Integration of data mining classification techniques and ensemble learning for predicting the export potential of a company

In this research, data mining techniques are integrated with Ensemble Learning for predicting the export potential of a company. The analysis covers the stages of measurement, evaluation and classification of companies, based on a proposal of 16 key factors of the export potential. The techniques st...

Full description

Autores:
Silva, Jesus
Romero Borré, Jenny
Piñeres Castillo, Aurora Patricia
Castro, Ligia
Varela, Noel
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/4833
Acceso en línea:
https://hdl.handle.net/11323/4833
https://repositorio.cuc.edu.co/
Palabra clave:
K-Means clustering
classification models
export potential
competitiveness
data mining
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_16d6578d6b6d82fef76b0aa06d0fa7c3
oai_identifier_str oai:repositorio.cuc.edu.co:11323/4833
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Integration of data mining classification techniques and ensemble learning for predicting the export potential of a company
title Integration of data mining classification techniques and ensemble learning for predicting the export potential of a company
spellingShingle Integration of data mining classification techniques and ensemble learning for predicting the export potential of a company
K-Means clustering
classification models
export potential
competitiveness
data mining
title_short Integration of data mining classification techniques and ensemble learning for predicting the export potential of a company
title_full Integration of data mining classification techniques and ensemble learning for predicting the export potential of a company
title_fullStr Integration of data mining classification techniques and ensemble learning for predicting the export potential of a company
title_full_unstemmed Integration of data mining classification techniques and ensemble learning for predicting the export potential of a company
title_sort Integration of data mining classification techniques and ensemble learning for predicting the export potential of a company
dc.creator.fl_str_mv Silva, Jesus
Romero Borré, Jenny
Piñeres Castillo, Aurora Patricia
Castro, Ligia
Varela, Noel
dc.contributor.author.spa.fl_str_mv Silva, Jesus
Romero Borré, Jenny
Piñeres Castillo, Aurora Patricia
Castro, Ligia
Varela, Noel
dc.subject.spa.fl_str_mv K-Means clustering
classification models
export potential
competitiveness
data mining
topic K-Means clustering
classification models
export potential
competitiveness
data mining
description In this research, data mining techniques are integrated with Ensemble Learning for predicting the export potential of a company. The analysis covers the stages of measurement, evaluation and classification of companies, based on a proposal of 16 key factors of the export potential. The techniques standing out are: Synthetic Minority Oversampling Technique (Smote), K-Means Clustering, Generalized Regression Neural Network (GRNN), Feed Forward Back Propagation Neural Network (FFBPN), Support Vector Machine (SVM), Decision Tree (DT) and Naive Bayes. The neural network classifiers like GRNN and FFBPN are used for classification in MATLAB in the numeric form of data with a training and testing data ratio of 70% and 30% respectively. The accuracy of other classifiers such as SVM, DT and Naive Bayes is calculated on the nominal form of data with 80% data split. Artificial neural networks showed 85.7% of ability to discriminate and classify companies according to their competitive profile.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-06-10T13:19:20Z
dc.date.available.none.fl_str_mv 2019-06-10T13:19:20Z
dc.date.issued.none.fl_str_mv 2019
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0000-2010
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/4833
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0000-2010
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/4833
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Escandón, D., y Hurtado, A., Los determinantes de la orientación exportadora y los resultados en las pymes exportadoras en Colombia, Estudios Gerenciales, 30(133), 430–440 (2014). [2] Cabarcas, J., y Paternina, C., Aplicación del análisis discriminante para identificar diferencias en el perfil productivo de las empresas exportadoras y no exportadoras del Departamento del Atlántico de Colombia, Revista Ingeniare, 6(10), 33–48 (2011) [3] Smith, D., A Neural Network Classification of Export Success in Japanese Service Firms, Services Marketing Quarterly, 26(4), 95–108 (2005). [4] Correia, A., Barandas, H., y PIres, P., Applying Artificial Neural Networks to Evaluate Export Performance : A Relational Approach, Review of Onternational Comparative Management, 10(4), 713–734 (2009) [5] Obschatko, E., y Blaio, M., El perfil exportador del sector agroalimentario argentino. Las profucciones de alto valor. Estudio 1. EG.33.7. Ministerio de Economía de Argentina (2003) [6] Paredes, D., Elaboración del plan de negocios de exportación. Programa de Plan de Negocio, Exportador- PLANEX. Disponible en: https://goo.gl/oTnARL (2016) [7] Lis-Gutiérrez JP., Gaitán-Angulo M., Balaguera MI., Viloria A., Santander-Abril JE. (2018) Use of the Industrial Property System for New Creations in Colombia: A Departmental Analysis (2000–2016). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [8] Caridad, J. M., & Ceular, N. (2001). “Un análisis del mercado de la vivienda a través de redes neuronales artificiales”. Estudios de economía aplicada, (18), pp. 67-81. [9] Uberbacher, E. C., & Mural, R. J. (1991). “Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach”. Proceedings of the National Academy of Sciences, 88(24), pp.11261-11265. [10] Olmedo, E., Velasco, F., & Valderas, J. M. (2007). “Caracterización no lineal y predicción no paramétrica en el IBEX35”. Estudios de Economía Aplicada, 25(3). [11] De La Hoz, E., González, Á., y Santana, A., Metodología de Medición del Potencial Exportador de las Organizaciones Empresariales, Información Tecnológica, 27(6), 11–18 (2016) [12] De La Hoz, E., López P. Aplicación de Técnicas de Análisis de Conglomerados y Redes Neuronales Artificiales en la Evaluación del Potencial Exportador de una Empresa. Información Tecnológica. Vol. 28(4), 67-74 (2017). [13] Qazi, N. Effectof Feature Selection, Synthetic Minority Over-sampling (SMOTE) And Under- sampling on Class imbalance Classification. https://doi.org/10.1109/UKSim.116 (2012) [14] Sharmila, S., & Kumar, M. An optimized farthest first clustering algorithm.Nirma University International Conference on Engineering, NUiCONE 2013, 1–5. https://doi.org/10.1109/NUiCONE.2013.6780070 (2013) [15] Kumar, G., & Malik, H. Generalized Regression Neural Network Based Wind Speed Prediction Model for Western Region of India. Procedia Computer Science, 93(September), 26–32. https://doi.org/10.1016/j.procs.07.177 (2016) [16] Sun, G., Hoff, S., Zelle, B., & Nelson, M.Development and Comparison of Backpropagation and Generalized Regression Neural Network Models to Predict Diurnal and Seasonal Gas and PM 10 Concentrations and Emissions from Swine Buildings, 0300(08) (2008). [17] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371 [18] Amelec, V., & Alexander, P. (2015). Improvements in the Automatic Distribution Process of Finished Product for Pet Food Category in Multinational Company. Advanced Science Letters, 21(5), 1419-1421. [19] Viloria, A., & Robayo, P. V. (2016). Inventory reduction in the supply chain of finished products for multinational companies. Indian Journal of Science and Technology, 8(1).
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d1cb97e1-d7a8-4365-8a8b-e5dd5e3725f7/download
https://repositorio.cuc.edu.co/bitstreams/b28ed1fd-6c86-4305-9c68-d068e909b35f/download
https://repositorio.cuc.edu.co/bitstreams/8fc3cf5d-1777-4605-a31d-67a06f959fc3/download
https://repositorio.cuc.edu.co/bitstreams/4af01316-a5c4-4f91-8f18-5535f61f6101/download
https://repositorio.cuc.edu.co/bitstreams/4c7457b8-ae2f-44c3-8d2f-71236b205c96/download
bitstream.checksum.fl_str_mv 16e10d2ad26d442f24ce5b2119e2f5e7
4460e5956bc1d1639be9ae6146a50347
8a4605be74aa9ea9d79846c1fba20a33
008bd727f1b835dee11654791ac615f2
21612233825bece118f2de7ba6d8f45f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760810770300928
spelling Silva, JesusRomero Borré, JennyPiñeres Castillo, Aurora PatriciaCastro, LigiaVarela, Noel2019-06-10T13:19:20Z2019-06-10T13:19:20Z20190000-2010https://hdl.handle.net/11323/4833Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this research, data mining techniques are integrated with Ensemble Learning for predicting the export potential of a company. The analysis covers the stages of measurement, evaluation and classification of companies, based on a proposal of 16 key factors of the export potential. The techniques standing out are: Synthetic Minority Oversampling Technique (Smote), K-Means Clustering, Generalized Regression Neural Network (GRNN), Feed Forward Back Propagation Neural Network (FFBPN), Support Vector Machine (SVM), Decision Tree (DT) and Naive Bayes. The neural network classifiers like GRNN and FFBPN are used for classification in MATLAB in the numeric form of data with a training and testing data ratio of 70% and 30% respectively. The accuracy of other classifiers such as SVM, DT and Naive Bayes is calculated on the nominal form of data with 80% data split. Artificial neural networks showed 85.7% of ability to discriminate and classify companies according to their competitive profile.Silva, Jesus-60750872-819f-4163-bbb8-c33aee0e2cf1-0Romero Borré, Jenny-ed4876b7-e00b-4362-88e3-7fd43bd7e710-0Piñeres Castillo, Aurora Patricia-0000-0003-2445-8297-600Castro, Ligia-d779f322-c772-4069-835f-e62e7b4f7aa7-0Varela, Noel-e2c4502e-24e6-484a-9820-77a41202aeca-0engProcedia Computer ScienceAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2K-Means clusteringclassification modelsexport potentialcompetitivenessdata miningIntegration of data mining classification techniques and ensemble learning for predicting the export potential of a companyArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Escandón, D., y Hurtado, A., Los determinantes de la orientación exportadora y los resultados en las pymes exportadoras en Colombia, Estudios Gerenciales, 30(133), 430–440 (2014). [2] Cabarcas, J., y Paternina, C., Aplicación del análisis discriminante para identificar diferencias en el perfil productivo de las empresas exportadoras y no exportadoras del Departamento del Atlántico de Colombia, Revista Ingeniare, 6(10), 33–48 (2011) [3] Smith, D., A Neural Network Classification of Export Success in Japanese Service Firms, Services Marketing Quarterly, 26(4), 95–108 (2005). [4] Correia, A., Barandas, H., y PIres, P., Applying Artificial Neural Networks to Evaluate Export Performance : A Relational Approach, Review of Onternational Comparative Management, 10(4), 713–734 (2009) [5] Obschatko, E., y Blaio, M., El perfil exportador del sector agroalimentario argentino. Las profucciones de alto valor. Estudio 1. EG.33.7. Ministerio de Economía de Argentina (2003) [6] Paredes, D., Elaboración del plan de negocios de exportación. Programa de Plan de Negocio, Exportador- PLANEX. Disponible en: https://goo.gl/oTnARL (2016) [7] Lis-Gutiérrez JP., Gaitán-Angulo M., Balaguera MI., Viloria A., Santander-Abril JE. (2018) Use of the Industrial Property System for New Creations in Colombia: A Departmental Analysis (2000–2016). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [8] Caridad, J. M., & Ceular, N. (2001). “Un análisis del mercado de la vivienda a través de redes neuronales artificiales”. Estudios de economía aplicada, (18), pp. 67-81. [9] Uberbacher, E. C., & Mural, R. J. (1991). “Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach”. Proceedings of the National Academy of Sciences, 88(24), pp.11261-11265. [10] Olmedo, E., Velasco, F., & Valderas, J. M. (2007). “Caracterización no lineal y predicción no paramétrica en el IBEX35”. Estudios de Economía Aplicada, 25(3). [11] De La Hoz, E., González, Á., y Santana, A., Metodología de Medición del Potencial Exportador de las Organizaciones Empresariales, Información Tecnológica, 27(6), 11–18 (2016) [12] De La Hoz, E., López P. Aplicación de Técnicas de Análisis de Conglomerados y Redes Neuronales Artificiales en la Evaluación del Potencial Exportador de una Empresa. Información Tecnológica. Vol. 28(4), 67-74 (2017). [13] Qazi, N. Effectof Feature Selection, Synthetic Minority Over-sampling (SMOTE) And Under- sampling on Class imbalance Classification. https://doi.org/10.1109/UKSim.116 (2012) [14] Sharmila, S., & Kumar, M. An optimized farthest first clustering algorithm.Nirma University International Conference on Engineering, NUiCONE 2013, 1–5. https://doi.org/10.1109/NUiCONE.2013.6780070 (2013) [15] Kumar, G., & Malik, H. Generalized Regression Neural Network Based Wind Speed Prediction Model for Western Region of India. Procedia Computer Science, 93(September), 26–32. https://doi.org/10.1016/j.procs.07.177 (2016) [16] Sun, G., Hoff, S., Zelle, B., & Nelson, M.Development and Comparison of Backpropagation and Generalized Regression Neural Network Models to Predict Diurnal and Seasonal Gas and PM 10 Concentrations and Emissions from Swine Buildings, 0300(08) (2008). [17] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371 [18] Amelec, V., & Alexander, P. (2015). Improvements in the Automatic Distribution Process of Finished Product for Pet Food Category in Multinational Company. Advanced Science Letters, 21(5), 1419-1421. [19] Viloria, A., & Robayo, P. V. (2016). Inventory reduction in the supply chain of finished products for multinational companies. Indian Journal of Science and Technology, 8(1).PublicationORIGINALIntegration of Data Mining Classification Techniques and Ensemble Learning for Predicting the Export Potential of a Company.pdfIntegration of Data Mining Classification Techniques and Ensemble Learning for Predicting the Export Potential of a Company.pdfapplication/pdf602850https://repositorio.cuc.edu.co/bitstreams/d1cb97e1-d7a8-4365-8a8b-e5dd5e3725f7/download16e10d2ad26d442f24ce5b2119e2f5e7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/b28ed1fd-6c86-4305-9c68-d068e909b35f/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/8fc3cf5d-1777-4605-a31d-67a06f959fc3/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILIntegration of Data Mining Classification Techniques and Ensemble Learning for Predicting the Export Potential of a Company.pdf.jpgIntegration of Data Mining Classification Techniques and Ensemble Learning for Predicting the Export Potential of a Company.pdf.jpgimage/jpeg45150https://repositorio.cuc.edu.co/bitstreams/4af01316-a5c4-4f91-8f18-5535f61f6101/download008bd727f1b835dee11654791ac615f2MD55TEXTIntegration of Data Mining Classification Techniques and Ensemble Learning for Predicting the Export Potential of a Company.pdf.txtIntegration of Data Mining Classification Techniques and Ensemble Learning for Predicting the Export Potential of a Company.pdf.txttext/plain32309https://repositorio.cuc.edu.co/bitstreams/4c7457b8-ae2f-44c3-8d2f-71236b205c96/download21612233825bece118f2de7ba6d8f45fMD5611323/4833oai:repositorio.cuc.edu.co:11323/48332024-09-17 12:48:05.784http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=