A review of the engineering properties of metakaolin based concrete: towards combatting chloride attack in coastal/ marine structures

Changing human lifestyle and increasing urbanisation are contributory factors to the high demand for concrete construction materials across the globe. With the imminent developments in the unpopulated marine/coastal zones, higher installation of concrete facilities is still expected. However, poor d...

Full description

Autores:
Pillay, Deveshan L.
Olalusi, Oladimeji B.
Awoyera, Paul O.
Rondon, Carlos
Echeverría, Ana María
Temitope Kolawole, John
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7724
Acceso en línea:
https://hdl.handle.net/11323/7724
https://doi.org/10.1155/2020/8880974
https://repositorio.cuc.edu.co/
Palabra clave:
Metakaolin
Concrete
Chloride
Marine structures
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_15a39a07a1afbb14e0dc55c4ceb166a5
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7724
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv A review of the engineering properties of metakaolin based concrete: towards combatting chloride attack in coastal/ marine structures
title A review of the engineering properties of metakaolin based concrete: towards combatting chloride attack in coastal/ marine structures
spellingShingle A review of the engineering properties of metakaolin based concrete: towards combatting chloride attack in coastal/ marine structures
Metakaolin
Concrete
Chloride
Marine structures
title_short A review of the engineering properties of metakaolin based concrete: towards combatting chloride attack in coastal/ marine structures
title_full A review of the engineering properties of metakaolin based concrete: towards combatting chloride attack in coastal/ marine structures
title_fullStr A review of the engineering properties of metakaolin based concrete: towards combatting chloride attack in coastal/ marine structures
title_full_unstemmed A review of the engineering properties of metakaolin based concrete: towards combatting chloride attack in coastal/ marine structures
title_sort A review of the engineering properties of metakaolin based concrete: towards combatting chloride attack in coastal/ marine structures
dc.creator.fl_str_mv Pillay, Deveshan L.
Olalusi, Oladimeji B.
Awoyera, Paul O.
Rondon, Carlos
Echeverría, Ana María
Temitope Kolawole, John
dc.contributor.author.spa.fl_str_mv Pillay, Deveshan L.
Olalusi, Oladimeji B.
Awoyera, Paul O.
Rondon, Carlos
Echeverría, Ana María
Temitope Kolawole, John
dc.subject.spa.fl_str_mv Metakaolin
Concrete
Chloride
Marine structures
topic Metakaolin
Concrete
Chloride
Marine structures
description Changing human lifestyle and increasing urbanisation are contributory factors to the high demand for concrete construction materials across the globe. With the imminent developments in the unpopulated marine/coastal zones, higher installation of concrete facilities is still expected. However, poor design and construction procedures coupled with inadequate materials selection and exposure to aggressive environmental conditions, such as chloride laden environments, often result in the reduced aesthetic and structural performance of concrete. Deterioration of reinforced concrete structures located in a coastal/marine setting can influence the safety, economic, and sustainability aspects of society. Hence, there is an increased need for alternate binder systems with the ability to reduce the effects of chloride attack in concrete. 1is paper presents a critical review of the engineering properties of metakaolin (MK) based concrete exposed to chloride attack. 1e key advantages and limitations of using MK for concrete production purposes were outlined and evaluated. Areas for future research were also highlighted in this paper. Based on the favourable 28-day compressive strength (73–84 MPa) and durability performance documented across the numerous past year studies that were reviewed, it can be concluded that MK is a viable alternate binder material for combatting chloride attack in coastal/marine concrete structures. 1is, in conjunction with its lack of chemical CO2 emissions, proves that MK can be used to improve the serviceability and sustainability states of marine structures. 1e viewpoint of this review will guide concrete constructors and researchers on a possible framework for the utilisation of metakaolin for enhancing durability concrete in aggressive environments.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-10-10
dc.date.accessioned.none.fl_str_mv 2021-01-20T13:47:30Z
dc.date.available.none.fl_str_mv 2021-01-20T13:47:30Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1687-8086
1687-8094
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7724
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1155/2020/8880974
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1687-8086
1687-8094
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7724
https://doi.org/10.1155/2020/8880974
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] J. Broomfield, Corrosion of Steel in Concrete, Taylor & Francis, London, UK, 2007.
[2] K. Tamanna, S. N. Raman, M. Jamil, and R. Hamid, “Utilization of wood waste ash in construction technology: a review,” Construction and Building Materials, vol. 237, p. 117654, 2020.
[3] M. Schneider, “1e cement industry on the way to a lowcarbon future,” Cement and Concrete Research, vol. 124, p. 105792, 2019.
[4] G. C. H. Doudart de la Gree, Q. L. Yu, and H. J. H. Brouwers, ´“Upgrading and evaluation of waste paper sludge ash in ecolightweight cement composites,” Journal of Materials in Civil Engineering, vol. 30, no. 3, Article ID 04018021, 2018.
[5] N. B. Singh and B. Middendorf, “Geopolymers as an alternative to Portland cement: an overview,” Construction and Building Materials, vol. 237, p. 117455, 2020.
[6] M. G. Alexander, Marine Concrete Structures: Design, Durability and Performance, Elsevier Science, Amsterdam, 1e Netherlands, 2016.
[7] M. U. Khan, S. Ahmad, and H. J. Al-Gahtani, “Chlorideinduced corrosion of steel in concrete: an overview on chloride diffusion and prediction of corrosion initiation time,” International Journal of Corrosion, vol. 2017, Article ID 5819202, 9 pages, 2017.
[8] M. H. Tadayon, M. Shekarchi, and M. Tadayon, “Long-term field study of chloride ingress in concretes containing pozzolans exposed to severe marine tidal zone,” Construction and Building Materials, vol. 123, pp. 611–616, 2016.
[9] P. Awoyera, A. Adesina, O. B. Olalusi, and A. Viloria, “Reinforced concrete deterioration caused by contaminated construction water: An overview,” Engineering Failure Analysis, vol. 116, Article ID 104715, 2020.
[10] W. Chalee, C. Jaturapitakkul, and P. Chindaprasirt, “Predicting the chloride penetration of fly ash concrete in seawater,” Marine Structures, vol. 22, no. 3, pp. 341–353, 2009.
[11] A. M. Aguirre-Guerrero and R. M. de Gutierrez, “Assessment ´of corrosion protection methods for reinforced concrete,” in Ecofficient Repair and Rehabilitation of Concrete Infrastructures, Elsevier, Cambridge, UK, pp. 315–353, 2018.
[12] G. Owens, Fundamentals of Concrete, 1e Concrete Institute, Midrand, South Africa, 3rd edition, 2013.
[13] K. R. Kumar, G. Shyamala, P. O. Awoyera, K. Vedhasakthi, and O. B. Olalusi, “Cleaner production of self-compacting concrete with selected industrial rejects-an overview,” Silicon, pp. 1–12, 2020.
[14] T. Ayub, N. Shafiq, and S. Khan, “Durability of concrete with different mineral admixtures: a review,” International Journal of Civil and Environmental Engineering, vol. 7, no. 8, 2013.
[15] D. L. Pillay, O. B. Olalusi, and M. M. Mostafa, “A review of the engineering properties of concrete with paper mill waste ash—towards sustainable rigid pavement construction,” Silicon, pp. 1–17, 2020.
[16] Q. Li, H. Geng, Y. Huang, and Z. Shui, “Chloride resistance of concrete with metakaolin addition and seawater mixing: a comparative study,” Construction and Building Materials, vol. 101, pp. 184–192, 2015.
[17] S. A. Jagtap, M. N. Shirsath, and S. L. Karpe, “Effect of metakaolin on the properties of concrete,” International Research Journal of Engineering and Technology, vol. 4, no. 7, pp. 643–645, 2017.
[18] J. J. Brooks and M. A. Megat Johari, “Effect of metakaolin on creep and shrinkage of concrete,” Cement and Concrete Composites, vol. 23, no. 6, pp. 495–502, 2001.
[19] E. G¨uneyisi, M. Gesoglu, S. Karao ˘ glu, and K. Mermerdas¸, ˘“Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes,” Construction and Building Materials, vol. 34, pp. 120–130, 2012.
[20] J. T. Ding and Z. Li, “Effects of metakaolin and silica fume on properties of concrete,” Materials Journal, vol. 99, no. 4, pp. 393–398, 2002.
[21] S. Wild, J. M. Khatib, and A. Jones, “Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete,” Cement and Concrete Research, vol. 26, no. 10, pp. 1537–1544, 1996.
[22] H.-S. Kim, S.-H. Lee, and H.-Y. Moon, “Strength properties and durability aspects of high strength concrete using Korean metakaolin,” Construction and Building Materials, vol. 21, no. 6, pp. 1229–1237, 2007.
[23] J. M. Justice, L. H. Kennison, B. J. Mohr et al., “Comparison of two metakaolins and a silica fume used as supplementary cementitious materials,” in Proceedings of the Seventh International Symposium on Utilisation of High-Strength/High Performance Concrete, vol. 228, Washington D.C., USA, June 2005.
[24] R. P. Patil and H. S. Jadhav, “Comparative study of effect of temperature and chloride on silica fume concrete and metakaolin concrete,” International Journal of Scientific & Engineering Research, vol. 5, no. 3, 2014.
[25] J. M. Khatib, Sustainability of Construction Materials, Woodhead Publishing, Cambridge,UK, 2nd edition, 2016.
[26] M. Zeljkovic, Metakaolin Effects on Concrete Durability, Masters. University of Toronto, Toronto, Canada, 2009.
[27] S. N. Patil, A. K. Gupta, and S. S. Deshpande, “MetakaolinPozzolanic material for cement in high strength concrete,” in Proceedings of the 2nd International Conference on Emerging Trends in Engineering (SICETE’13), pp. 46–49, Maharashtra, India, March 2013.
[28] M. Maes, E. Gruyaert, and N. De Belie, “Resistance of concrete against combined attack of chlorides and sulphates,” International Congress on Durability of Concrete, vol. 53, 2012.
[29] ASTM, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM, West Conshohocken, PA, USA, 2008.
[30] G. Murali and P. Sruthee, “Experimental study of concrete with metakaolin as partial replacement of cement,” International Journal Emerging Trends in Engineering and Development, vol. 4, no. 2, pp. 344–348, 2012.
[31] J. D. Bapat, Mineral Admixtures in Cement and Concrete, CRC Press, Boca Raton, FL, USA, 2012.
[32] T. O. Yusuf, M. Ismail, J. Usman, and A. H. Noruzman, “Impact of blending on strength distribution of ambient cured metakaolin and palm oil fuel ash based geopolymer mortar,” Advances in Civil Engineering, vol. 24, Article ID 658067, 2014.
[33] Kaolin Group, Data Sheet – Metakaolin KG-K40, Kaolin Group, Gurugram, Haryana, 2018.
[34] H. M. Khater, “Influence of metakaolin on resistivity of cement mortar to magnesium chloride solution,” CeramicsSilik´aty, vol. 54, no. 4, pp. 325–333, 2010.
[35] M. Narmatha and D. T. Felixkala, “Meta kaolin -the best material for replacement of cement in concrete,” IOSR Journal of Mechanical and Civil Engineering, vol. 13, no. 4, pp. 66–71, 2016.
[36] S. Aiswarya, G. Prince Arulraj, and C. Dilip, “A review of use of metakaolin in concrete,” Engineering Science and Technology: An International Journal, vol. 3, no. 3, 2013.
[37] F. Cassagnabere, M. Lachemi, G. Escadeillas et al., “Flash Metakaolin/slag/cement binder: an environmental and performantial alternative for steam-cured mortar for precast use,” in Proceedings of the Annual Conference of the Transportation Association of Canada, pp. 1–10, Vancouver, Canada, September 2010.
[38] NLK Consultants Inc, Ecosmart Concrete Project Metakaolin Pre-feasibility Study, NLK Consultants Inc, BC V6B 2W2, Canada, 2002.
[39] A. Babafemi, B. Savija, S. Paul, and V. Anggraini, “Engineering properties of concrete with waste recycled plastic: a review,” Sustainability, vol. 10, no. 11, p. 3875, 2018.
[40] T. Ayub, S. U. Khan, and F. A. Memon, “Mechanical characteristics of hardened concrete with different mineral admixtures: a review,” Fe Scientific World Journal, vol. 2014, pp. 1–15, Article ID 875082, 2014.
[41] M. S. Kirgiz, “Strength gain mechanisms of blended-cements containing marble powder and brick powder,” KSCE Journal of Civil Engineering, vol. 19, no. 1, pp. 165–172, 2015.
[42] M. S. Kırgız, “Strength gain mechanism for green mortar substituted marble powder and brick powder for Portland cement,” European Journal of Environmental and Civil Engineering, vol. 20, no. sup1, pp. s38–s63, 2016.
[43] B. B. Sabir, S. Wild, and J. Bai, “Metakaolin and calcined clays as pozzolans for concrete: a review,” Cement and Concrete Composites, vol. 23, no. 6, pp. 441–454, 2001.
[44] A. Saleh, Chloride Induced Corrosion and Sulphate Attack – A Literature Review on Concrete Durability, NTNU, Trondheim, Norway, 2008.
[45] C. G. Berrocal, K. Lundgren, and I. Lofgren, “Corrosion of ¨steel bars embedded in fibre reinforced concrete under chloride attack: state of the art,” Cement and Concrete Research, vol. 80, pp. 69–85, 2016.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Advances in Civil Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.hindawi.com/journals/ace/2020/8880974/
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d728fc4c-86d6-4d5f-acad-0c9446ecaaeb/download
https://repositorio.cuc.edu.co/bitstreams/30e0fdcb-c441-4faa-8171-88c130b196a3/download
https://repositorio.cuc.edu.co/bitstreams/a9f2e015-488f-48eb-bc95-68adb3bf2790/download
https://repositorio.cuc.edu.co/bitstreams/0e14fe11-f3c5-46eb-a173-7a3e030bd047/download
https://repositorio.cuc.edu.co/bitstreams/2ba202f7-1275-4a91-901f-a51af8eb23e8/download
bitstream.checksum.fl_str_mv 42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
b58c440563cf75d32494e1b7ad44bbb6
3a20eaa44697cfef63af2544e64cae74
7cc5853588fa14b6aee3229bcf08bc65
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166834114789376
spelling Pillay, Deveshan L.Olalusi, Oladimeji B.Awoyera, Paul O.Rondon, CarlosEcheverría, Ana MaríaTemitope Kolawole, John2021-01-20T13:47:30Z2021-01-20T13:47:30Z2020-10-101687-80861687-8094https://hdl.handle.net/11323/7724https://doi.org/10.1155/2020/8880974Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Changing human lifestyle and increasing urbanisation are contributory factors to the high demand for concrete construction materials across the globe. With the imminent developments in the unpopulated marine/coastal zones, higher installation of concrete facilities is still expected. However, poor design and construction procedures coupled with inadequate materials selection and exposure to aggressive environmental conditions, such as chloride laden environments, often result in the reduced aesthetic and structural performance of concrete. Deterioration of reinforced concrete structures located in a coastal/marine setting can influence the safety, economic, and sustainability aspects of society. Hence, there is an increased need for alternate binder systems with the ability to reduce the effects of chloride attack in concrete. 1is paper presents a critical review of the engineering properties of metakaolin (MK) based concrete exposed to chloride attack. 1e key advantages and limitations of using MK for concrete production purposes were outlined and evaluated. Areas for future research were also highlighted in this paper. Based on the favourable 28-day compressive strength (73–84 MPa) and durability performance documented across the numerous past year studies that were reviewed, it can be concluded that MK is a viable alternate binder material for combatting chloride attack in coastal/marine concrete structures. 1is, in conjunction with its lack of chemical CO2 emissions, proves that MK can be used to improve the serviceability and sustainability states of marine structures. 1e viewpoint of this review will guide concrete constructors and researchers on a possible framework for the utilisation of metakaolin for enhancing durability concrete in aggressive environments.Pillay, Deveshan L.Olalusi, Oladimeji B.Awoyera, Paul O.Rondon, CarlosEcheverría, Ana MaríaTemitope Kolawole, Johnapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Advances in Civil Engineeringhttps://www.hindawi.com/journals/ace/2020/8880974/MetakaolinConcreteChlorideMarine structuresA review of the engineering properties of metakaolin based concrete: towards combatting chloride attack in coastal/ marine structuresArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] J. Broomfield, Corrosion of Steel in Concrete, Taylor & Francis, London, UK, 2007.[2] K. Tamanna, S. N. Raman, M. Jamil, and R. Hamid, “Utilization of wood waste ash in construction technology: a review,” Construction and Building Materials, vol. 237, p. 117654, 2020.[3] M. Schneider, “1e cement industry on the way to a lowcarbon future,” Cement and Concrete Research, vol. 124, p. 105792, 2019.[4] G. C. H. Doudart de la Gree, Q. L. Yu, and H. J. H. Brouwers, ´“Upgrading and evaluation of waste paper sludge ash in ecolightweight cement composites,” Journal of Materials in Civil Engineering, vol. 30, no. 3, Article ID 04018021, 2018.[5] N. B. Singh and B. Middendorf, “Geopolymers as an alternative to Portland cement: an overview,” Construction and Building Materials, vol. 237, p. 117455, 2020.[6] M. G. Alexander, Marine Concrete Structures: Design, Durability and Performance, Elsevier Science, Amsterdam, 1e Netherlands, 2016.[7] M. U. Khan, S. Ahmad, and H. J. Al-Gahtani, “Chlorideinduced corrosion of steel in concrete: an overview on chloride diffusion and prediction of corrosion initiation time,” International Journal of Corrosion, vol. 2017, Article ID 5819202, 9 pages, 2017.[8] M. H. Tadayon, M. Shekarchi, and M. Tadayon, “Long-term field study of chloride ingress in concretes containing pozzolans exposed to severe marine tidal zone,” Construction and Building Materials, vol. 123, pp. 611–616, 2016.[9] P. Awoyera, A. Adesina, O. B. Olalusi, and A. Viloria, “Reinforced concrete deterioration caused by contaminated construction water: An overview,” Engineering Failure Analysis, vol. 116, Article ID 104715, 2020.[10] W. Chalee, C. Jaturapitakkul, and P. Chindaprasirt, “Predicting the chloride penetration of fly ash concrete in seawater,” Marine Structures, vol. 22, no. 3, pp. 341–353, 2009.[11] A. M. Aguirre-Guerrero and R. M. de Gutierrez, “Assessment ´of corrosion protection methods for reinforced concrete,” in Ecofficient Repair and Rehabilitation of Concrete Infrastructures, Elsevier, Cambridge, UK, pp. 315–353, 2018.[12] G. Owens, Fundamentals of Concrete, 1e Concrete Institute, Midrand, South Africa, 3rd edition, 2013.[13] K. R. Kumar, G. Shyamala, P. O. Awoyera, K. Vedhasakthi, and O. B. Olalusi, “Cleaner production of self-compacting concrete with selected industrial rejects-an overview,” Silicon, pp. 1–12, 2020.[14] T. Ayub, N. Shafiq, and S. Khan, “Durability of concrete with different mineral admixtures: a review,” International Journal of Civil and Environmental Engineering, vol. 7, no. 8, 2013.[15] D. L. Pillay, O. B. Olalusi, and M. M. Mostafa, “A review of the engineering properties of concrete with paper mill waste ash—towards sustainable rigid pavement construction,” Silicon, pp. 1–17, 2020.[16] Q. Li, H. Geng, Y. Huang, and Z. Shui, “Chloride resistance of concrete with metakaolin addition and seawater mixing: a comparative study,” Construction and Building Materials, vol. 101, pp. 184–192, 2015.[17] S. A. Jagtap, M. N. Shirsath, and S. L. Karpe, “Effect of metakaolin on the properties of concrete,” International Research Journal of Engineering and Technology, vol. 4, no. 7, pp. 643–645, 2017.[18] J. J. Brooks and M. A. Megat Johari, “Effect of metakaolin on creep and shrinkage of concrete,” Cement and Concrete Composites, vol. 23, no. 6, pp. 495–502, 2001.[19] E. G¨uneyisi, M. Gesoglu, S. Karao ˘ glu, and K. Mermerdas¸, ˘“Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes,” Construction and Building Materials, vol. 34, pp. 120–130, 2012.[20] J. T. Ding and Z. Li, “Effects of metakaolin and silica fume on properties of concrete,” Materials Journal, vol. 99, no. 4, pp. 393–398, 2002.[21] S. Wild, J. M. Khatib, and A. Jones, “Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete,” Cement and Concrete Research, vol. 26, no. 10, pp. 1537–1544, 1996.[22] H.-S. Kim, S.-H. Lee, and H.-Y. Moon, “Strength properties and durability aspects of high strength concrete using Korean metakaolin,” Construction and Building Materials, vol. 21, no. 6, pp. 1229–1237, 2007.[23] J. M. Justice, L. H. Kennison, B. J. Mohr et al., “Comparison of two metakaolins and a silica fume used as supplementary cementitious materials,” in Proceedings of the Seventh International Symposium on Utilisation of High-Strength/High Performance Concrete, vol. 228, Washington D.C., USA, June 2005.[24] R. P. Patil and H. S. Jadhav, “Comparative study of effect of temperature and chloride on silica fume concrete and metakaolin concrete,” International Journal of Scientific & Engineering Research, vol. 5, no. 3, 2014.[25] J. M. Khatib, Sustainability of Construction Materials, Woodhead Publishing, Cambridge,UK, 2nd edition, 2016.[26] M. Zeljkovic, Metakaolin Effects on Concrete Durability, Masters. University of Toronto, Toronto, Canada, 2009.[27] S. N. Patil, A. K. Gupta, and S. S. Deshpande, “MetakaolinPozzolanic material for cement in high strength concrete,” in Proceedings of the 2nd International Conference on Emerging Trends in Engineering (SICETE’13), pp. 46–49, Maharashtra, India, March 2013.[28] M. Maes, E. Gruyaert, and N. De Belie, “Resistance of concrete against combined attack of chlorides and sulphates,” International Congress on Durability of Concrete, vol. 53, 2012.[29] ASTM, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM, West Conshohocken, PA, USA, 2008.[30] G. Murali and P. Sruthee, “Experimental study of concrete with metakaolin as partial replacement of cement,” International Journal Emerging Trends in Engineering and Development, vol. 4, no. 2, pp. 344–348, 2012.[31] J. D. Bapat, Mineral Admixtures in Cement and Concrete, CRC Press, Boca Raton, FL, USA, 2012.[32] T. O. Yusuf, M. Ismail, J. Usman, and A. H. Noruzman, “Impact of blending on strength distribution of ambient cured metakaolin and palm oil fuel ash based geopolymer mortar,” Advances in Civil Engineering, vol. 24, Article ID 658067, 2014.[33] Kaolin Group, Data Sheet – Metakaolin KG-K40, Kaolin Group, Gurugram, Haryana, 2018.[34] H. M. Khater, “Influence of metakaolin on resistivity of cement mortar to magnesium chloride solution,” CeramicsSilik´aty, vol. 54, no. 4, pp. 325–333, 2010.[35] M. Narmatha and D. T. Felixkala, “Meta kaolin -the best material for replacement of cement in concrete,” IOSR Journal of Mechanical and Civil Engineering, vol. 13, no. 4, pp. 66–71, 2016.[36] S. Aiswarya, G. Prince Arulraj, and C. Dilip, “A review of use of metakaolin in concrete,” Engineering Science and Technology: An International Journal, vol. 3, no. 3, 2013.[37] F. Cassagnabere, M. Lachemi, G. Escadeillas et al., “Flash Metakaolin/slag/cement binder: an environmental and performantial alternative for steam-cured mortar for precast use,” in Proceedings of the Annual Conference of the Transportation Association of Canada, pp. 1–10, Vancouver, Canada, September 2010.[38] NLK Consultants Inc, Ecosmart Concrete Project Metakaolin Pre-feasibility Study, NLK Consultants Inc, BC V6B 2W2, Canada, 2002.[39] A. Babafemi, B. Savija, S. Paul, and V. Anggraini, “Engineering properties of concrete with waste recycled plastic: a review,” Sustainability, vol. 10, no. 11, p. 3875, 2018.[40] T. Ayub, S. U. Khan, and F. A. Memon, “Mechanical characteristics of hardened concrete with different mineral admixtures: a review,” Fe Scientific World Journal, vol. 2014, pp. 1–15, Article ID 875082, 2014.[41] M. S. Kirgiz, “Strength gain mechanisms of blended-cements containing marble powder and brick powder,” KSCE Journal of Civil Engineering, vol. 19, no. 1, pp. 165–172, 2015.[42] M. S. Kırgız, “Strength gain mechanism for green mortar substituted marble powder and brick powder for Portland cement,” European Journal of Environmental and Civil Engineering, vol. 20, no. sup1, pp. s38–s63, 2016.[43] B. B. Sabir, S. Wild, and J. Bai, “Metakaolin and calcined clays as pozzolans for concrete: a review,” Cement and Concrete Composites, vol. 23, no. 6, pp. 441–454, 2001.[44] A. Saleh, Chloride Induced Corrosion and Sulphate Attack – A Literature Review on Concrete Durability, NTNU, Trondheim, Norway, 2008.[45] C. G. Berrocal, K. Lundgren, and I. Lofgren, “Corrosion of ¨steel bars embedded in fibre reinforced concrete under chloride attack: state of the art,” Cement and Concrete Research, vol. 80, pp. 69–85, 2016.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/d728fc4c-86d6-4d5f-acad-0c9446ecaaeb/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/30e0fdcb-c441-4faa-8171-88c130b196a3/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALA review of the engineering properties of metakaolin based concrete. towards combatting chloride attack in coastal- marine structures.pdfA review of the engineering properties of metakaolin based concrete. towards combatting chloride attack in coastal- marine structures.pdfapplication/pdf1943851https://repositorio.cuc.edu.co/bitstreams/a9f2e015-488f-48eb-bc95-68adb3bf2790/downloadb58c440563cf75d32494e1b7ad44bbb6MD51THUMBNAILA review of the engineering properties of metakaolin based concrete. towards combatting chloride attack in coastal- marine structures.pdf.jpgA review of the engineering properties of metakaolin based concrete. towards combatting chloride attack in coastal- marine structures.pdf.jpgimage/jpeg60694https://repositorio.cuc.edu.co/bitstreams/0e14fe11-f3c5-46eb-a173-7a3e030bd047/download3a20eaa44697cfef63af2544e64cae74MD54TEXTA review of the engineering properties of metakaolin based concrete. towards combatting chloride attack in coastal- marine structures.pdf.txtA review of the engineering properties of metakaolin based concrete. towards combatting chloride attack in coastal- marine structures.pdf.txttext/plain59601https://repositorio.cuc.edu.co/bitstreams/2ba202f7-1275-4a91-901f-a51af8eb23e8/download7cc5853588fa14b6aee3229bcf08bc65MD5511323/7724oai:repositorio.cuc.edu.co:11323/77242024-09-17 14:15:47.94http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==