Minimal open sets on generalized topological space

We introduce the notion of minimal open sets in a generalized topological space (X μ). We investigate some of their fundamental properties and proved that any subset of a minimal open set on a GTS (X μ) is a μ-preopen set

Autores:
Carpintero, Carlos R
Rosas, Ennis R
Salas Brown, Margot
Sanabria, Jose E
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2223
Acceso en línea:
https://hdl.handle.net/11323/2223
https://repositorio.cuc.edu.co/
Palabra clave:
Generalized topology
Minimal μ-open sets
μ-pre-Hausdorff space
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_16f8bbb0e65d133f9f3647cd9172a02b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/2223
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Minimal open sets on generalized topological space
title Minimal open sets on generalized topological space
spellingShingle Minimal open sets on generalized topological space
Generalized topology
Minimal μ-open sets
μ-pre-Hausdorff space
title_short Minimal open sets on generalized topological space
title_full Minimal open sets on generalized topological space
title_fullStr Minimal open sets on generalized topological space
title_full_unstemmed Minimal open sets on generalized topological space
title_sort Minimal open sets on generalized topological space
dc.creator.fl_str_mv Carpintero, Carlos R
Rosas, Ennis R
Salas Brown, Margot
Sanabria, Jose E
dc.contributor.author.spa.fl_str_mv Carpintero, Carlos R
Rosas, Ennis R
Salas Brown, Margot
Sanabria, Jose E
dc.subject.spa.fl_str_mv Generalized topology
Minimal μ-open sets
μ-pre-Hausdorff space
topic Generalized topology
Minimal μ-open sets
μ-pre-Hausdorff space
description We introduce the notion of minimal open sets in a generalized topological space (X μ). We investigate some of their fundamental properties and proved that any subset of a minimal open set on a GTS (X μ) is a μ-preopen set
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-09
dc.date.accessioned.none.fl_str_mv 2019-01-24T23:19:52Z
dc.date.available.none.fl_str_mv 2019-01-24T23:19:52Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 07160917
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/2223
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 07160917
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/2223
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Proyecciones
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/bc0cb8ce-a420-4c98-8bbd-d1bb6625faf4/download
https://repositorio.cuc.edu.co/bitstreams/eefbc5cb-bbdb-4dd3-a0b4-85bc05f3fe33/download
https://repositorio.cuc.edu.co/bitstreams/a71531c2-3284-4157-866b-2a9bdf5ca5a8/download
https://repositorio.cuc.edu.co/bitstreams/73fe419e-d9a2-47c9-be35-1947dc8c6c6a/download
bitstream.checksum.fl_str_mv 4f570eaa27635ec4cfd5903ac15044ee
8a4605be74aa9ea9d79846c1fba20a33
60f26bb58773b69fdf7ac23deba9f8ba
d9edbb76b4f46016894c026a23fd7736
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760785929535488
spelling Carpintero, Carlos RRosas, Ennis RSalas Brown, MargotSanabria, Jose E2019-01-24T23:19:52Z2019-01-24T23:19:52Z2017-0907160917https://hdl.handle.net/11323/2223Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/We introduce the notion of minimal open sets in a generalized topological space (X μ). We investigate some of their fundamental properties and proved that any subset of a minimal open set on a GTS (X μ) is a μ-preopen setCarpintero, Carlos R-bf242d48-c8df-4cb0-93e3-e2c80c000816-600Rosas, Ennis R-30d52fa6-1d46-4a81-a8e9-90e7b9776f95-600Salas Brown, Margot-811fd9d4-64f3-4cd3-9e69-cfcbfe8a830c-600Sanabria, Jose E-063f0548-a32b-451f-b9f0-475c04482039-600engProyeccionesAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Generalized topologyMinimal μ-open setsμ-pre-Hausdorff spaceMinimal open sets on generalized topological spaceArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALMinimal open sets on generalized topological.pdfMinimal open sets on generalized topological.pdfapplication/pdf137935https://repositorio.cuc.edu.co/bitstreams/bc0cb8ce-a420-4c98-8bbd-d1bb6625faf4/download4f570eaa27635ec4cfd5903ac15044eeMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/eefbc5cb-bbdb-4dd3-a0b4-85bc05f3fe33/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILMinimal open sets on generalized topological.pdf.jpgMinimal open sets on generalized topological.pdf.jpgimage/jpeg26135https://repositorio.cuc.edu.co/bitstreams/a71531c2-3284-4157-866b-2a9bdf5ca5a8/download60f26bb58773b69fdf7ac23deba9f8baMD54TEXTMinimal open sets on generalized topological.pdf.txtMinimal open sets on generalized topological.pdf.txttext/plain24979https://repositorio.cuc.edu.co/bitstreams/73fe419e-d9a2-47c9-be35-1947dc8c6c6a/downloadd9edbb76b4f46016894c026a23fd7736MD5511323/2223oai:repositorio.cuc.edu.co:11323/22232024-09-17 11:08:55.231open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=