Comparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating

It is necessary to study fire safety in buildings because the lack of knowledge in the behavior of materials has taken too many lives. However, this field has designed innovating construction systems and materials such as structural insulated panels (SIP), this is a much more practical alternative f...

Full description

Autores:
Murillo, Michel
Abisambra G., Valery
Acosta P., Aura
Quesada Q., Claudia
Tutikian, Bernardo
Ehrenbring, Hinoel Zamis
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8150
Acceso en línea:
https://hdl.handle.net/11323/8150
https://doi.org/10.1016/j.jmrt.2021.03.079
https://repositorio.cuc.edu.co/
Palabra clave:
EPS
Fire resistance
intumescent coating
SIP
Gypsum plasterboard
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_17cfb3390dfa98f466d10a3289d1765d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8150
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Comparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating
title Comparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating
spellingShingle Comparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating
EPS
Fire resistance
intumescent coating
SIP
Gypsum plasterboard
title_short Comparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating
title_full Comparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating
title_fullStr Comparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating
title_full_unstemmed Comparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating
title_sort Comparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating
dc.creator.fl_str_mv Murillo, Michel
Abisambra G., Valery
Acosta P., Aura
Quesada Q., Claudia
Tutikian, Bernardo
Ehrenbring, Hinoel Zamis
dc.contributor.author.spa.fl_str_mv Murillo, Michel
Abisambra G., Valery
Acosta P., Aura
Quesada Q., Claudia
Tutikian, Bernardo
Ehrenbring, Hinoel Zamis
dc.subject.spa.fl_str_mv EPS
Fire resistance
intumescent coating
SIP
Gypsum plasterboard
topic EPS
Fire resistance
intumescent coating
SIP
Gypsum plasterboard
description It is necessary to study fire safety in buildings because the lack of knowledge in the behavior of materials has taken too many lives. However, this field has designed innovating construction systems and materials such as structural insulated panels (SIP), this is a much more practical alternative for fastest constructions, reducing the amount of material waste, offering cleaner and lighter works, its thermal insulation properties in possible fires and better durability in construction in the account of the various internal compositions. The objective of this article is to evaluate and analyze the fire resistance of two SIP for dividing and structural walls, made up of a core of expanded polystyrene (EPS) with dimensions of 3150x3000mm, one covered with cement board and the other one covered with gypsum plasterboard, both are treated with intumescent paint. The samples were exposed to the fire curve based on the ISO 834: 2014 standard and then analyzed and compared with each other. The obtained results indicate the incorporation of gypsum plasterboards provides a gain of 45 min of resistance to fire, compared to the system it only contains cement board, positively influencing gypsum in the stability and property of the thermal insulation of the panels. Likewise, it was found that intumescent coatings application effectively helps to give the SIP greater protection against fire.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-04-15T13:09:31Z
dc.date.available.none.fl_str_mv 2021-04-15T13:09:31Z
dc.date.issued.none.fl_str_mv 2021-03-29
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2238-7854
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8150
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.jmrt.2021.03.079
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2238-7854
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8150
https://doi.org/10.1016/j.jmrt.2021.03.079
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] R. Myers, Living with fire—Maintaining ecosystems and livelihoods through, U.S.A: The nature conservancy, 2010, p. 7.
[2] S. Huo, P. Song, B. Yu, S. Ran, V. Chevali, L. Liu y Z. Fang, «Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives,» Progress in Polymer Science, vol. 114, 2021.
[3] S. Huo, S. Yang, j. Wang, J. Cheng, Q. Zhang y Y. Hu, «A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances,» Journal of Hazardous Materials, vol. 386, 2020.
[4] D. Kolaits, M. Aristides y E. Asimakopoulou, «BUILDING FIRE BEHAVIOUR IMPLEMENTING GYPSUM PLASTERBOARDS CONTAINING,» researchgate.net, 2011.
[5] MAPFRE y APTB, «STUDY OF FIRE VICTIMS,» www.fundacionmapfre.org, SPAIN, 2019.
[6] N. E. O. o. t. M. o. t. I. a. f. safety, « NEOMI,» JULY 2018. [En línea]. Available: https://www.onemi.gov.cl/incendios-estructurales/. [Último acceso: 30 SEPTIEMBER 2020].
[7] Kaufman, Merill, a. Shlisky y B. kent, «Integrating scientific knowledge into social and economic decisions for ecologically sound fire and,» The natural conservancy, p. 11, JUNIO 2003.
[8] A. CARCAMO y MARIO, «FIRE INVESTIGATION TECHNIQUES,» Septiember 2007. [En línea]. Available: https://www.recercat.cat/bitstream/handle/2072/5372/PFCAnero.pdf?sequence=1. [Último acceso: 23 november 2020].
[9] D. Caballero, «Management of Fire Risks in the Forest Interface,» Fire risk management in the forest-urban interface: WARM project, pp. 505-520, 2004.
[10] M. Murillo, B. Tutikian, V. Ortolan, M. Oliveira, C. Sampaio, L. Gómez y L. Silva, «Fire resistance performance of concrete-PVC panels with polyvinyl chloride (PVC) stay in place (SIP) formwork,» Journal of Materials Research and Technology, vol. 8, pp. 4094 - 4107, 2019.
[11] S. Yang, S. Hou, J. Wang, B. Zhang, J. Wang y S. Ran, «A highly fire-safe and smoke-suppressive single-component epoxy resin with switchable curing temperature and rapid curing rate,» Composites Parte B: Ingenieria, vol. 207, 2021.
[12] C. Wang, S. Hou, S. Lui, Q. Zhang y Z. Liu, «Exfoliated and functionalized boron nitride nanosheets towards improved fire resistance and water tolerance of intumescent fire retardant coating,» Journal of Applied Polymer Science, vol. 138, nº 15, 2020.
[13] S. Liu, C. Wang, Q. Hi, S. Hou, Q. Zhang y Z. Liu, «Intumescent fire retardant coating with recycled powder from industrial effluent optimized using response surface methodology,» Progress in Organic Coathings, vol. 140, 2020.
[14] c. a. R, C. L y A. Casonato, «Improving the high performance concrete (HPC) behaviour in high temperatures,» SCOPUS, vol. 53, nº 271, pp. 17-25, 25 ABRIL 2003.
[15] K. Venkatesh, «Studies on the fire resistance of high-strength concrete at the National Research Council of Canada,» RESEARCHGATE, pp. 75-82, 2010.
[16] E. Mirnateghi, «UC Irvine Electronic Theses and Dissertations,» 2017. [En línea]. Available: https://escholarship.org/content/qt8qr0b9rr/qt8qr0b9rr.pdf?t=onxl97&v=lg. [Último acceso: 28 12 2020].
[17] V. E. Medri, MAZZOCHI, M. LAGHI, L. MORGANTI, M. F. J y L. J, «Production and characterization of lightweight vermiculite/geopolymer-based panels,» scopus, nº 85, pp. 266-274, 2015.
[18] Kolaitis, Dionysios, E. K. Asimakopoulou, Fountu y M. A, «Fire behaviour of gypsum plasterboard wall assemblies: CFD simulation of a full-scale residential building,» fire safety, vol. 7, pp. 23-35, 2017.
[19] L. CASTEJON, M. JIMENEZ y A. MIRAVETE, «Characteristics of sandwich-type structural elements,» CONSTRUCTION MATERIALS, vol. 47, nº 247-248, 1997.
[20] B. J H, M. C. Yew y L. H. Saw, «Development of lightweight fire resistant sandwich panel,» IOP SCIENCE, vol. 476, 2020.
[21] U. Berardi, B. Meacham, N. Dembsey y Y.-G. You, «Fire Performance Assessment of a Fiber Reinforced Polymer Wall Panel Used in a Single Family Dwelling,» Tecnología contra incendios volumen, vol. 50, p. 1607–1617, 2014.
[22] K. CHONG, K. WANG y G. GRIFFTH, «Analysis of continuous sandwich panels in building systems,» SCOPUS, vol. 14, nº 2, pp. 125-130.
[23] allianz, «sandwich panels, fire risks and their prevention,» allianz, 2008. [En línea]. Available: https://www.allianz.com.ar/sites/default/files/productos/Paneles_Sandwich.pdf. [Último acceso: 23 NOVEMBER 2020].
[24] H. Tabatabaiefar, B. Mansoury, J. Mohammad y P. Daniel, «Mechanical properties of sandwich panels constructed from mixed polystyrene / cement cores and thin concrete sheet coatings,» SAGE JOURNAL, vol. 19, nº 4, pp. 456-481, 2015.
[25] R. HAFIZAH, M. SITI AISYAH y A. MUHAMMAD, «Application of expanded polystyrene (EPS) in buildings and constructions: A review,» Journal of Applied Polymer Science, vol. 136, nº 20, 2019.
[26] A. SAYADI, J. TAPIA, T. NEITZERT y C. CLIFTON, «Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of aerated concrete,» SCIENCEDIRECT, vol. 112, pp. 716724, 2016.
[27] L. Wang, C. Wang, L. Pingwei, J. Zhijiao, X. Ge y Y. Jiang, «The fire resistance properties of expandable polystyrene foams coated with an inexpensive and effective barrier layer,» ELSEVIER, vol. 176, pp. 403-414, 2018.
[28] F. PLN, M. T. JAYASINGTHE y C. JAYASINGHE, «Structural feasibility of Expanded Polystyrene (EPS) based lightweight concrete sandwich wall panels,» elsevier, vol. 139, pp. 45-51, 2017.
[29] F. PLN y J. :. C. J. M. TR, «Structural feasibility of Expanded Polystyrene (EPS) based lightweight concrete sandwich wall panels,» ELSEVIER, vol. 139, pp. 4551, 2017.
[30] DINASA, GROUP, «GROUP DINASA,» 20 JULY 2015. [En línea]. Available: https://www.cubiertasdiansa.com/fachadas-y-cubiertas-las-placas-cementicias/. [Último acceso: 13 NOVEMBER 2020].
[31] A. Rojo, Y. Melinge y O. Guillou, «Kinetics of internal structure evolution in gypsum board exposed to standard fire,» Sage journals, vol. 31, nº 5, pp. 395409, 2013.
[32] S. Shepel, K. Ghazi y E. Hugi, «Investigación de la transferencia de calor en placas de yeso expuestas al fuego para tres escenarios nominales de incendio,» Sage Journals, vol. 30, nº 3, pp. 240-244, 2012.
[33] D. Kontogeorgos, I. Mandilaras y M. Founti, «Scrutinizing Gypsum Board Thermal Performance at Dehydration Temperatures,» Sage journals, vol. 29, nº 2, pp. 111130, 2010.
[34] G. Thomas, «Modelling thermal performance of gypsum plasterboard-lined light timber frame walls using SAFIR and TASEF,» FIRE AND MATERIALS, vol. 34, nº 8, pp. 385-406, 2010.
[35] A. P. MOURT, S. Feih, E. Kandare y A. Gibson, «Thermal–mechanical modelling of laminates with fire protection coating,» ELSEVIER, vol. 48, pp. 69-78, 2013.
[36] j. WANG. y M. Zhao, «Study on the effects of aging by accelerated weathering on the intumescent fire retardant coating for steel elements,» Engineering Failure Analysis, vol. 118, 2020.
[37] S. A. o. S. Certification, UNE-EN Asociacion española de normalizacion, Madrid, 2010.
[38] A. Luiz, «.CKC,» [En línea]. Available: https://www.ckc.com.br/index.php/produtos-principal/88-ckc-333-alvenaria.html. [Último acceso: 23 OCTOBER 2020].
[39] International Organization for Standardization, «Fire resistance tests - building construction elements - part 1: general requirements (ISO 834-1),» 1991, p. 53.
[40] A. Gil, F. Pacheco, R. Christ, F. Bolina, K. Khayat y B. Tutikian, «Comparative Study of Concrete Panels’ Fire Resistance,» ACI MATERIALS JOURNAL, vol. 114, nº 5, p. 755, 2017.
[41] P. G. R. E. T. B. Bolina F, «Avaliac¸ão da resistência ao fogo de paredes macic¸as de concreto armado.,» scielo brasil, vol. 15, nº 4, pp. 291-305, 2015.
[42] F. Bolina, G. Prager, E. Rodrigues y B. Tutikian, «Avaliação da resistência ao fogo de paredes maciças de concreto armado,» Scielo, 2016.
[43] S. A. o. S. Certification, UNE-EN Spanish Association of Standardization, Madrid, 2010.
[44] R. Sulong, S. Mustapa y M. Rashid, «Application of expanded polystyrene (EPS) in buildings and constructions: A review,» Scopus, vol. 136, nº 20, 2019.
[45] D. Q, Y. x y L. J, «experimental study on the mechanical properties of EPS in SIP,» SCOPUS, vol. 37, nº 7, pp. 90-97, 2014.
[46] J. TOBIO, «Building materials against fire,» Researchgate.net, vol. 25, nº 243, pp. 49-65, 2014.
[47] K. Ghazi, E. Hugi, L. Wullschleger y F. TH, «Gypsum Board in Fire –Modeling and Experimental-validation,» Sage Journals, vol. 25, nº 3, pp. 267-282, 2007.
[48] AQUAPANEL, «KNAUF,» 2018. [En línea]. Available: https://www.knauf.cl/archivos/Ficha_AQUAPANEL_Outdoor.pdf.
[49] G. J. Griffin, A. Bicknel y t. Brown, «Studies on the Effect of Atmospheric Oxygen Content on the Thermal Resistance of Intumescent, Fire-Retardant Coatings,» Sage journals, vol. 23, nº 4, pp. 303-328, 2005.
[50] Y. Wang y a. Foster, «Experimental and numerical study of temperature developments in PIR,» ELSEVIER, vol. 90, pp. 1-14, 2017.
[51] D. Hopkin, T. Lennon, J. Rimawi y V. . Silberschmidt, «Full-scale natural fire tests on gypsum lined structural insulated panel (SIP),» ELSEVIER, vol. 46, p. 528.542, 2011.
[52] M. A. Sultan, « model for predicting heat transfer through non-insulated discharged gypsum board wall assemblies exposed to fire,» Scopus, vol. 32, nº 3, pp. 239-259, 1996.
[53] S. Shepel, K. Ghazi y E. Hugi, «nvestigation of heat transfer in gypsum plasterboard exposed to fire for three nominal fire scenarios,» Sage Journals, vol. 30, nº 3, pp. 240-255, 2012.
[54] T. Geoff, «Thermal Properties of Gypsum Plasterboard at High Temperatures,» Fire and Materials, vol. 26, nº 1, pp. 37-45, 2002.
[55] U. Caliskan y M. Apala, «Impact penetration and punching performance of square sandwich panels with EPS Foam core,» Procedimientos de la Academia en Ciencias de la Ingeniería, vol. 45, nº 1, p. 35, 2020.
[56] X. Shao, Y. Du, X. Zheng, J. Wang, Y. Wang, S. Zhao, Z. Xin y L. Li, «Reduced fire hazards of expandable polystyrene building materials via intumescent flameretardant coatings,» Journal of Materials Science, vol. 55, nº 17, pp. 7555-7572, 2020.  
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Journal of Materials Research and Technology
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2238785421003069?via%3Dihub
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/6ed9652a-79fe-4283-81e8-cee2ee774a10/download
https://repositorio.cuc.edu.co/bitstreams/5b475f8f-f4bc-41a3-a93d-e23e390a66c1/download
https://repositorio.cuc.edu.co/bitstreams/f89f2193-737e-4566-866f-6484fa36abb0/download
https://repositorio.cuc.edu.co/bitstreams/920988ba-588d-4822-ab8e-94499df61a90/download
https://repositorio.cuc.edu.co/bitstreams/c1fa8e16-0921-4f3b-96aa-460be0e38939/download
https://repositorio.cuc.edu.co/bitstreams/0a6f6f9b-b569-4492-9308-9199931ea329/download
bitstream.checksum.fl_str_mv 586c68114aa9276cc3475ccd41434f76
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
077a2147e87312e63c79c3eed46a69ed
077a2147e87312e63c79c3eed46a69ed
fa179d671279ba72755bd0ce3c3b344e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760739646439424
spelling Murillo, MichelAbisambra G., ValeryAcosta P., AuraQuesada Q., ClaudiaTutikian, BernardoEhrenbring, Hinoel Zamis2021-04-15T13:09:31Z2021-04-15T13:09:31Z2021-03-292238-7854https://hdl.handle.net/11323/8150https://doi.org/10.1016/j.jmrt.2021.03.079Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/It is necessary to study fire safety in buildings because the lack of knowledge in the behavior of materials has taken too many lives. However, this field has designed innovating construction systems and materials such as structural insulated panels (SIP), this is a much more practical alternative for fastest constructions, reducing the amount of material waste, offering cleaner and lighter works, its thermal insulation properties in possible fires and better durability in construction in the account of the various internal compositions. The objective of this article is to evaluate and analyze the fire resistance of two SIP for dividing and structural walls, made up of a core of expanded polystyrene (EPS) with dimensions of 3150x3000mm, one covered with cement board and the other one covered with gypsum plasterboard, both are treated with intumescent paint. The samples were exposed to the fire curve based on the ISO 834: 2014 standard and then analyzed and compared with each other. The obtained results indicate the incorporation of gypsum plasterboards provides a gain of 45 min of resistance to fire, compared to the system it only contains cement board, positively influencing gypsum in the stability and property of the thermal insulation of the panels. Likewise, it was found that intumescent coatings application effectively helps to give the SIP greater protection against fire.Murillo, Michel-will be generated-orcid-0000-0002-2674-1048-600Abisambra G., ValeryAcosta P., AuraQuesada Q., ClaudiaTutikian, Bernardo-will be generated-orcid-0000-0003-1319-0547-600Ehrenbring, Hinoel Zamis-will be generated-orcid-0000-0002-0339-9825-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Materials Research and Technologyhttps://www.sciencedirect.com/science/article/pii/S2238785421003069?via%3DihubEPSFire resistanceintumescent coatingSIPGypsum plasterboardComparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coatingArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] R. Myers, Living with fire—Maintaining ecosystems and livelihoods through, U.S.A: The nature conservancy, 2010, p. 7.[2] S. Huo, P. Song, B. Yu, S. Ran, V. Chevali, L. Liu y Z. Fang, «Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives,» Progress in Polymer Science, vol. 114, 2021.[3] S. Huo, S. Yang, j. Wang, J. Cheng, Q. Zhang y Y. Hu, «A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances,» Journal of Hazardous Materials, vol. 386, 2020.[4] D. Kolaits, M. Aristides y E. Asimakopoulou, «BUILDING FIRE BEHAVIOUR IMPLEMENTING GYPSUM PLASTERBOARDS CONTAINING,» researchgate.net, 2011.[5] MAPFRE y APTB, «STUDY OF FIRE VICTIMS,» www.fundacionmapfre.org, SPAIN, 2019.[6] N. E. O. o. t. M. o. t. I. a. f. safety, « NEOMI,» JULY 2018. [En línea]. Available: https://www.onemi.gov.cl/incendios-estructurales/. [Último acceso: 30 SEPTIEMBER 2020].[7] Kaufman, Merill, a. Shlisky y B. kent, «Integrating scientific knowledge into social and economic decisions for ecologically sound fire and,» The natural conservancy, p. 11, JUNIO 2003.[8] A. CARCAMO y MARIO, «FIRE INVESTIGATION TECHNIQUES,» Septiember 2007. [En línea]. Available: https://www.recercat.cat/bitstream/handle/2072/5372/PFCAnero.pdf?sequence=1. [Último acceso: 23 november 2020].[9] D. Caballero, «Management of Fire Risks in the Forest Interface,» Fire risk management in the forest-urban interface: WARM project, pp. 505-520, 2004.[10] M. Murillo, B. Tutikian, V. Ortolan, M. Oliveira, C. Sampaio, L. Gómez y L. Silva, «Fire resistance performance of concrete-PVC panels with polyvinyl chloride (PVC) stay in place (SIP) formwork,» Journal of Materials Research and Technology, vol. 8, pp. 4094 - 4107, 2019.[11] S. Yang, S. Hou, J. Wang, B. Zhang, J. Wang y S. Ran, «A highly fire-safe and smoke-suppressive single-component epoxy resin with switchable curing temperature and rapid curing rate,» Composites Parte B: Ingenieria, vol. 207, 2021.[12] C. Wang, S. Hou, S. Lui, Q. Zhang y Z. Liu, «Exfoliated and functionalized boron nitride nanosheets towards improved fire resistance and water tolerance of intumescent fire retardant coating,» Journal of Applied Polymer Science, vol. 138, nº 15, 2020.[13] S. Liu, C. Wang, Q. Hi, S. Hou, Q. Zhang y Z. Liu, «Intumescent fire retardant coating with recycled powder from industrial effluent optimized using response surface methodology,» Progress in Organic Coathings, vol. 140, 2020.[14] c. a. R, C. L y A. Casonato, «Improving the high performance concrete (HPC) behaviour in high temperatures,» SCOPUS, vol. 53, nº 271, pp. 17-25, 25 ABRIL 2003.[15] K. Venkatesh, «Studies on the fire resistance of high-strength concrete at the National Research Council of Canada,» RESEARCHGATE, pp. 75-82, 2010.[16] E. Mirnateghi, «UC Irvine Electronic Theses and Dissertations,» 2017. [En línea]. Available: https://escholarship.org/content/qt8qr0b9rr/qt8qr0b9rr.pdf?t=onxl97&v=lg. [Último acceso: 28 12 2020].[17] V. E. Medri, MAZZOCHI, M. LAGHI, L. MORGANTI, M. F. J y L. J, «Production and characterization of lightweight vermiculite/geopolymer-based panels,» scopus, nº 85, pp. 266-274, 2015.[18] Kolaitis, Dionysios, E. K. Asimakopoulou, Fountu y M. A, «Fire behaviour of gypsum plasterboard wall assemblies: CFD simulation of a full-scale residential building,» fire safety, vol. 7, pp. 23-35, 2017.[19] L. CASTEJON, M. JIMENEZ y A. MIRAVETE, «Characteristics of sandwich-type structural elements,» CONSTRUCTION MATERIALS, vol. 47, nº 247-248, 1997.[20] B. J H, M. C. Yew y L. H. Saw, «Development of lightweight fire resistant sandwich panel,» IOP SCIENCE, vol. 476, 2020.[21] U. Berardi, B. Meacham, N. Dembsey y Y.-G. You, «Fire Performance Assessment of a Fiber Reinforced Polymer Wall Panel Used in a Single Family Dwelling,» Tecnología contra incendios volumen, vol. 50, p. 1607–1617, 2014.[22] K. CHONG, K. WANG y G. GRIFFTH, «Analysis of continuous sandwich panels in building systems,» SCOPUS, vol. 14, nº 2, pp. 125-130.[23] allianz, «sandwich panels, fire risks and their prevention,» allianz, 2008. [En línea]. Available: https://www.allianz.com.ar/sites/default/files/productos/Paneles_Sandwich.pdf. [Último acceso: 23 NOVEMBER 2020].[24] H. Tabatabaiefar, B. Mansoury, J. Mohammad y P. Daniel, «Mechanical properties of sandwich panels constructed from mixed polystyrene / cement cores and thin concrete sheet coatings,» SAGE JOURNAL, vol. 19, nº 4, pp. 456-481, 2015.[25] R. HAFIZAH, M. SITI AISYAH y A. MUHAMMAD, «Application of expanded polystyrene (EPS) in buildings and constructions: A review,» Journal of Applied Polymer Science, vol. 136, nº 20, 2019.[26] A. SAYADI, J. TAPIA, T. NEITZERT y C. CLIFTON, «Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of aerated concrete,» SCIENCEDIRECT, vol. 112, pp. 716724, 2016.[27] L. Wang, C. Wang, L. Pingwei, J. Zhijiao, X. Ge y Y. Jiang, «The fire resistance properties of expandable polystyrene foams coated with an inexpensive and effective barrier layer,» ELSEVIER, vol. 176, pp. 403-414, 2018.[28] F. PLN, M. T. JAYASINGTHE y C. JAYASINGHE, «Structural feasibility of Expanded Polystyrene (EPS) based lightweight concrete sandwich wall panels,» elsevier, vol. 139, pp. 45-51, 2017.[29] F. PLN y J. :. C. J. M. TR, «Structural feasibility of Expanded Polystyrene (EPS) based lightweight concrete sandwich wall panels,» ELSEVIER, vol. 139, pp. 4551, 2017.[30] DINASA, GROUP, «GROUP DINASA,» 20 JULY 2015. [En línea]. Available: https://www.cubiertasdiansa.com/fachadas-y-cubiertas-las-placas-cementicias/. [Último acceso: 13 NOVEMBER 2020].[31] A. Rojo, Y. Melinge y O. Guillou, «Kinetics of internal structure evolution in gypsum board exposed to standard fire,» Sage journals, vol. 31, nº 5, pp. 395409, 2013.[32] S. Shepel, K. Ghazi y E. Hugi, «Investigación de la transferencia de calor en placas de yeso expuestas al fuego para tres escenarios nominales de incendio,» Sage Journals, vol. 30, nº 3, pp. 240-244, 2012.[33] D. Kontogeorgos, I. Mandilaras y M. Founti, «Scrutinizing Gypsum Board Thermal Performance at Dehydration Temperatures,» Sage journals, vol. 29, nº 2, pp. 111130, 2010.[34] G. Thomas, «Modelling thermal performance of gypsum plasterboard-lined light timber frame walls using SAFIR and TASEF,» FIRE AND MATERIALS, vol. 34, nº 8, pp. 385-406, 2010.[35] A. P. MOURT, S. Feih, E. Kandare y A. Gibson, «Thermal–mechanical modelling of laminates with fire protection coating,» ELSEVIER, vol. 48, pp. 69-78, 2013.[36] j. WANG. y M. Zhao, «Study on the effects of aging by accelerated weathering on the intumescent fire retardant coating for steel elements,» Engineering Failure Analysis, vol. 118, 2020.[37] S. A. o. S. Certification, UNE-EN Asociacion española de normalizacion, Madrid, 2010.[38] A. Luiz, «.CKC,» [En línea]. Available: https://www.ckc.com.br/index.php/produtos-principal/88-ckc-333-alvenaria.html. [Último acceso: 23 OCTOBER 2020].[39] International Organization for Standardization, «Fire resistance tests - building construction elements - part 1: general requirements (ISO 834-1),» 1991, p. 53.[40] A. Gil, F. Pacheco, R. Christ, F. Bolina, K. Khayat y B. Tutikian, «Comparative Study of Concrete Panels’ Fire Resistance,» ACI MATERIALS JOURNAL, vol. 114, nº 5, p. 755, 2017.[41] P. G. R. E. T. B. Bolina F, «Avaliac¸ão da resistência ao fogo de paredes macic¸as de concreto armado.,» scielo brasil, vol. 15, nº 4, pp. 291-305, 2015.[42] F. Bolina, G. Prager, E. Rodrigues y B. Tutikian, «Avaliação da resistência ao fogo de paredes maciças de concreto armado,» Scielo, 2016.[43] S. A. o. S. Certification, UNE-EN Spanish Association of Standardization, Madrid, 2010.[44] R. Sulong, S. Mustapa y M. Rashid, «Application of expanded polystyrene (EPS) in buildings and constructions: A review,» Scopus, vol. 136, nº 20, 2019.[45] D. Q, Y. x y L. J, «experimental study on the mechanical properties of EPS in SIP,» SCOPUS, vol. 37, nº 7, pp. 90-97, 2014.[46] J. TOBIO, «Building materials against fire,» Researchgate.net, vol. 25, nº 243, pp. 49-65, 2014.[47] K. Ghazi, E. Hugi, L. Wullschleger y F. TH, «Gypsum Board in Fire –Modeling and Experimental-validation,» Sage Journals, vol. 25, nº 3, pp. 267-282, 2007.[48] AQUAPANEL, «KNAUF,» 2018. [En línea]. Available: https://www.knauf.cl/archivos/Ficha_AQUAPANEL_Outdoor.pdf.[49] G. J. Griffin, A. Bicknel y t. Brown, «Studies on the Effect of Atmospheric Oxygen Content on the Thermal Resistance of Intumescent, Fire-Retardant Coatings,» Sage journals, vol. 23, nº 4, pp. 303-328, 2005.[50] Y. Wang y a. Foster, «Experimental and numerical study of temperature developments in PIR,» ELSEVIER, vol. 90, pp. 1-14, 2017.[51] D. Hopkin, T. Lennon, J. Rimawi y V. . Silberschmidt, «Full-scale natural fire tests on gypsum lined structural insulated panel (SIP),» ELSEVIER, vol. 46, p. 528.542, 2011.[52] M. A. Sultan, « model for predicting heat transfer through non-insulated discharged gypsum board wall assemblies exposed to fire,» Scopus, vol. 32, nº 3, pp. 239-259, 1996.[53] S. Shepel, K. Ghazi y E. Hugi, «nvestigation of heat transfer in gypsum plasterboard exposed to fire for three nominal fire scenarios,» Sage Journals, vol. 30, nº 3, pp. 240-255, 2012.[54] T. Geoff, «Thermal Properties of Gypsum Plasterboard at High Temperatures,» Fire and Materials, vol. 26, nº 1, pp. 37-45, 2002.[55] U. Caliskan y M. Apala, «Impact penetration and punching performance of square sandwich panels with EPS Foam core,» Procedimientos de la Academia en Ciencias de la Ingeniería, vol. 45, nº 1, p. 35, 2020.[56] X. Shao, Y. Du, X. Zheng, J. Wang, Y. Wang, S. Zhao, Z. Xin y L. Li, «Reduced fire hazards of expandable polystyrene building materials via intumescent flameretardant coatings,» Journal of Materials Science, vol. 55, nº 17, pp. 7555-7572, 2020.  PublicationORIGINALComparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating.pdfComparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating.pdfapplication/pdf5416703https://repositorio.cuc.edu.co/bitstreams/6ed9652a-79fe-4283-81e8-cee2ee774a10/download586c68114aa9276cc3475ccd41434f76MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/5b475f8f-f4bc-41a3-a93d-e23e390a66c1/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/f89f2193-737e-4566-866f-6484fa36abb0/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILComparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating.pdf.jpgComparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating.pdf.jpgimage/jpeg36952https://repositorio.cuc.edu.co/bitstreams/920988ba-588d-4822-ab8e-94499df61a90/download077a2147e87312e63c79c3eed46a69edMD54THUMBNAILComparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating.pdf.jpgComparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating.pdf.jpgimage/jpeg36952https://repositorio.cuc.edu.co/bitstreams/c1fa8e16-0921-4f3b-96aa-460be0e38939/download077a2147e87312e63c79c3eed46a69edMD54TEXTComparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating.pdf.txtComparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating.pdf.txttext/plain51291https://repositorio.cuc.edu.co/bitstreams/0a6f6f9b-b569-4492-9308-9199931ea329/downloadfa179d671279ba72755bd0ce3c3b344eMD5511323/8150oai:repositorio.cuc.edu.co:11323/81502024-09-17 10:54:27.565http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==