Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares

The experimental observations indicate that the mechanic behavior of the soils does not only depend on its structure and state of stresses, but also on its void ratios. This last one corresponds to the volume of voids of a soil within its volume of solids. The void ratios are between the range given...

Full description

Autores:
Barros Ayala, Jorge Andres
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2982
Acceso en línea:
http://hdl.handle.net/11323/2982
https://repositorio.cuc.edu.co/
Palabra clave:
Distribución granulométrica
Relación de vacíos máxima
Relación de vacíos mínima
Suelos granulares
Grain size distribution maximum void ratio
Minimum void ratio
Granular soils
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_154d1fd2825b0155240717cbc7776b50
oai_identifier_str oai:repositorio.cuc.edu.co:11323/2982
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares
title Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares
spellingShingle Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares
Distribución granulométrica
Relación de vacíos máxima
Relación de vacíos mínima
Suelos granulares
Grain size distribution maximum void ratio
Minimum void ratio
Granular soils
title_short Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares
title_full Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares
title_fullStr Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares
title_full_unstemmed Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares
title_sort Influencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granulares
dc.creator.fl_str_mv Barros Ayala, Jorge Andres
dc.contributor.advisor.spa.fl_str_mv Duque, José Alejandro
dc.contributor.author.spa.fl_str_mv Barros Ayala, Jorge Andres
dc.contributor.coasesor.spa.fl_str_mv Tarazona Buitrago, Nairo
dc.subject.spa.fl_str_mv Distribución granulométrica
Relación de vacíos máxima
Relación de vacíos mínima
Suelos granulares
Grain size distribution maximum void ratio
Minimum void ratio
Granular soils
topic Distribución granulométrica
Relación de vacíos máxima
Relación de vacíos mínima
Suelos granulares
Grain size distribution maximum void ratio
Minimum void ratio
Granular soils
description The experimental observations indicate that the mechanic behavior of the soils does not only depend on its structure and state of stresses, but also on its void ratios. This last one corresponds to the volume of voids of a soil within its volume of solids. The void ratios are between the range given by the maximum void ratio, which is given at the loosest state of the material and the minimum void ratio in the densest state of the material. The investigation was developed in three phases, in the first one twenty artificial granulometric soils were built with granular characteristics, split into four groups of five curves with an average diameter of the material which are approximately equal. Then, in the second phase of this investigation, the maximum and minimum void ratios were determined for every granulometric curve created. Finally, statistic correlations were proposed between the granulometric characteristics and the maximum and minimum void ratios for the obtained data in the lab and the data reported in the literature
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-04-03T13:42:56Z
dc.date.available.none.fl_str_mv 2019-04-03T13:42:56Z
dc.date.issued.none.fl_str_mv 2019-03-15
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/2982
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url http://hdl.handle.net/11323/2982
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aberg, B. (1992). Void ratio of noncohesive soils and similar materials. Journal of Geotechnical and Geoenvironmental Engineering, 118(9), 1315-1334. Aberg, B. (1996). Grain-size distribution for smallest possible void ratio. Journal of Geotechnical and Geoenvironmental Engineering, 122(1), 74-77. Ahmed, A., & Mostefa, B. (2012). Fines content and cyclic preloading effect on liquefaction potential of silty sand: A laboratory study. Polytechnica Hungarica, 9(4), 47-64. Amini, F., & Qi, G. (2000). Liquefaction Testing of Stratified Silty Sands. Journal of geotechnical and geoenvironmental engineering, 3, 208-217. Bablu, K., & Maheshwari, B. (2013). Effects of silt content on dynamic properties of solani sand. Seventh International Conference on Case, 1-7. Bandini, P., & Salthiskumar, S. (2009). Effects of silt content and void ratio on the saturated hydraulic conductivity and compressibility of sand-silt mixtures. Journal of geotechnical and geoenvironmental engineering, 135, 1976-1980. Barton, M., Cresswell, A., & Brown, R. (2001). Measuring the effect of mixed grading on the maximum dry density of sands. Geotechnical Testing Journal, 24(1), 121-127. Braja, M. D. (2013). Fundamentos de ingeniería geotécnica. Mexico: Cengage Learning. Ching, S., Jia-Yi, W., & Louis, G. (2015). Modeling of minimum void ratio for sand-silt mixtures. Elsevier, 293-304. Ching, S., Jia-Yi, W., & Louis, G. (2016). Maximum and minimum void ratios for sand-silt mixtures. Elsevier, 7-18. Ching, S., Yibing, D., & Mehrashk, M. (2018). A multi-variable equation for relationship between limiting void ratios of uniform sands and morphological characteristics of their particles. Engineering Geology, 237, 21-31. Cho, G., Dodds, J., & Santamarina, J. (2006). Particle shape effects on packing density,. Journal of Geotechnical and Geoenvironmental Engineering, 132, 591-602. D4253, A. (2016). Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table. ASTM international, 1-14. D4254. (2016). Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density. ASTM international, 1-9. Das, C. (2008). Weight-Volume Relationships. CE 240 Soil Mechanics & Foundations. Lade, P., Liggio, J., & Yamamuro, J. (1998). Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal, 21(4), 336-347. Leoni, A. (2005). Propiedades físicas de los suelos. Argentina. Mahmoudi, Y., Cherif, T., Belkhatir, M., Arab, A., & Schanz, T. (2014). Influence of the equivalent intergranular void ratio on shear strength of sand-silt mixtures. Comptes Rendus Mécanique. Misko, C., & Kenji, I. (2002). Maximum and minimum void ratio characteristics of sands. Soils and Foundations, 42, 65-78. Mohamed, B., Hanifi, M., & Karim, B. (2015). Critical undrained shear strength of loosemedium sand-silt mixtures under monotonic loadings. Journal of theoretical and aplied mechanics, 53(2), 331-344. Patra, C. B., Nagaratnam, S., & Shuvranshu, R. (2010). Correlations for relative density of clean sand with median grain size and compaction energy. International Journal of Geotechnical Engineering, 4, 195-203. Patra, C., Sivakugan, N., & Das, B. (2010). Relative density and mean grain-size correlation from laboratory compaction test on granular soil. International Journal of Geotechnical Engineering, 4, 55-62. Patra, C., Sivakugan, N., Das, B., & Rout, S. (2010). Relative density and mean grain-size correlation from laboratory compaction test on granular soil. International Journal of Geotechnical Engineering, 4, 55-62. Pham Huu, G. (2017). Effects of particle characteristics on the shear strength of calcareous sand. Geotechnica Slovenica, 77-89. Riquelme, J., & Dorador, L. (2014). Metodología para determinar densidades máxima y mínima en suelos granulares gruesos a partir de ensayos de laboratorio de escala reducida. Chilean Geotechnical Society , 1-11. Rouse, P., Fannin, R., & Shuttle, D. (2008). Influence of roundness on the void ratio and strength of uniform sand. Géotechnique, 58, 227-231. Salgado, R., & badini, P. K. (2000). Shear strength and stiffness of silty sand. Geotechnical and Geoenvironmental Engineering, 126(5), 53-64. Santamarina, J., & Cho, G. (2004). Soil behaviour: the role of particle shape. Jardine. Shimobe, S., & Moroto, N. (1995). A new classification chart for sand liquefaction. Proc. 1st Int. Conf. on Earthquake Geotechnical Engineering, 315-320. Simoni, A., & Houlsby, G. (2006). The direct shear strength and dilatancy of sand-gravel mistures. Geotechnical and geological engineering, 24, 523-549. Takeji, K. (2000). Correlation of pore-pressure B-value with P-wave velocity and poisson's ratio for imperfectply satured sand or gravel. Soils and foundations, 40(4), 95-102. Wichtmann, T. (2005). Explicit accumulation model for non-cohesive soils under cyclic loading. Bochum, 1-288. Witchmann, T., & Triantafyllidis, T. (2016). An experimental data base for the development, calibration and verification of constitutive models for sand with focus to cyclic loading. Part I: test with monotonic loading and stress cycles. Acta Geotechnica, 11(4), 739-761. Yilmaz, Y., Mollamahmutoglu, M., Ozaydin, V., & Kayabali, K. (2009). A study on the limit void ratio characteristics of medium to fine mixed graded sands. Engineering Geology, 104, 290-294. Youd, T. (1973). Factors controlling maximum and minimum densities of sands. ASTM International, West Conshohocken, PA, 98-112.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/2982/1/1047235514.pdf
https://repositorio.cuc.edu.co/bitstream/11323/2982/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/2982/4/1047235514.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/2982/5/1047235514.pdf.txt
bitstream.checksum.fl_str_mv 3686719d691328e1d51315ea9fa1cd10
8a4605be74aa9ea9d79846c1fba20a33
7c6ff112140e223ca6fb77d3ae61012f
75541edc713ed58e90fe57e9b286c248
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400263272202240
spelling Duque, José Alejandro88adedfed9675d23429136a66d86a215-1Barros Ayala, Jorge Andresa21eaf63fa4be543c6979309387599d6Tarazona Buitrago, Nairo2019-04-03T13:42:56Z2019-04-03T13:42:56Z2019-03-15http://hdl.handle.net/11323/2982Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The experimental observations indicate that the mechanic behavior of the soils does not only depend on its structure and state of stresses, but also on its void ratios. This last one corresponds to the volume of voids of a soil within its volume of solids. The void ratios are between the range given by the maximum void ratio, which is given at the loosest state of the material and the minimum void ratio in the densest state of the material. The investigation was developed in three phases, in the first one twenty artificial granulometric soils were built with granular characteristics, split into four groups of five curves with an average diameter of the material which are approximately equal. Then, in the second phase of this investigation, the maximum and minimum void ratios were determined for every granulometric curve created. Finally, statistic correlations were proposed between the granulometric characteristics and the maximum and minimum void ratios for the obtained data in the lab and the data reported in the literatureLas observaciones experimentales indican que el comportamiento mecánico de los suelos no depende solo de su estructura y de los estados de esfuerzos, sino también de sus relaciones de vacíos. Esta última corresponde al volumen de vacíos de un suelo entre su volumen de sólidos. La relación de vacíos se encuentra en un rango delimitado por la relación de vacíos máxima, que se da en el estado más suelto del material y la relación de vacíos mínima que se presenta en el máximo estado de densidad del material. Durante esta investigación se analiza la influencia de las características granulométricas de suelos granulares en las relaciones de vacíos mínimas y máximas. La investigación fue desarrollada en tres fases, en la primera se construyeron artificialmente veinte curvas granulométricas de suelos con características granulares, agrupadas en cuatro grupos de a cinco curvas con diámetro promedio del material aproximadamente igual. Posteriormente, en la segunda fase de esta investigación se determinaron las relaciones de vacíos máximas y mínimas para cada una de las curvas granulométricas creadas. Finalmente, se propusieron correlaciones estadísticas entre las características granulométricas y las relaciones de vacíos máximas y mínimas para los datos obtenidos en el laboratorio y datos reportados en la literaturaspaUniversidad de la CostaIngeniería CivilAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Distribución granulométricaRelación de vacíos máximaRelación de vacíos mínimaSuelos granularesGrain size distribution maximum void ratioMinimum void ratioGranular soilsInfluencia de la granulometría en las relaciones de vacíos máximas y mínimas de suelos granularesTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionAberg, B. (1992). Void ratio of noncohesive soils and similar materials. Journal of Geotechnical and Geoenvironmental Engineering, 118(9), 1315-1334. Aberg, B. (1996). Grain-size distribution for smallest possible void ratio. Journal of Geotechnical and Geoenvironmental Engineering, 122(1), 74-77. Ahmed, A., & Mostefa, B. (2012). Fines content and cyclic preloading effect on liquefaction potential of silty sand: A laboratory study. Polytechnica Hungarica, 9(4), 47-64. Amini, F., & Qi, G. (2000). Liquefaction Testing of Stratified Silty Sands. Journal of geotechnical and geoenvironmental engineering, 3, 208-217. Bablu, K., & Maheshwari, B. (2013). Effects of silt content on dynamic properties of solani sand. Seventh International Conference on Case, 1-7. Bandini, P., & Salthiskumar, S. (2009). Effects of silt content and void ratio on the saturated hydraulic conductivity and compressibility of sand-silt mixtures. Journal of geotechnical and geoenvironmental engineering, 135, 1976-1980. Barton, M., Cresswell, A., & Brown, R. (2001). Measuring the effect of mixed grading on the maximum dry density of sands. Geotechnical Testing Journal, 24(1), 121-127. Braja, M. D. (2013). Fundamentos de ingeniería geotécnica. Mexico: Cengage Learning. Ching, S., Jia-Yi, W., & Louis, G. (2015). Modeling of minimum void ratio for sand-silt mixtures. Elsevier, 293-304. Ching, S., Jia-Yi, W., & Louis, G. (2016). Maximum and minimum void ratios for sand-silt mixtures. Elsevier, 7-18. Ching, S., Yibing, D., & Mehrashk, M. (2018). A multi-variable equation for relationship between limiting void ratios of uniform sands and morphological characteristics of their particles. Engineering Geology, 237, 21-31. Cho, G., Dodds, J., & Santamarina, J. (2006). Particle shape effects on packing density,. Journal of Geotechnical and Geoenvironmental Engineering, 132, 591-602. D4253, A. (2016). Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table. ASTM international, 1-14. D4254. (2016). Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density. ASTM international, 1-9. Das, C. (2008). Weight-Volume Relationships. CE 240 Soil Mechanics & Foundations. Lade, P., Liggio, J., & Yamamuro, J. (1998). Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal, 21(4), 336-347. Leoni, A. (2005). Propiedades físicas de los suelos. Argentina. Mahmoudi, Y., Cherif, T., Belkhatir, M., Arab, A., & Schanz, T. (2014). Influence of the equivalent intergranular void ratio on shear strength of sand-silt mixtures. Comptes Rendus Mécanique. Misko, C., & Kenji, I. (2002). Maximum and minimum void ratio characteristics of sands. Soils and Foundations, 42, 65-78. Mohamed, B., Hanifi, M., & Karim, B. (2015). Critical undrained shear strength of loosemedium sand-silt mixtures under monotonic loadings. Journal of theoretical and aplied mechanics, 53(2), 331-344. Patra, C. B., Nagaratnam, S., & Shuvranshu, R. (2010). Correlations for relative density of clean sand with median grain size and compaction energy. International Journal of Geotechnical Engineering, 4, 195-203. Patra, C., Sivakugan, N., & Das, B. (2010). Relative density and mean grain-size correlation from laboratory compaction test on granular soil. International Journal of Geotechnical Engineering, 4, 55-62. Patra, C., Sivakugan, N., Das, B., & Rout, S. (2010). Relative density and mean grain-size correlation from laboratory compaction test on granular soil. International Journal of Geotechnical Engineering, 4, 55-62. Pham Huu, G. (2017). Effects of particle characteristics on the shear strength of calcareous sand. Geotechnica Slovenica, 77-89. Riquelme, J., & Dorador, L. (2014). Metodología para determinar densidades máxima y mínima en suelos granulares gruesos a partir de ensayos de laboratorio de escala reducida. Chilean Geotechnical Society , 1-11. Rouse, P., Fannin, R., & Shuttle, D. (2008). Influence of roundness on the void ratio and strength of uniform sand. Géotechnique, 58, 227-231. Salgado, R., & badini, P. K. (2000). Shear strength and stiffness of silty sand. Geotechnical and Geoenvironmental Engineering, 126(5), 53-64. Santamarina, J., & Cho, G. (2004). Soil behaviour: the role of particle shape. Jardine. Shimobe, S., & Moroto, N. (1995). A new classification chart for sand liquefaction. Proc. 1st Int. Conf. on Earthquake Geotechnical Engineering, 315-320. Simoni, A., & Houlsby, G. (2006). The direct shear strength and dilatancy of sand-gravel mistures. Geotechnical and geological engineering, 24, 523-549. Takeji, K. (2000). Correlation of pore-pressure B-value with P-wave velocity and poisson's ratio for imperfectply satured sand or gravel. Soils and foundations, 40(4), 95-102. Wichtmann, T. (2005). Explicit accumulation model for non-cohesive soils under cyclic loading. Bochum, 1-288. Witchmann, T., & Triantafyllidis, T. (2016). An experimental data base for the development, calibration and verification of constitutive models for sand with focus to cyclic loading. Part I: test with monotonic loading and stress cycles. Acta Geotechnica, 11(4), 739-761. Yilmaz, Y., Mollamahmutoglu, M., Ozaydin, V., & Kayabali, K. (2009). A study on the limit void ratio characteristics of medium to fine mixed graded sands. Engineering Geology, 104, 290-294. Youd, T. (1973). Factors controlling maximum and minimum densities of sands. ASTM International, West Conshohocken, PA, 98-112.ORIGINAL1047235514.pdf1047235514.pdfapplication/pdf2377698https://repositorio.cuc.edu.co/bitstream/11323/2982/1/1047235514.pdf3686719d691328e1d51315ea9fa1cd10MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstream/11323/2982/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessTHUMBNAIL1047235514.pdf.jpg1047235514.pdf.jpgimage/jpeg26253https://repositorio.cuc.edu.co/bitstream/11323/2982/4/1047235514.pdf.jpg7c6ff112140e223ca6fb77d3ae61012fMD54open accessTEXT1047235514.pdf.txt1047235514.pdf.txttext/plain103926https://repositorio.cuc.edu.co/bitstream/11323/2982/5/1047235514.pdf.txt75541edc713ed58e90fe57e9b286c248MD55open access11323/2982oai:repositorio.cuc.edu.co:11323/29822023-12-14 17:47:22.695open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=