Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares
The experimental observations indicate that the mechanic behavior of the soils does not only depend on its structure and state of stresses, but also on its void ratios. This last one corresponds to the volume of voids of a soil within its volume of solids. The void ratios are between the range given...
- Autores:
-
Barros Ayala, Jorge Andres
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/2982
- Acceso en línea:
- https://hdl.handle.net/11323/2982
https://repositorio.cuc.edu.co/
- Palabra clave:
- Distribución granulométrica
Relación de vacíos máxima
Relación de vacíos mínima
Suelos granulares
Grain size distribution maximum void ratio
Minimum void ratio
Granular soils
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_154d1fd2825b0155240717cbc7776b50 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/2982 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares |
title |
Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares |
spellingShingle |
Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares Distribución granulométrica Relación de vacíos máxima Relación de vacíos mínima Suelos granulares Grain size distribution maximum void ratio Minimum void ratio Granular soils |
title_short |
Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares |
title_full |
Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares |
title_fullStr |
Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares |
title_full_unstemmed |
Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares |
title_sort |
Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares |
dc.creator.fl_str_mv |
Barros Ayala, Jorge Andres |
dc.contributor.advisor.spa.fl_str_mv |
Duque, José Alejandro |
dc.contributor.author.spa.fl_str_mv |
Barros Ayala, Jorge Andres |
dc.contributor.coasesor.spa.fl_str_mv |
Tarazona Buitrago, Nairo |
dc.subject.spa.fl_str_mv |
Distribución granulométrica Relación de vacíos máxima Relación de vacíos mínima Suelos granulares Grain size distribution maximum void ratio Minimum void ratio Granular soils |
topic |
Distribución granulométrica Relación de vacíos máxima Relación de vacíos mínima Suelos granulares Grain size distribution maximum void ratio Minimum void ratio Granular soils |
description |
The experimental observations indicate that the mechanic behavior of the soils does not only depend on its structure and state of stresses, but also on its void ratios. This last one corresponds to the volume of voids of a soil within its volume of solids. The void ratios are between the range given by the maximum void ratio, which is given at the loosest state of the material and the minimum void ratio in the densest state of the material. The investigation was developed in three phases, in the first one twenty artificial granulometric soils were built with granular characteristics, split into four groups of five curves with an average diameter of the material which are approximately equal. Then, in the second phase of this investigation, the maximum and minimum void ratios were determined for every granulometric curve created. Finally, statistic correlations were proposed between the granulometric characteristics and the maximum and minimum void ratios for the obtained data in the lab and the data reported in the literature |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-04-03T13:42:56Z |
dc.date.available.none.fl_str_mv |
2019-04-03T13:42:56Z |
dc.date.issued.none.fl_str_mv |
2019-03-15 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/2982 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/2982 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aberg, B. (1992). Void ratio of noncohesive soils and similar materials. Journal of Geotechnical and Geoenvironmental Engineering, 118(9), 1315-1334. Aberg, B. (1996). Grain-size distribution for smallest possible void ratio. Journal of Geotechnical and Geoenvironmental Engineering, 122(1), 74-77. Ahmed, A., & Mostefa, B. (2012). Fines content and cyclic preloading effect on liquefaction potential of silty sand: A laboratory study. Polytechnica Hungarica, 9(4), 47-64. Amini, F., & Qi, G. (2000). Liquefaction Testing of Stratified Silty Sands. Journal of geotechnical and geoenvironmental engineering, 3, 208-217. Bablu, K., & Maheshwari, B. (2013). Effects of silt content on dynamic properties of solani sand. Seventh International Conference on Case, 1-7. Bandini, P., & Salthiskumar, S. (2009). Effects of silt content and void ratio on the saturated hydraulic conductivity and compressibility of sand-silt mixtures. Journal of geotechnical and geoenvironmental engineering, 135, 1976-1980. Barton, M., Cresswell, A., & Brown, R. (2001). Measuring the effect of mixed grading on the maximum dry density of sands. Geotechnical Testing Journal, 24(1), 121-127. Braja, M. D. (2013). Fundamentos de ingeniería geotécnica. Mexico: Cengage Learning. Ching, S., Jia-Yi, W., & Louis, G. (2015). Modeling of minimum void ratio for sand-silt mixtures. Elsevier, 293-304. Ching, S., Jia-Yi, W., & Louis, G. (2016). Maximum and minimum void ratios for sand-silt mixtures. Elsevier, 7-18. Ching, S., Yibing, D., & Mehrashk, M. (2018). A multi-variable equation for relationship between limiting void ratios of uniform sands and morphological characteristics of their particles. Engineering Geology, 237, 21-31. Cho, G., Dodds, J., & Santamarina, J. (2006). Particle shape effects on packing density,. Journal of Geotechnical and Geoenvironmental Engineering, 132, 591-602. D4253, A. (2016). Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table. ASTM international, 1-14. D4254. (2016). Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density. ASTM international, 1-9. Das, C. (2008). Weight-Volume Relationships. CE 240 Soil Mechanics & Foundations. Lade, P., Liggio, J., & Yamamuro, J. (1998). Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal, 21(4), 336-347. Leoni, A. (2005). Propiedades físicas de los suelos. Argentina. Mahmoudi, Y., Cherif, T., Belkhatir, M., Arab, A., & Schanz, T. (2014). Influence of the equivalent intergranular void ratio on shear strength of sand-silt mixtures. Comptes Rendus Mécanique. Misko, C., & Kenji, I. (2002). Maximum and minimum void ratio characteristics of sands. Soils and Foundations, 42, 65-78. Mohamed, B., Hanifi, M., & Karim, B. (2015). Critical undrained shear strength of loosemedium sand-silt mixtures under monotonic loadings. Journal of theoretical and aplied mechanics, 53(2), 331-344. Patra, C. B., Nagaratnam, S., & Shuvranshu, R. (2010). Correlations for relative density of clean sand with median grain size and compaction energy. International Journal of Geotechnical Engineering, 4, 195-203. Patra, C., Sivakugan, N., & Das, B. (2010). Relative density and mean grain-size correlation from laboratory compaction test on granular soil. International Journal of Geotechnical Engineering, 4, 55-62. Patra, C., Sivakugan, N., Das, B., & Rout, S. (2010). Relative density and mean grain-size correlation from laboratory compaction test on granular soil. International Journal of Geotechnical Engineering, 4, 55-62. Pham Huu, G. (2017). Effects of particle characteristics on the shear strength of calcareous sand. Geotechnica Slovenica, 77-89. Riquelme, J., & Dorador, L. (2014). Metodología para determinar densidades máxima y mínima en suelos granulares gruesos a partir de ensayos de laboratorio de escala reducida. Chilean Geotechnical Society , 1-11. Rouse, P., Fannin, R., & Shuttle, D. (2008). Influence of roundness on the void ratio and strength of uniform sand. Géotechnique, 58, 227-231. Salgado, R., & badini, P. K. (2000). Shear strength and stiffness of silty sand. Geotechnical and Geoenvironmental Engineering, 126(5), 53-64. Santamarina, J., & Cho, G. (2004). Soil behaviour: the role of particle shape. Jardine. Shimobe, S., & Moroto, N. (1995). A new classification chart for sand liquefaction. Proc. 1st Int. Conf. on Earthquake Geotechnical Engineering, 315-320. Simoni, A., & Houlsby, G. (2006). The direct shear strength and dilatancy of sand-gravel mistures. Geotechnical and geological engineering, 24, 523-549. Takeji, K. (2000). Correlation of pore-pressure B-value with P-wave velocity and poisson's ratio for imperfectply satured sand or gravel. Soils and foundations, 40(4), 95-102. Wichtmann, T. (2005). Explicit accumulation model for non-cohesive soils under cyclic loading. Bochum, 1-288. Witchmann, T., & Triantafyllidis, T. (2016). An experimental data base for the development, calibration and verification of constitutive models for sand with focus to cyclic loading. Part I: test with monotonic loading and stress cycles. Acta Geotechnica, 11(4), 739-761. Yilmaz, Y., Mollamahmutoglu, M., Ozaydin, V., & Kayabali, K. (2009). A study on the limit void ratio characteristics of medium to fine mixed graded sands. Engineering Geology, 104, 290-294. Youd, T. (1973). Factors controlling maximum and minimum densities of sands. ASTM International, West Conshohocken, PA, 98-112. |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Civil |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d2c0871c-0500-4d89-82aa-cfdf1b470fe7/download https://repositorio.cuc.edu.co/bitstreams/d1851786-ca65-4ef1-8e88-0387e7c5bf4e/download https://repositorio.cuc.edu.co/bitstreams/79e7f818-ae63-4a75-bf4e-101a483e3bde/download https://repositorio.cuc.edu.co/bitstreams/bdcc6556-1609-4ba9-a8e8-d75cd90a78eb/download |
bitstream.checksum.fl_str_mv |
3686719d691328e1d51315ea9fa1cd10 8a4605be74aa9ea9d79846c1fba20a33 7c6ff112140e223ca6fb77d3ae61012f 75541edc713ed58e90fe57e9b286c248 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166909916348416 |
spelling |
Duque, José AlejandroBarros Ayala, Jorge AndresTarazona Buitrago, Nairo2019-04-03T13:42:56Z2019-04-03T13:42:56Z2019-03-15https://hdl.handle.net/11323/2982Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The experimental observations indicate that the mechanic behavior of the soils does not only depend on its structure and state of stresses, but also on its void ratios. This last one corresponds to the volume of voids of a soil within its volume of solids. The void ratios are between the range given by the maximum void ratio, which is given at the loosest state of the material and the minimum void ratio in the densest state of the material. The investigation was developed in three phases, in the first one twenty artificial granulometric soils were built with granular characteristics, split into four groups of five curves with an average diameter of the material which are approximately equal. Then, in the second phase of this investigation, the maximum and minimum void ratios were determined for every granulometric curve created. Finally, statistic correlations were proposed between the granulometric characteristics and the maximum and minimum void ratios for the obtained data in the lab and the data reported in the literatureLas observaciones experimentales indican que el comportamiento mecánico de los suelos no depende solo de su estructura y de los estados de esfuerzos, sino también de sus relaciones de vacíos. Esta última corresponde al volumen de vacíos de un suelo entre su volumen de sólidos. La relación de vacíos se encuentra en un rango delimitado por la relación de vacíos máxima, que se da en el estado más suelto del material y la relación de vacíos mínima que se presenta en el máximo estado de densidad del material. Durante esta investigación se analiza la influencia de las características granulométricas de suelos granulares en las relaciones de vacíos mínimas y máximas. La investigación fue desarrollada en tres fases, en la primera se construyeron artificialmente veinte curvas granulométricas de suelos con características granulares, agrupadas en cuatro grupos de a cinco curvas con diámetro promedio del material aproximadamente igual. Posteriormente, en la segunda fase de esta investigación se determinaron las relaciones de vacíos máximas y mínimas para cada una de las curvas granulométricas creadas. Finalmente, se propusieron correlaciones estadísticas entre las características granulométricas y las relaciones de vacíos máximas y mínimas para los datos obtenidos en el laboratorio y datos reportados en la literaturaBarros Ayala, Jorge Andres-647d5e35-c49b-45a6-9a61-408baf75bf1f-600spaUniversidad de la CostaIngeniería CivilAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Distribución granulométricaRelación de vacíos máximaRelación de vacíos mínimaSuelos granularesGrain size distribution maximum void ratioMinimum void ratioGranular soilsInfluencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granularesTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionAberg, B. (1992). Void ratio of noncohesive soils and similar materials. Journal of Geotechnical and Geoenvironmental Engineering, 118(9), 1315-1334. Aberg, B. (1996). Grain-size distribution for smallest possible void ratio. Journal of Geotechnical and Geoenvironmental Engineering, 122(1), 74-77. Ahmed, A., & Mostefa, B. (2012). Fines content and cyclic preloading effect on liquefaction potential of silty sand: A laboratory study. Polytechnica Hungarica, 9(4), 47-64. Amini, F., & Qi, G. (2000). Liquefaction Testing of Stratified Silty Sands. Journal of geotechnical and geoenvironmental engineering, 3, 208-217. Bablu, K., & Maheshwari, B. (2013). Effects of silt content on dynamic properties of solani sand. Seventh International Conference on Case, 1-7. Bandini, P., & Salthiskumar, S. (2009). Effects of silt content and void ratio on the saturated hydraulic conductivity and compressibility of sand-silt mixtures. Journal of geotechnical and geoenvironmental engineering, 135, 1976-1980. Barton, M., Cresswell, A., & Brown, R. (2001). Measuring the effect of mixed grading on the maximum dry density of sands. Geotechnical Testing Journal, 24(1), 121-127. Braja, M. D. (2013). Fundamentos de ingeniería geotécnica. Mexico: Cengage Learning. Ching, S., Jia-Yi, W., & Louis, G. (2015). Modeling of minimum void ratio for sand-silt mixtures. Elsevier, 293-304. Ching, S., Jia-Yi, W., & Louis, G. (2016). Maximum and minimum void ratios for sand-silt mixtures. Elsevier, 7-18. Ching, S., Yibing, D., & Mehrashk, M. (2018). A multi-variable equation for relationship between limiting void ratios of uniform sands and morphological characteristics of their particles. Engineering Geology, 237, 21-31. Cho, G., Dodds, J., & Santamarina, J. (2006). Particle shape effects on packing density,. Journal of Geotechnical and Geoenvironmental Engineering, 132, 591-602. D4253, A. (2016). Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table. ASTM international, 1-14. D4254. (2016). Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density. ASTM international, 1-9. Das, C. (2008). Weight-Volume Relationships. CE 240 Soil Mechanics & Foundations. Lade, P., Liggio, J., & Yamamuro, J. (1998). Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal, 21(4), 336-347. Leoni, A. (2005). Propiedades físicas de los suelos. Argentina. Mahmoudi, Y., Cherif, T., Belkhatir, M., Arab, A., & Schanz, T. (2014). Influence of the equivalent intergranular void ratio on shear strength of sand-silt mixtures. Comptes Rendus Mécanique. Misko, C., & Kenji, I. (2002). Maximum and minimum void ratio characteristics of sands. Soils and Foundations, 42, 65-78. Mohamed, B., Hanifi, M., & Karim, B. (2015). Critical undrained shear strength of loosemedium sand-silt mixtures under monotonic loadings. Journal of theoretical and aplied mechanics, 53(2), 331-344. Patra, C. B., Nagaratnam, S., & Shuvranshu, R. (2010). Correlations for relative density of clean sand with median grain size and compaction energy. International Journal of Geotechnical Engineering, 4, 195-203. Patra, C., Sivakugan, N., & Das, B. (2010). Relative density and mean grain-size correlation from laboratory compaction test on granular soil. International Journal of Geotechnical Engineering, 4, 55-62. Patra, C., Sivakugan, N., Das, B., & Rout, S. (2010). Relative density and mean grain-size correlation from laboratory compaction test on granular soil. International Journal of Geotechnical Engineering, 4, 55-62. Pham Huu, G. (2017). Effects of particle characteristics on the shear strength of calcareous sand. Geotechnica Slovenica, 77-89. Riquelme, J., & Dorador, L. (2014). Metodología para determinar densidades máxima y mínima en suelos granulares gruesos a partir de ensayos de laboratorio de escala reducida. Chilean Geotechnical Society , 1-11. Rouse, P., Fannin, R., & Shuttle, D. (2008). Influence of roundness on the void ratio and strength of uniform sand. Géotechnique, 58, 227-231. Salgado, R., & badini, P. K. (2000). Shear strength and stiffness of silty sand. Geotechnical and Geoenvironmental Engineering, 126(5), 53-64. Santamarina, J., & Cho, G. (2004). Soil behaviour: the role of particle shape. Jardine. Shimobe, S., & Moroto, N. (1995). A new classification chart for sand liquefaction. Proc. 1st Int. Conf. on Earthquake Geotechnical Engineering, 315-320. Simoni, A., & Houlsby, G. (2006). The direct shear strength and dilatancy of sand-gravel mistures. Geotechnical and geological engineering, 24, 523-549. Takeji, K. (2000). Correlation of pore-pressure B-value with P-wave velocity and poisson's ratio for imperfectply satured sand or gravel. Soils and foundations, 40(4), 95-102. Wichtmann, T. (2005). Explicit accumulation model for non-cohesive soils under cyclic loading. Bochum, 1-288. Witchmann, T., & Triantafyllidis, T. (2016). An experimental data base for the development, calibration and verification of constitutive models for sand with focus to cyclic loading. Part I: test with monotonic loading and stress cycles. Acta Geotechnica, 11(4), 739-761. Yilmaz, Y., Mollamahmutoglu, M., Ozaydin, V., & Kayabali, K. (2009). A study on the limit void ratio characteristics of medium to fine mixed graded sands. Engineering Geology, 104, 290-294. Youd, T. (1973). Factors controlling maximum and minimum densities of sands. ASTM International, West Conshohocken, PA, 98-112.PublicationORIGINAL1047235514.pdf1047235514.pdfapplication/pdf2377698https://repositorio.cuc.edu.co/bitstreams/d2c0871c-0500-4d89-82aa-cfdf1b470fe7/download3686719d691328e1d51315ea9fa1cd10MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/d1851786-ca65-4ef1-8e88-0387e7c5bf4e/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAIL1047235514.pdf.jpg1047235514.pdf.jpgimage/jpeg26253https://repositorio.cuc.edu.co/bitstreams/79e7f818-ae63-4a75-bf4e-101a483e3bde/download7c6ff112140e223ca6fb77d3ae61012fMD54TEXT1047235514.pdf.txt1047235514.pdf.txttext/plain103926https://repositorio.cuc.edu.co/bitstreams/bdcc6556-1609-4ba9-a8e8-d75cd90a78eb/download75541edc713ed58e90fe57e9b286c248MD5511323/2982oai:repositorio.cuc.edu.co:11323/29822024-09-17 14:25:01.908open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |