of Mining Algorithms in Academic Indicators.pdfapplication/pdf765802https://repositorio.cuc.edu.co/bitstreams/49260263-c9cf-48f2-8c9d-910c44b1370f/download62efb28920df8ebf85e7cce817a8b356MD51Efficiency of Mining Algorithms in Academic Indicators.pdfEfficiency of Mining Algorithms in Academic Indicators.pdfapplication/pdf1492826https://repositorio.cuc.edu.co/bitstreams/fbb497d2-9bfa-44b8-8b53-4b241d06fc74/downloaded2e7a45fdad5e917bae0e7c420b8e99MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/5eac4e6a-2427-45c6-b7b2-84a1dc5d4642/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/0ff13821-9cd6-4385-8844-2096a922dcfa/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEfficiency of Mining Algorithms in Academic Indicators.pdf.jpgEfficiency of Mining Algorithms in Academic Indicators.pdf.jpgimage/jpeg31523https://repositorio.cuc.edu.co/bitstreams/87bbf8d5-cac7-4eaf-a71a-282e2bf2dec1/downloadaa468115cc1140a8dbeeb7b1aca5c845MD54THUMBNAILEfficiency of Mining Algorithms in Academic Indicators.pdf.jpgEfficiency of Mining Algorithms in Academic Indicators.pdf.jpgimage/jpeg31523https://repositorio.cuc.edu.co/bitstreams/a340e334-7539-443f-807d-9d2035cad263/downloadaa468115cc1140a8dbeeb7b1aca5c845MD54TEXTEfficiency of Mining Algorithms in Academic Indicators.pdf.txtEfficiency of Mining Algorithms in Academic Indicators.pdf.txttext/plain21978https://repositorio.cuc.edu.co/bitstreams/2b88bb2b-e8d7-4dc5-a116-e253c46bfd11/downloadc61222f67d3be9ec35a8f94aad706c9dMD5611323/6186oai:repositorio.cuc.edu.co:11323/61862024-09-17 11:02:21.041http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |