Efficiency of mining algorithms in academic indicators

Data Mining is the process of analyzing data using automated methodologies to find hidden patterns [1]. Data mining processes aim at the use of the dataset generated by a process or business in order to obtain information that supports decision making at executive levels [2] [3] through the automati...

Full description

Autores:
amelec, viloria
Hernandez Palma, Hugo Gaspar
Niebles Núñez, William
Gaitán, Mercedes
Pineda Lezama, Bonerge
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6186
Acceso en línea:
https://hdl.handle.net/11323/6186
https://repositorio.cuc.edu.co/
Palabra clave:
Data Mining
Mining algorithms
Academic indicators
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_1808c5bec0a6356dd3b25ff77f92cf88
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6186
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Efficiency of mining algorithms in academic indicators
title Efficiency of mining algorithms in academic indicators
spellingShingle Efficiency of mining algorithms in academic indicators
Data Mining
Mining algorithms
Academic indicators
title_short Efficiency of mining algorithms in academic indicators
title_full Efficiency of mining algorithms in academic indicators
title_fullStr Efficiency of mining algorithms in academic indicators
title_full_unstemmed Efficiency of mining algorithms in academic indicators
title_sort Efficiency of mining algorithms in academic indicators
dc.creator.fl_str_mv amelec, viloria
Hernandez Palma, Hugo Gaspar
Niebles Núñez, William
Gaitán, Mercedes
Pineda Lezama, Bonerge
dc.contributor.author.spa.fl_str_mv amelec, viloria
Hernandez Palma, Hugo Gaspar
Niebles Núñez, William
Gaitán, Mercedes
Pineda Lezama, Bonerge
dc.subject.spa.fl_str_mv Data Mining
Mining algorithms
Academic indicators
topic Data Mining
Mining algorithms
Academic indicators
description Data Mining is the process of analyzing data using automated methodologies to find hidden patterns [1]. Data mining processes aim at the use of the dataset generated by a process or business in order to obtain information that supports decision making at executive levels [2] [3] through the automation of the process of finding predictable information in large databases and answer to questions that traditionally required intense manual analysis [4]. Due to its definition, data mining is applicable to educational processes, and an example of that is the emergence of a research branch named Educational Data Mining, in which patterns and prediction search techniques are used to find information that contributes to improving educational quality [5]. This paper presents a performance study of data mining algorithms: Decision Tree and Logistic Regression, applied to data generated by the academic function at a higher education institution.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-15T17:00:57Z
dc.date.available.none.fl_str_mv 2020-04-15T17:00:57Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1742-6588
1742-6596
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6186
dc.identifier.doi.spa.fl_str_mv doi:10.1088/1742-6596/1432/1/012030
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1742-6588
1742-6596
doi:10.1088/1742-6596/1432/1/012030
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6186
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Han, Jiawei. Introduction to Data Mining. San Francisco: Morgan Kaufmann, 2006. págs. 1-20.
[2] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24.
[3] Huebner, Richard. A survey of educational data-mining research. Norwich: Norwich University, 2013. pág. 13.
[4] Maclennan, Jamie. Data Mining with Microsoft SQL Server 2008. Indianapolis, EEUU, Wiley Publishing Inc. 2008. págs. 39-53.
[5] Vallejos, Sofía. Minería de Datos. Corrientes, Argentina, Universidad Nacional de Noreste, 2006, págs. 11-16.
[6] Viloria, A. "Commercial strategies providers pharmaceutical chains for logistics cost reduction." Indian Journal of Science and Technology 8, no. 1 (2016).
[7] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371.
[8] Karatzoglou A., Smola A., Hornik K. and Zeileis A. kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9), 1-20, 2004.
[9] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009.
[10] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012.
[11] Venugopal K, K.G. Srinivasa and L. M. Patnaik. Soft Computing for Data Mining Applications. Springer Berlin Heidelberg: Springer-Verlag. ISBN 978-3-642-00192-5, pp 354, 2009.
[12] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012.
[13] Chapman B, G. Jost and R Van der Pas. Using OpenMP: Portable Shared Memory Parallel Programming Scientific and Engineering Computation. The MIT Press.Massachusetts Institutte of Technology. ISBN 978-0- 262-53302-7. pp 349. 2008.
[14] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24.
[15] Ceruto T, O. Lapeira, A. Rosete and R. ESPÍN.Discovery of fuzzy predicates in database. Advances in Intelligent Systems Research (AISR Journal), vol. 51, No 1, pp. 45-54, ISSN 19516851, Atlantis Press, 2013.
[16] Amelec, V., & Alexander, P. (2015). Improvements in the automatic distribution process of finished product for pet food category in multinational company. Advanced Science Letters, 21(5), 1419-1421.
[16] Ruß G. Data Mining of Agricultural Yield Data: A Comparison of Regression Models, In: Perner P. (eds) Advances in Data Mining. Applications and Theoretical Aspects, ICDM 2009. Lecture Notes in Computer Science, vol 5633.
[17] Taylor S. and Letham B. prophet: Automatic Forecasting Procedure. R package version 0.1. 2017
[18] Wuo W., Xue H. An incorporative statistic and neural approach for crop yield modelling and forecasting, Neural Computing and Applications, 21(1): 109–117, 2012.
[19] Ji, B., Sun Y., Yang S. and Wan J. Artificial neural networks for rice yield prediction in mountainous regions, Journal of Agricultural Science, 145: 249-26, 2007.
[20] Karatzoglou A., Smola A., Hornik K. and Zeileis A. kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9), 1-20, 2004
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Physics: Conference Series
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/49260263-c9cf-48f2-8c9d-910c44b1370f/download
https://repositorio.cuc.edu.co/bitstreams/fbb497d2-9bfa-44b8-8b53-4b241d06fc74/download
https://repositorio.cuc.edu.co/bitstreams/5eac4e6a-2427-45c6-b7b2-84a1dc5d4642/download
https://repositorio.cuc.edu.co/bitstreams/0ff13821-9cd6-4385-8844-2096a922dcfa/download
https://repositorio.cuc.edu.co/bitstreams/87bbf8d5-cac7-4eaf-a71a-282e2bf2dec1/download
https://repositorio.cuc.edu.co/bitstreams/a340e334-7539-443f-807d-9d2035cad263/download
https://repositorio.cuc.edu.co/bitstreams/2b88bb2b-e8d7-4dc5-a116-e253c46bfd11/download
bitstream.checksum.fl_str_mv 62efb28920df8ebf85e7cce817a8b356
ed2e7a45fdad5e917bae0e7c420b8e99
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
aa468115cc1140a8dbeeb7b1aca5c845
aa468115cc1140a8dbeeb7b1aca5c845
c61222f67d3be9ec35a8f94aad706c9d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760762825211904
spelling amelec, viloriaHernandez Palma, Hugo GasparNiebles Núñez, WilliamGaitán, MercedesPineda Lezama, Bonerge2020-04-15T17:00:57Z2020-04-15T17:00:57Z20201742-65881742-6596https://hdl.handle.net/11323/6186doi:10.1088/1742-6596/1432/1/012030Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Data Mining is the process of analyzing data using automated methodologies to find hidden patterns [1]. Data mining processes aim at the use of the dataset generated by a process or business in order to obtain information that supports decision making at executive levels [2] [3] through the automation of the process of finding predictable information in large databases and answer to questions that traditionally required intense manual analysis [4]. Due to its definition, data mining is applicable to educational processes, and an example of that is the emergence of a research branch named Educational Data Mining, in which patterns and prediction search techniques are used to find information that contributes to improving educational quality [5]. This paper presents a performance study of data mining algorithms: Decision Tree and Logistic Regression, applied to data generated by the academic function at a higher education institution.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Hernandez Palma, Hugo Gaspar-will be generated-orcid-0000-0002-3873-0530-600Niebles Núñez, WilliamGaitán, MercedesPineda Lezama, BonergeengJournal of Physics: Conference SeriesCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Data MiningMining algorithmsAcademic indicatorsEfficiency of mining algorithms in academic indicatorsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Han, Jiawei. Introduction to Data Mining. San Francisco: Morgan Kaufmann, 2006. págs. 1-20.[2] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24.[3] Huebner, Richard. A survey of educational data-mining research. Norwich: Norwich University, 2013. pág. 13.[4] Maclennan, Jamie. Data Mining with Microsoft SQL Server 2008. Indianapolis, EEUU, Wiley Publishing Inc. 2008. págs. 39-53.[5] Vallejos, Sofía. Minería de Datos. Corrientes, Argentina, Universidad Nacional de Noreste, 2006, págs. 11-16.[6] Viloria, A. "Commercial strategies providers pharmaceutical chains for logistics cost reduction." Indian Journal of Science and Technology 8, no. 1 (2016).[7] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371.[8] Karatzoglou A., Smola A., Hornik K. and Zeileis A. kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9), 1-20, 2004.[9] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009.[10] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012.[11] Venugopal K, K.G. Srinivasa and L. M. Patnaik. Soft Computing for Data Mining Applications. Springer Berlin Heidelberg: Springer-Verlag. ISBN 978-3-642-00192-5, pp 354, 2009.[12] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012.[13] Chapman B, G. Jost and R Van der Pas. Using OpenMP: Portable Shared Memory Parallel Programming Scientific and Engineering Computation. The MIT Press.Massachusetts Institutte of Technology. ISBN 978-0- 262-53302-7. pp 349. 2008.[14] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24.[15] Ceruto T, O. Lapeira, A. Rosete and R. ESPÍN.Discovery of fuzzy predicates in database. Advances in Intelligent Systems Research (AISR Journal), vol. 51, No 1, pp. 45-54, ISSN 19516851, Atlantis Press, 2013.[16] Amelec, V., & Alexander, P. (2015). Improvements in the automatic distribution process of finished product for pet food category in multinational company. Advanced Science Letters, 21(5), 1419-1421.[16] Ruß G. Data Mining of Agricultural Yield Data: A Comparison of Regression Models, In: Perner P. (eds) Advances in Data Mining. Applications and Theoretical Aspects, ICDM 2009. Lecture Notes in Computer Science, vol 5633.[17] Taylor S. and Letham B. prophet: Automatic Forecasting Procedure. R package version 0.1. 2017[18] Wuo W., Xue H. An incorporative statistic and neural approach for crop yield modelling and forecasting, Neural Computing and Applications, 21(1): 109–117, 2012.[19] Ji, B., Sun Y., Yang S. and Wan J. Artificial neural networks for rice yield prediction in mountainous regions, Journal of Agricultural Science, 145: 249-26, 2007.[20] Karatzoglou A., Smola A., Hornik K. and Zeileis A. kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9), 1-20, 2004PublicationORIGINALEfficiency of Mining Algorithms in Academic Indicators.pdfEfficiency of Mining Algorithms in Academic Indicators.pdfapplication/pdf765802https://repositorio.cuc.edu.co/bitstreams/49260263-c9cf-48f2-8c9d-910c44b1370f/download62efb28920df8ebf85e7cce817a8b356MD51Efficiency of Mining Algorithms in Academic Indicators.pdfEfficiency of Mining Algorithms in Academic Indicators.pdfapplication/pdf1492826https://repositorio.cuc.edu.co/bitstreams/fbb497d2-9bfa-44b8-8b53-4b241d06fc74/downloaded2e7a45fdad5e917bae0e7c420b8e99MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/5eac4e6a-2427-45c6-b7b2-84a1dc5d4642/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/0ff13821-9cd6-4385-8844-2096a922dcfa/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEfficiency of Mining Algorithms in Academic Indicators.pdf.jpgEfficiency of Mining Algorithms in Academic Indicators.pdf.jpgimage/jpeg31523https://repositorio.cuc.edu.co/bitstreams/87bbf8d5-cac7-4eaf-a71a-282e2bf2dec1/downloadaa468115cc1140a8dbeeb7b1aca5c845MD54THUMBNAILEfficiency of Mining Algorithms in Academic Indicators.pdf.jpgEfficiency of Mining Algorithms in Academic Indicators.pdf.jpgimage/jpeg31523https://repositorio.cuc.edu.co/bitstreams/a340e334-7539-443f-807d-9d2035cad263/downloadaa468115cc1140a8dbeeb7b1aca5c845MD54TEXTEfficiency of Mining Algorithms in Academic Indicators.pdf.txtEfficiency of Mining Algorithms in Academic Indicators.pdf.txttext/plain21978https://repositorio.cuc.edu.co/bitstreams/2b88bb2b-e8d7-4dc5-a116-e253c46bfd11/downloadc61222f67d3be9ec35a8f94aad706c9dMD5611323/6186oai:repositorio.cuc.edu.co:11323/61862024-09-17 11:02:21.041http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=