Revisión y actualización literaria de modelos y métodos cuantitativos aplicados en la gestión de las cadenas de suministro de sangre entre 2019 y 2022

In this review and research project of articles published in Scopus in the range of years (2019-2022) on blood supply chains, a taxonomy divided by links was used. The analysis covered aspects such as donation, collection, processing, storage, distribution and logistics management. The studies highl...

Full description

Autores:
Martínez Olaya, Jesús Daniel
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13021
Acceso en línea:
https://hdl.handle.net/11323/13021
https://repositorio.cuc.edu.co
Palabra clave:
Blood products
Regulations
Donors
Collection
Transport
Processing
Testing
Inventories
Transfusions
Patients
Demand
Costs
Hemoderivados
Regulaciones
Donantes
Recolección
Transporte
Procesamiento
Pruebas
Inventarios
Transfusiones
Pacientes
Demanda
Costos
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id RCUC2_15227e7ecb953df4f1b9cd4e29e9337e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13021
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Revisión y actualización literaria de modelos y métodos cuantitativos aplicados en la gestión de las cadenas de suministro de sangre entre 2019 y 2022
title Revisión y actualización literaria de modelos y métodos cuantitativos aplicados en la gestión de las cadenas de suministro de sangre entre 2019 y 2022
spellingShingle Revisión y actualización literaria de modelos y métodos cuantitativos aplicados en la gestión de las cadenas de suministro de sangre entre 2019 y 2022
Blood products
Regulations
Donors
Collection
Transport
Processing
Testing
Inventories
Transfusions
Patients
Demand
Costs
Hemoderivados
Regulaciones
Donantes
Recolección
Transporte
Procesamiento
Pruebas
Inventarios
Transfusiones
Pacientes
Demanda
Costos
title_short Revisión y actualización literaria de modelos y métodos cuantitativos aplicados en la gestión de las cadenas de suministro de sangre entre 2019 y 2022
title_full Revisión y actualización literaria de modelos y métodos cuantitativos aplicados en la gestión de las cadenas de suministro de sangre entre 2019 y 2022
title_fullStr Revisión y actualización literaria de modelos y métodos cuantitativos aplicados en la gestión de las cadenas de suministro de sangre entre 2019 y 2022
title_full_unstemmed Revisión y actualización literaria de modelos y métodos cuantitativos aplicados en la gestión de las cadenas de suministro de sangre entre 2019 y 2022
title_sort Revisión y actualización literaria de modelos y métodos cuantitativos aplicados en la gestión de las cadenas de suministro de sangre entre 2019 y 2022
dc.creator.fl_str_mv Martínez Olaya, Jesús Daniel
dc.contributor.advisor.none.fl_str_mv Manosalva Sandoval, Jessica
Piraban Ramírez, Andrea
dc.contributor.author.none.fl_str_mv Martínez Olaya, Jesús Daniel
dc.contributor.jury.none.fl_str_mv Parra Negrete, Kevin
Mojica Herazo, Julio
Romero Conrado, Alfonso
dc.subject.proposal.eng.fl_str_mv Blood products
Regulations
Donors
Collection
Transport
Processing
Testing
Inventories
Transfusions
Patients
Demand
Costs
topic Blood products
Regulations
Donors
Collection
Transport
Processing
Testing
Inventories
Transfusions
Patients
Demand
Costs
Hemoderivados
Regulaciones
Donantes
Recolección
Transporte
Procesamiento
Pruebas
Inventarios
Transfusiones
Pacientes
Demanda
Costos
dc.subject.proposal.spa.fl_str_mv Hemoderivados
Regulaciones
Donantes
Recolección
Transporte
Procesamiento
Pruebas
Inventarios
Transfusiones
Pacientes
Demanda
Costos
description In this review and research project of articles published in Scopus in the range of years (2019-2022) on blood supply chains, a taxonomy divided by links was used. The analysis covered aspects such as donation, collection, processing, storage, distribution and logistics management. The studies highlighted technological advances, challenges in the cold chain, and strategies to improve efficiency and safety in each link. It was noted that the number of articles published on the subject is increasing every year. This summary highlights the diversity of research and the importance of comprehensively addressing the management of blood supply chains to cover in each update the advances that have been developed for BSCs
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-18T12:31:58Z
dc.date.available.none.fl_str_mv 2024-06-18T12:31:58Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13021
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co
url https://hdl.handle.net/11323/13021
https://repositorio.cuc.edu.co
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv A resilient approach to modelling the supply and demand of platelets in the United Kingdom Blood supply chain. (n.d.). https://doi.org/10.1080/17509653.2021.1892548
Abbasi, B., Babaei, T., Hosseinifard, Z., Smith-Miles, K., & Dehghani, M. (2020). Predicting solutions of large-scale optimization problems via machine learning: A case study in blood supply chain management. Computers & Operations Research, 119, 104941. https://doi.org/10.1016/J.COR.2020.104941
Abbaspour, A., Jahan, A., & Rezaiee, M. (2021). A simple empirical model for blood platelet production and inventory management under uncertainty. Journal of Ambient Intelligence and Humanized Computing, 12(2), 1783–1799. https://doi.org/10.1007/s12652-020-02254-x
Altaf, M. M., Roshdy, A. S., & AlSagri, H. S. (2021). Deep Reinforcement Learning Model for Blood Bank Vehicle Routing Multi-Objective Optimization. Computers, Materials & Continua, 70(2), 3955–3967. https://doi.org/10.32604/CMC.2022.019448
AlZu’bi, S., Aqel, D., & Lafi, M. (2022). An intelligent system for blood donation process optimization - smart techniques for minimizing blood wastages. Cluster Computing, 25(5), 3617–3627. https://doi.org/10.1007/S10586-022-03594-3/FIGURES/6
Arani, M., Chan, Y., Liu, X., & Momenitabar, M. (2021). A lateral resupply blood supply chain network design under uncertainties. Applied Mathematical Modelling, 93, 165– 187. https://doi.org/10.1016/j.apm.2020.12.010
Araújo, A. M., Santos, D., Marques, I., & Barbosa-Povoa, A. (2020). Blood supply chain: a two-stage approach for tactical and operational planning. OR Spectrum, 42(4), 1023– 1053. https://doi.org/10.1007/S00291-020-00600-1/TABLES/13
Beliën, J., & Forcé, H. (2012). Supply chain management of blood products: A literature review. European Journal of Operational Research, 217(1), 1–16. https://doi.org/10.1016/J.EJOR.2011.05.026
Cagliano, A. C., Grimaldi, S., & Rafele, C. (2021). A structured approach to analyse logistics risks in the blood transfusion process. Journal of Healthcare Risk Management : The Journal of the American Society for Healthcare Risk Management, 41(2), 18–30. https://doi.org/10.1002/jhrm.21458
Cagliano, A. C., Grimaldi, S., Rafele, C., & Campanale, C. (2022). An enhanced framework for blood supply chain risk management. Sustainable Futures, 4, 100091. https://doi.org/10.1016/J.SFTR.2022.100091
Chen, K., Song, J. S., Shang, J., & Xiao, T. (2022). Managing hospital platelet inventory with mid-cycle expedited replenishments and returns. Production and Operations Management, 31(5), 2015–2037. https://doi.org/10.1111/POMS.13662
Chen, X., Liu, L., & Guo, X. (2021). Analysing repeat blood donation behavior via big data. Industrial Management and Data Systems, 121(2), 192–208. https://doi.org/10.1108/IMDS-07-2020-0393/FULL/XML
Chideme, C., & Chikobvu, D. (2022). A Markov Chain Approach to the Pattern of Blood Donation Status at a Blood Service Centre in Zimbabwe. The Open Public Health Journal, 15(1). https://doi.org/10.2174/18749445-v15-e221014-2022-49
Chikobvu, D., & Chideme, C. (2022). A Markov jump process approach to modeling blood donor status: Donor retention and attrition rates at a blood service center in Zimbabwe. Health Science Reports, 5(6), e867. https://doi.org/10.1002/HSR2.867
Daneshi, S., Davarani, E. R., Arefi, F., Mehr, F. J., Hushmandi, K., Raei, M., Fariabi, R., & Shahrokhabadi, M. S. (n.d.). Factors affecting blood donation intervals and patterns of return based on a sample in southern Iran: A follow-up design. Russian Open Medical Journal, 10(4), 2021. https://doi.org/10.15275/rusomj.2021.0406
Daneshi, S., Davarani, E. R., Arefi, F., Mehr, F. J., Hushmandi, K., Raei, M., Fariabi, R., & Shahrokhabadi, M. S. (2021). Factors affecting blood donation intervals and patterns of return based on a sample in southern Iran: A follow-up design. Russian Open Medical Journal, 10(4). https://doi.org/10.15275/rusomj.2021.0406
Dehghani, M., Abbasi, B., & Oliveira, F. (2019). Proactive transshipment in the blood supply chain Proactive Transshipment in the Blood Supply Chain: a Stochastic Programming Approach. https://doi.org/10.1016/j.omega.2019.102112
Derikvand, H., Hajimolana, S. M., Jabbarzadeh, A., & Najafi, S. E. (2020). A robust stochastic bi-objective model for blood inventory-distribution management in a blood supply chain. European Journal of Industrial Engineering, 14(3), 369–403. https://doi.org/10.1504/EJIE.2020.107676
Dharmaraja, S., Narang, S., & Jain, V. (2020). A mathematical model for supply chain management of blood banks in India. OPSEARCH, 57(2), 541–552. https://doi.org/10.1007/S12597-019-00425-9/FIGURES/3
Doneda, M., Yalçındağ, S., Marques, I., & Lanzarone, E. (2021). A discrete-event simulation model for analysing and improving operations in a blood donation centre. Vox Sanguinis, 116(10), 1060–1075. https://doi.org/10.1111/vox.13111
Eghtesadifard, M., & Jozan, F. (2022). A systematic literature review on the blood supply chain: exploring the trend and future research directions. Journal of Ambient Intelligence and Humanized Computing, 13(2), 1173–1200. https://doi.org/10.1007/S12652-021- 03563-5/METRICS
Fallahi, A., Mokhtari, H., & Niaki, S. T. A. (2021). Designing a closed-loop blood supply chain network considering transportation flow and quality aspects. Sustainable Operations and Computers, 2, 170–189. https://doi.org/10.1016/j.susoc.2021.07.002
Ghahremani-Nahr, J., Kian, R., Sabet, · Ehsan, & Akbari, V. (123 C.E.). A bi-objective blood supply chain model under uncertain donation, demand, capacity and cost: a robust possibilistic-necessity approach. Operational Research. https://doi.org/10.1007/s12351- 022-00710-4
Ghahremani-Nahr, J., Kian, R., Sabet, E., & Akbari, V. (2022). A bi-objective blood supply chain model under uncertain donation, demand, capacity and cost: a robust possibilistic necessity approach. Operational Research, 22(5), 4685–4723. https://doi.org/10.1007/s12351-022-00710-4
Gómez Ceja, G., Aires, B., York San Juan, N., Bogotá, S. DE, Paulo, S., Londres, A., Delhi, N., Francisco, S., & Louis, S. S. (n.d.). SISTEMAS ADMINISTRATIVOS ANÁLISIS Y DISEÑO ENRI QUE BENJAMÍ N FRANKLI N FI NKOWSKY McGRAW-HILL.
Govender, P., & Ezugwu, A. E. (2022). Boosting symbiotic organism search algorithm with ecosystem service for dynamic blood allocation in blood banking system. Journal of Experimental & Theoretical Artificial Intelligence, 34(2), 261–293. https://doi.org/10.1080/0952813X.2021.1871665
Guo, X., Liu, A., Li, X., & Liu, T. (2020). A two-stage stochastic model for daily reserve in inventory management of Rh-negative red blood cells. Journal of Intelligent & Fuzzy Systems, 39(5), 6919–6933. https://doi.org/10.3233/JIFS-192182
Hawashin, D., Mahboobeh, D. A. J., Salah, K., Jayaraman, R., Yaqoob, I., Debe, M., &
Ellahham, S. (2021). Blockchain-based management of blood donation. IEEE Access, 9, 163016–163032. https://doi.org/10.1109/ACCESS.2021.3133953
Hofmann, A., Ozawa, S., & Shander, A. (2021). Activity-based cost of platelet transfusions in medical and surgical inpatients at a US hospital. Vox Sanguinis, 116(9), 998–1004. https://doi.org/10.1111/VOX.13095
Homier, V., Brouard, D., Nolan, M., Roy, M. A., Pelletier, P., McDonald, M., de Champlain,
F., Khalil, E., Grou-Boileau, F., & Fleet, R. (2021). Drone versus ground delivery of simulated blood products to an urban trauma center: The Montreal Medi-Drone pilot study. Journal of Trauma and Acute Care Surgery, 90(3), 515–521. https://doi.org/10.1097/TA.0000000000002961
Hosseini-Motlagh, S. M., Samani, M. R. G., & Cheraghi, S. (2020). Robust and stable flexible blood supply chain network design under motivational initiatives. Socio Economic Planning Sciences, 70, 100725. https://doi.org/10.1016/J.SEPS.2019.07.001
Hosseini-Motlagh, S. M., Samani, M. R. G., & Homaei, S. (2020). Blood supply chain management: robust optimization, disruption risk, and blood group compatibility (a real life case). Journal of Ambient Intelligence and Humanized Computing, 11(3), 1085– 1104. https://doi.org/10.1007/S12652-019-01315-0/METRICS
Imamoglu, G., Topcu, Y. I., & Aydin, N. (2023). A Systematic Literature Review of the Blood Supply Chain through Bibliometric Analysis and Taxonomy. Systems 2023, Vol. 11, Page 124, 11(3), 124. https://doi.org/10.3390/SYSTEMS11030124
Ismail, R. D., Hussein, H. A., Salih, M. M., Ahmed, M. A., Hameed, Q. A., & Omar, M. B. (2022). The Use of Web Technology and IoT to Contribute to the Management of Blood Banks in Developing Countries. Applied System Innovation, 5(5). https://doi.org/10.3390/asi5050090
Jiang, L., Zhang, G., Hao, K., Xiang, W., Zhang, Q., Xie, Y., Wang, Z., Chen, B., & Du, Y. (2022). Electronic transfusion consent and blood delivering pattern improve the management of blood bank in China. BMC Health Services Research, 22(1). https://doi.org/10.1186/s12913-022-07825-6 J
Juan, D., Laguna, G., Luis, D., San, A., & Nieto, J. (2014). Análisis y optimización de nuevos sistemas determinísticos y estocásticos en gestión de stocks. https://doi.org/10.35376/10324/7074
Karadağ, İ., Keskin, M. E., & Yiğit, V. (2021). Re-design of a blood supply chain organization with mobile units. Soft Computing, 25(8), 6311–6327. https://doi.org/10.1007/s00500-021-05618-3
Kaya, O., & Ozkok, D. (2020). A Blood Bank Network Design Problem with Integrated Facility Location, Inventory and Routing Decisions. Networks and Spatial Economics, 20(3), 757–783. https://doi.org/10.1007/S11067-020-09500-X/TABLES/5
Kazemi Matin, R., Azadi, M., & Saen, R. F. (2022a). Measuring the sustainability and resilience of blood supply chains. Decision Support Systems, 161, 113629. https://doi.org/10.1016/J.DSS.2021.113629
Kazemi Matin, R., Azadi, M., & Saen, R. F. (2022b). Measuring the sustainability and resilience of blood supply chains. Decision Support Systems, 161. https://doi.org/10.1016/j.dss.2021.113629
Lee, S. M., Lee, G., Kim, T. K., Le, T., Hao, J., Jung, Y. M., Park, C. W., Park, J. S., Jun, J. K., Lee, H. C., & Kim, D. (2022). Development and Validation of a Prediction Model for Need for Massive Transfusion during Surgery Using Intraoperative Hemodynamic Monitoring Data. JAMA Network Open, 5(12), E2246637. https://doi.org/10.1001/jamanetworkopen.2022.46637
Li, N., Chiang, F., Down, D. G., & Heddle, N. M. (2021). A decision integration strategy for short-term demand forecasting and ordering for red blood cell components. Operations Research for Health Care, 29. https://doi.org/10.1016/j.orhc.2021.100290
Li, Q., Ma, Z., & Yang, F. (2022). Blood component preparation-inventory problem with stochastic demand and supply. International Transactions in Operational Research, 29(5), 2921–2943. https://doi.org/10.1111/ITOR.13073
Li, X., Fan, H., Liu, J., & Xun, Q. (2022). Staff scheduling in blood collection problems. Annals of Operations Research, 316(1), 365–400. https://doi.org/10.1007/S10479-020- 03688-4/TABLES/23
Liu, P., Hendalianpour, A., Razmi, J., & Sangari, M. S. (2021). A solution algorithm for integrated production-inventory-routing of perishable goods with transshipment and uncertain demand. Complex and Intelligent Systems, 7(3), 1349–1365. https://doi.org/10.1007/s40747-020-00264-y
Liu, W., Ke, G. Y., Chen, J., & Zhang, L. (2020). Scheduling the distribution of blood products: A vendor-managed inventory routing approach. Transportation Research Part E: Logistics and Transportation Review, 140, 101964. https://doi.org/10.1016/J.TRE.2020.101964
Liu, Y., & Deng, G. (2022). Automating inventorying of blood stations: A system based on ultrahigh-frequency radio-frequency identification (UHF RFID) technology. Transfusion Clinique et Biologique, 29(2), 134–137. https://doi.org/10.1016/j.tracli.2021.12.003
Lowalekar, H., & Ravichandran, N. (2014). Blood bank inventory management in India. OPSEARCH, 51(3), 376–399. https://doi.org/10.1007/S12597-013-0148-Z/TABLES/3
Luo, Z., & Chen, X. (2022). Ordering policies for heterogeneous platelets demand with unreliable supply and substitution. Journal of the Operational Research Society, 73(4), 919–935. https://doi.org/10.1080/01605682.2021.1877577
Mansur, A., Vanany, I., & Arvitrida, N. I. (2023). Horizontal collaboration in a decentralised system: Indonesian blood supply chain. Supply Chain Forum: An International Journal, 24(3), 334–350. https://doi.org/10.1080/16258312.2022.2161287
Mohammadi, N., Seyedi, S. H., Farhadi, P., Shahmohamadi, J., Ganjeh, Z. A., & Salehi, Z. (2022). Development of a scenario-based blood bank model to maximize reducing the blood wastage. Transfusion Clinique et Biologique, 29(1), 16–19. https://doi.org/10.1016/j.tracli.2021.10.003
Moslemi, S., & Pasandideh, S. H. R. (2021). A location-allocation model for quality-based blood supply chain under IER uncertainty. RAIRO - Operations Research, 55, S967– S998. https://doi.org/10.1051/ro/2020035
MSP-Ecuador.2013. (n.d.). Ministerio de Salud Pública-Ecuador-2013. Retrieved February 5, 2024, from https://www.salud.gob.ec/msp-promueve-la-donacion-de-sangre-un-gesto altruista-que-salva-vidas/ Nisingizwe, M. P., Ndishimye, P., Swaibu, K., Nshimiyimana, L., Karame, P., Dushimiyimana, V., Musabyimana, J. P., Musanabaganwa, C., Nsanzimana, S., & Law
M. R. (2022). Effect of unmanned aerial vehicle (drone) delivery on blood product delivery time and wastage in Rwanda: a retrospective, cross-sectional study and time series analysis. The Lancet Global Health, 10(4), e564–e569. https://doi.org/10.1016/S2214-109X(22)00048-1
Noble, J., John, K., & Paul, B. (2022). A new (q*, S) policy to manage inventory for low shelf life products facing deterioration in quality and age differentiated requirements. Computers and Industrial Engineering, 173. https://doi.org/10.1016/j.cie.2022.108706
Ogliari, K. S., Loth, F. B., Halon, M. L., Immig, M. L., da Silva, C. G., Ogliari, A. S., De Lima Brum, D. E., & Beckenkamp, L. R. (2022). Relocating to a new facility: The challenge of a cord blood banking transferral in Brazil. Transfusion, 62(11), 2297–2303. https://doi.org/10.1111/TRF.17112
OMS- Ginebra.2014. (n.d.). Disponibilidad y seguridad de la sangre. Retrieved February 5, 2024, from https://www.who.int/es/news-room/fact-sheets/detail/blood-safety-and availability
Osorio, A. F., Brailsford, S. C., & Smith, H. K. (2015). A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making. International Journal of Production Research, 53(24), 7191–7212. https://doi.org/10.1080/00207543.2015.1005766
Patidar, G. K., Thachil, J., Dhiman, Y., Oreh, A., Vrielink, H., van den Berg, K., Grubovic Rastvorceva, R. M., So-Osman, C., & Al-Riyami, A. Z. (2022). Management of blood transfusion services in low-resource countries. Vox Sanguinis, 117(12), 1375–1383. https://doi.org/10.1111/vox.13373
Phan-Tang, M., Lee, C. M., Fang, A., Rioveros, J., Siletz, A. E., Cryer, H., McGonigle, A. M., Ziman, A., & Ward, D. C. (2022). Logistics of managing a trauma whole blood inventory in a civilian level 1 trauma center. Transfusion, 62(9), 1772–1778. https://doi.org/10.1111/TRF.17035
Pirabán-Ramírez, A., Guerrero-Rueda, W. J., & Labadie, N. (2022). The multi-trip vehicle routing problem with increasing profits for the blood transportation: An iterated local search metaheuristic. Computers and Industrial Engineering, 170. https://doi.org/10.1016/j.cie.2022.108294
Rajendran, S. (2021). Application of blockchain technique to reduce platelet wastage and shortage by forming hospital collaborative networks. IISE Transactions on Healthcare Systems Engineering, 11(2), 128–144. https://doi.org/10.1080/24725579.2020.1864522
Rapodile, T., Mitchel, J., Swanevelder, R., Murphy, E. L., & van den Berg, K. (2021). Re engineering the medical assessment of blood donors in South Africa: The balance between supply and safety. Transfusion, 61(12), 3361–3371. https://doi.org/10.1111/TRF.16702
Rashidzadeh, E., Hadji Molana, S. M., Soltani, R., & Hafezalkotob, A. (2021). Assessing the sustainability of using drone technology for last-mile delivery in a blood supply chain. Journal of Modelling in Management, 16(4), 1376–1402. https://doi.org/10.1108/JM2- 09-2020-0241/FULL/XML
Ravindra Sarode. (2022). (RaviSarode - The University of Texas Southwestern Medical Center 2022.
Rigal, J.-C., Riche, V. P., Tching-Sin, M., Fronteau, C., Huon, J.-F., Cadiet, J., Boukhari, R., Vourc’, M., & Rozec, B. (2020). Cost of red blood cell transfusion; evaluation in a French academic hospital. https://doi.org/10.1016/j.tracli.2020.08.002ï
Rincón, L. (n.d.). INTRODUCCI´ONINTRODUCCI´ INTRODUCCI´ON A LOS PROCESOS ESTOC´ASTICOSESTOC´ ESTOC´ASTICOS. Retrieved February 5, 2024, from http://www.matematicas.unam.mx/lars. Rosenhead. (n.d.). Rosenhead et al., 1972.
Salazar-Concha, C., & Ramírez-Correa, P. (2021). Predicting the intention to donate blood among blood donors using a decision tree algorithm. Symmetry, 13(8). https://doi.org/10.3390/sym13081460 Salazar-Concha, C., Ramírez-Correa, P., Karwowski, W., Parsaei, B., Parsaei, H. R., Carlos,
J., & Alcantud, R. (2021). Predicting the Intention to Donate Blood among Blood Donors Using a Decision Tree Algorithm. Symmetry 2021, Vol. 13, Page 1460, 13(8), 1460. https://doi.org/10.3390/SYM13081460
Samani, M. R. G., Hosseini-Motlagh, S. M., & Homaei, S. (2020). A reactive phase against disruptions for designing a proactive platelet supply network. Transportation Research Part E: Logistics and Transportation Review, 140, 102008. https://doi.org/10.1016/J.TRE.2020.102008 Scopus - Document details - A fuzzy-based prediction approach for blood delivery using machine learning and genetic algorithm. (n.d.). Retrieved February 3, 2024, from https://www-scopus-com.ezproxy.cuc.edu.co/record/display.uri?eid=2-s2.0- 85118996855&origin=resultslist&sort=plf f&src=s&sid=23755ed87f6038627bfcdb6cfc9c130b&sot=b&sdt=b&s=TITLE-ABS KEY%28A+FUZZY BASED+PREDICTION+APPROACH+FOR+BLOOD+DELIVERY+USING+MACHI NE+LEARNING+AND+GENETIC+ALGORITHM%29&sl=112&sessionSearchId=23 755ed87f6038627bfcdb6cfc9c130b&relpos=0
Scopus - Document details - A qualitative, patient-centered perspective toward plasma products supply chain network design with risk controlling. (n.d.). Retrieved February 3, 2024, from https://www-scopus-com.ezproxy.cuc.edu.co/record/display.uri?eid=2-s2.0- 85085711331&origin=resultslist&sort=plf f&src=s&sid=28bf7f5a583b8e13676c404ed4a84571&sot=b&sdt=b&s=TITLE-ABS KEY%28A+QUALITATIVE%2C+PATIENT CENTERED+PERSPECTIVE+TOWARD+PLASMA+PRODUCTS+SUPPLY+CHAIN +NETWORK+DESIGN+WITH+RISK+CONTROLLING%29&sl=142&sessionSearchI d=28bf7f5a583b8e13676c404ed4a84571&relpos=0
Shokouhifar, M., Sabbaghi, M. M., & Pilevari, N. (2021). Inventory management in blood supply chain considering fuzzy supply/demand uncertainties and lateral transshipment. Transfusion and Apheresis Science, 60(3). https://doi.org/10.1016/j.transci.2021.103103
Sohrabi, M., Zandieh, M., & Shokouhifar, M. (2022). Sustainable inventory management in blood banks considering health equity using a combined metaheuristic-based robust fuzzy stochastic programming. Socio-Economic Planning Sciences. https://doi.org/10.1016/j.seps.2022.101462
Stanger, S. H. W., Yates, N., Wilding, R., & Cotton, S. (2012). Blood Inventory Management: Hospital Best Practice. Transfusion Medicine Reviews, 26(2), 153–163. https://doi.org/10.1016/J.TMRV.2011.09.001
Stock, B., & Möckel, L. (2021). Characterization of blood donors and non-blood donors in Germany using an online survey. Health and Technology, 11(3), 595–602. https://doi.org/10.1007/S12553-021-00532-Y/TABLES/2 Tadarok, S., Fakhrzad, M. B., Jokardarabi, M., & Jafari-Nodoushan, A. (2021). A mathematical model for a blood supply chain network with the robust fuzzy possibilistic programming approach: A case study at Namazi hospital. International Journal of Engineering Transactions C: Aspects, 34(6), 1495–1504. https://doi.org/10.5829/ije.2021.34.06c.13
Torrado, A., & Barbosa-Póvoa, A. (2022). Towards an Optimized and Sustainable Blood Supply Chain Network under Uncertainty: A Literature Review. Cleaner Logistics and Supply Chain, 3. https://doi.org/10.1016/j.clscn.2022.100028
Trong, P. N., Vo, H. K., Huong, L. H., Gia, K. H., Dang, K. T., Van, H. Le, Huu, N. H., Huyen, T. N., Nguyen, T. A., Phu, L. V. C., Quoc, D. N. T., Khanh, B. Le, & Tuan, K.
Le. (2022). Blood and Product-Chain: Blood and its Products Supply Chain Management based on Blockchain Approach. International Journal of Advanced Computer Science and Applications, 13(11), 743–750. https://doi.org/10.14569/IJACSA.2022.0131186
Twumasi, C., & Twumasi, J. (2022). Machine learning algorithms for forecasting and backcasting blood demand data with missing values and outliers: A study of Tema General Hospital of Ghana. International Journal of Forecasting, 38(3), 1258–1277. https://doi.org/10.1016/j.ijforecast.2021.10.008
Universidad, P., Carvajal-Hernández, J., David, J., Osorio-Muriel, ;, & Felipe, A. (n.d.). A Simulation-Based Optimization Algorithm for the Vendor-Managed Inventory Problem for Blood Platelets*. 26, 1–21. https://doi.org/10.11144/Javeriana.iued26.sboa U.S FOOD & DRUG. (n.d.). FDA en español | FDA. Retrieved February 5, 2024, from https://www.fda.gov/about-fda/fda-en-espanol
Van Sambeeck, J. H. J., Van Brummelen, S. P. J., Van Dijk, N. M., & Janssen, M. P. (2022). Optimal blood issuing by comprehensive matching. European Journal of Operational Research, 296, 240–253. https://doi.org/10.1016/j.ejor.2021.02.054
Vinkenoog, M. ;, Leeuwen, M., Van, ;, Janssen, M. P., Vinkenoog, M., Matthijs Van Leeuwen, |, & Janssen, M. P. (2022). Explainable haemoglobin deferral predictions using machine learning models: interpretation and consequences for the blood supply. Vox Sanguinis, 117(11), 1262–1270. https://doi.org/10.1111/vox.13350
Wemelsfelder, M. L., den Hertog, D., Wisman, O., Ihalainen, J., & Janssen, M. P. (2022). Determining optimal locations for blood distribution centers. Transfusion, 62(12), 2515– 2524. https://doi.org/10.1111/trf.17147
Xiang, R. F., Quinn, J. G., Watson, S., Kumar-Misir, A., & Cheng, C. (2021). Application of unsupervised machine learning to identify areas of blood product wastage in transfusion medicine. Vox Sanguinis, 116(9), 955–964. https://doi.org/10.1111/VOX.13089
Xu, Y., & Szmerekovsky, J. (2022). A multi-product multi-period stochastic model for a blood supply chain considering blood substitution and demand uncertainty. Health Care Management Science, 25(3), 441–459. https://doi.org/10.1007/S10729-022-09593- 5/TABLES/14
Zhou, Y., Zou, T., Liu, C., Yu, H., Chen, L., & Su, J. (2021). Blood supply chain operation considering lifetime and transshipment under uncertain environment. Applied Soft Computing, 106, 107364. https://doi.org/10.1016/J.ASOC.2021.107364
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 70 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.temporal.none.fl_str_mv (2019-2022)
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.department.spa.fl_str_mv Productividad e Innovación
dc.publisher.place.spa.fl_str_mv Barranquilla, Colombia
dc.publisher.program.spa.fl_str_mv Ingeniería Industrial
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/93ae65f0-d93f-48c8-9f77-d8ca18af927f/download
https://repositorio.cuc.edu.co/bitstreams/b59d0cb7-852a-47c6-95ee-e0f9f8e82ce2/download
https://repositorio.cuc.edu.co/bitstreams/eef5e2ac-9842-43b6-b3d1-173b9e98190e/download
https://repositorio.cuc.edu.co/bitstreams/ede509b0-859b-43b0-9340-f62956ecc3f7/download
bitstream.checksum.fl_str_mv 5c9eb7591bb99fc14d26efa32d79beae
2f9959eaf5b71fae44bbf9ec84150c7a
8179be31c45ef671a135d1c98b1f0570
e77d5670a4f8a52e8e45144c7a4cca89
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760843045470208
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Manosalva Sandoval, JessicaPiraban Ramírez, AndreaMartínez Olaya, Jesús DanielParra Negrete, KevinMojica Herazo, JulioRomero Conrado, Alfonso(2019-2022)2024-06-18T12:31:58Z2024-06-18T12:31:58Z2024https://hdl.handle.net/11323/13021Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.coIn this review and research project of articles published in Scopus in the range of years (2019-2022) on blood supply chains, a taxonomy divided by links was used. The analysis covered aspects such as donation, collection, processing, storage, distribution and logistics management. The studies highlighted technological advances, challenges in the cold chain, and strategies to improve efficiency and safety in each link. It was noted that the number of articles published on the subject is increasing every year. This summary highlights the diversity of research and the importance of comprehensively addressing the management of blood supply chains to cover in each update the advances that have been developed for BSCsEn este proyecto de revisión e investigación de artículos publicados en Scopus en el rango de años (2019-2022), sobre cadenas de suministro de sangre, se utilizó una taxonomía dividida por eslabones. El análisis abarcó aspectos como la donación, la recolección, el procesamiento, el almacenamiento, la distribución y la gestión logística. Los estudios destacaron avances tecnológicos, desafíos en la cadena de frío y estrategias para mejorar la eficiencia y la seguridad en cada eslabón. Se observó que las publicaciones de artículos referentes al tema van en aumento cada año. Este resumen destaca la diversidad de investigaciones y la importancia de abordar integralmente la gestión de las cadenas de suministro de sangre para abarcar en cada actualización los avances que se han desarrollado para los BSC.Lista de Tablas 9 -- Lista de figuras 11 -- Introducción 12 -- Descripción del problema 14 -- Planteamiento del problema 14 -- Justificación 17 – Objetivos 19 -- Metodología de revisión 20 -- Nota: La tabla muestra las revistas con mayores contribuciones en la gestión de la BSCTaxonomía 22 -- Entornos de toma de decisiones y previsión 24 -- Temas relacionados con el diseño de la BSC 25 -- Eslabones y topología de la red 25 -- Procesos y decisiones de planeación 29 -- Nota: La tabla muestra Distribución de los artículos de referencia según los tipos de problemas relacionados al proceso de transfusión 50 -- Modelamiento y métodos de solución 50 -- Características de los datos 52 -- Discusión e investigaciones futuras 53 – Conclusiones 55 -- Material suplementario 56 – Referencias 57 --Ingeniero(a) IndustrialPregrado70 páginasapplication/pdfspaCorporación Universidad de la CostaProductividad e InnovaciónBarranquilla, ColombiaIngeniería IndustrialRevisión y actualización literaria de modelos y métodos cuantitativos aplicados en la gestión de las cadenas de suministro de sangre entre 2019 y 2022Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionA resilient approach to modelling the supply and demand of platelets in the United Kingdom Blood supply chain. (n.d.). https://doi.org/10.1080/17509653.2021.1892548Abbasi, B., Babaei, T., Hosseinifard, Z., Smith-Miles, K., & Dehghani, M. (2020). Predicting solutions of large-scale optimization problems via machine learning: A case study in blood supply chain management. Computers & Operations Research, 119, 104941. https://doi.org/10.1016/J.COR.2020.104941Abbaspour, A., Jahan, A., & Rezaiee, M. (2021). A simple empirical model for blood platelet production and inventory management under uncertainty. Journal of Ambient Intelligence and Humanized Computing, 12(2), 1783–1799. https://doi.org/10.1007/s12652-020-02254-xAltaf, M. M., Roshdy, A. S., & AlSagri, H. S. (2021). Deep Reinforcement Learning Model for Blood Bank Vehicle Routing Multi-Objective Optimization. Computers, Materials & Continua, 70(2), 3955–3967. https://doi.org/10.32604/CMC.2022.019448AlZu’bi, S., Aqel, D., & Lafi, M. (2022). An intelligent system for blood donation process optimization - smart techniques for minimizing blood wastages. Cluster Computing, 25(5), 3617–3627. https://doi.org/10.1007/S10586-022-03594-3/FIGURES/6Arani, M., Chan, Y., Liu, X., & Momenitabar, M. (2021). A lateral resupply blood supply chain network design under uncertainties. Applied Mathematical Modelling, 93, 165– 187. https://doi.org/10.1016/j.apm.2020.12.010Araújo, A. M., Santos, D., Marques, I., & Barbosa-Povoa, A. (2020). Blood supply chain: a two-stage approach for tactical and operational planning. OR Spectrum, 42(4), 1023– 1053. https://doi.org/10.1007/S00291-020-00600-1/TABLES/13Beliën, J., & Forcé, H. (2012). Supply chain management of blood products: A literature review. European Journal of Operational Research, 217(1), 1–16. https://doi.org/10.1016/J.EJOR.2011.05.026Cagliano, A. C., Grimaldi, S., & Rafele, C. (2021). A structured approach to analyse logistics risks in the blood transfusion process. Journal of Healthcare Risk Management : The Journal of the American Society for Healthcare Risk Management, 41(2), 18–30. https://doi.org/10.1002/jhrm.21458Cagliano, A. C., Grimaldi, S., Rafele, C., & Campanale, C. (2022). An enhanced framework for blood supply chain risk management. Sustainable Futures, 4, 100091. https://doi.org/10.1016/J.SFTR.2022.100091Chen, K., Song, J. S., Shang, J., & Xiao, T. (2022). Managing hospital platelet inventory with mid-cycle expedited replenishments and returns. Production and Operations Management, 31(5), 2015–2037. https://doi.org/10.1111/POMS.13662Chen, X., Liu, L., & Guo, X. (2021). Analysing repeat blood donation behavior via big data. Industrial Management and Data Systems, 121(2), 192–208. https://doi.org/10.1108/IMDS-07-2020-0393/FULL/XMLChideme, C., & Chikobvu, D. (2022). A Markov Chain Approach to the Pattern of Blood Donation Status at a Blood Service Centre in Zimbabwe. The Open Public Health Journal, 15(1). https://doi.org/10.2174/18749445-v15-e221014-2022-49Chikobvu, D., & Chideme, C. (2022). A Markov jump process approach to modeling blood donor status: Donor retention and attrition rates at a blood service center in Zimbabwe. Health Science Reports, 5(6), e867. https://doi.org/10.1002/HSR2.867Daneshi, S., Davarani, E. R., Arefi, F., Mehr, F. J., Hushmandi, K., Raei, M., Fariabi, R., & Shahrokhabadi, M. S. (n.d.). Factors affecting blood donation intervals and patterns of return based on a sample in southern Iran: A follow-up design. Russian Open Medical Journal, 10(4), 2021. https://doi.org/10.15275/rusomj.2021.0406Daneshi, S., Davarani, E. R., Arefi, F., Mehr, F. J., Hushmandi, K., Raei, M., Fariabi, R., & Shahrokhabadi, M. S. (2021). Factors affecting blood donation intervals and patterns of return based on a sample in southern Iran: A follow-up design. Russian Open Medical Journal, 10(4). https://doi.org/10.15275/rusomj.2021.0406Dehghani, M., Abbasi, B., & Oliveira, F. (2019). Proactive transshipment in the blood supply chain Proactive Transshipment in the Blood Supply Chain: a Stochastic Programming Approach. https://doi.org/10.1016/j.omega.2019.102112Derikvand, H., Hajimolana, S. M., Jabbarzadeh, A., & Najafi, S. E. (2020). A robust stochastic bi-objective model for blood inventory-distribution management in a blood supply chain. European Journal of Industrial Engineering, 14(3), 369–403. https://doi.org/10.1504/EJIE.2020.107676Dharmaraja, S., Narang, S., & Jain, V. (2020). A mathematical model for supply chain management of blood banks in India. OPSEARCH, 57(2), 541–552. https://doi.org/10.1007/S12597-019-00425-9/FIGURES/3Doneda, M., Yalçındağ, S., Marques, I., & Lanzarone, E. (2021). A discrete-event simulation model for analysing and improving operations in a blood donation centre. Vox Sanguinis, 116(10), 1060–1075. https://doi.org/10.1111/vox.13111Eghtesadifard, M., & Jozan, F. (2022). A systematic literature review on the blood supply chain: exploring the trend and future research directions. Journal of Ambient Intelligence and Humanized Computing, 13(2), 1173–1200. https://doi.org/10.1007/S12652-021- 03563-5/METRICSFallahi, A., Mokhtari, H., & Niaki, S. T. A. (2021). Designing a closed-loop blood supply chain network considering transportation flow and quality aspects. Sustainable Operations and Computers, 2, 170–189. https://doi.org/10.1016/j.susoc.2021.07.002Ghahremani-Nahr, J., Kian, R., Sabet, · Ehsan, & Akbari, V. (123 C.E.). A bi-objective blood supply chain model under uncertain donation, demand, capacity and cost: a robust possibilistic-necessity approach. Operational Research. https://doi.org/10.1007/s12351- 022-00710-4Ghahremani-Nahr, J., Kian, R., Sabet, E., & Akbari, V. (2022). A bi-objective blood supply chain model under uncertain donation, demand, capacity and cost: a robust possibilistic necessity approach. Operational Research, 22(5), 4685–4723. https://doi.org/10.1007/s12351-022-00710-4Gómez Ceja, G., Aires, B., York San Juan, N., Bogotá, S. DE, Paulo, S., Londres, A., Delhi, N., Francisco, S., & Louis, S. S. (n.d.). SISTEMAS ADMINISTRATIVOS ANÁLISIS Y DISEÑO ENRI QUE BENJAMÍ N FRANKLI N FI NKOWSKY McGRAW-HILL.Govender, P., & Ezugwu, A. E. (2022). Boosting symbiotic organism search algorithm with ecosystem service for dynamic blood allocation in blood banking system. Journal of Experimental & Theoretical Artificial Intelligence, 34(2), 261–293. https://doi.org/10.1080/0952813X.2021.1871665Guo, X., Liu, A., Li, X., & Liu, T. (2020). A two-stage stochastic model for daily reserve in inventory management of Rh-negative red blood cells. Journal of Intelligent & Fuzzy Systems, 39(5), 6919–6933. https://doi.org/10.3233/JIFS-192182Hawashin, D., Mahboobeh, D. A. J., Salah, K., Jayaraman, R., Yaqoob, I., Debe, M., &Ellahham, S. (2021). Blockchain-based management of blood donation. IEEE Access, 9, 163016–163032. https://doi.org/10.1109/ACCESS.2021.3133953Hofmann, A., Ozawa, S., & Shander, A. (2021). Activity-based cost of platelet transfusions in medical and surgical inpatients at a US hospital. Vox Sanguinis, 116(9), 998–1004. https://doi.org/10.1111/VOX.13095Homier, V., Brouard, D., Nolan, M., Roy, M. A., Pelletier, P., McDonald, M., de Champlain,F., Khalil, E., Grou-Boileau, F., & Fleet, R. (2021). Drone versus ground delivery of simulated blood products to an urban trauma center: The Montreal Medi-Drone pilot study. Journal of Trauma and Acute Care Surgery, 90(3), 515–521. https://doi.org/10.1097/TA.0000000000002961Hosseini-Motlagh, S. M., Samani, M. R. G., & Cheraghi, S. (2020). Robust and stable flexible blood supply chain network design under motivational initiatives. Socio Economic Planning Sciences, 70, 100725. https://doi.org/10.1016/J.SEPS.2019.07.001Hosseini-Motlagh, S. M., Samani, M. R. G., & Homaei, S. (2020). Blood supply chain management: robust optimization, disruption risk, and blood group compatibility (a real life case). Journal of Ambient Intelligence and Humanized Computing, 11(3), 1085– 1104. https://doi.org/10.1007/S12652-019-01315-0/METRICSImamoglu, G., Topcu, Y. I., & Aydin, N. (2023). A Systematic Literature Review of the Blood Supply Chain through Bibliometric Analysis and Taxonomy. Systems 2023, Vol. 11, Page 124, 11(3), 124. https://doi.org/10.3390/SYSTEMS11030124Ismail, R. D., Hussein, H. A., Salih, M. M., Ahmed, M. A., Hameed, Q. A., & Omar, M. B. (2022). The Use of Web Technology and IoT to Contribute to the Management of Blood Banks in Developing Countries. Applied System Innovation, 5(5). https://doi.org/10.3390/asi5050090Jiang, L., Zhang, G., Hao, K., Xiang, W., Zhang, Q., Xie, Y., Wang, Z., Chen, B., & Du, Y. (2022). Electronic transfusion consent and blood delivering pattern improve the management of blood bank in China. BMC Health Services Research, 22(1). https://doi.org/10.1186/s12913-022-07825-6 JJuan, D., Laguna, G., Luis, D., San, A., & Nieto, J. (2014). Análisis y optimización de nuevos sistemas determinísticos y estocásticos en gestión de stocks. https://doi.org/10.35376/10324/7074Karadağ, İ., Keskin, M. E., & Yiğit, V. (2021). Re-design of a blood supply chain organization with mobile units. Soft Computing, 25(8), 6311–6327. https://doi.org/10.1007/s00500-021-05618-3Kaya, O., & Ozkok, D. (2020). A Blood Bank Network Design Problem with Integrated Facility Location, Inventory and Routing Decisions. Networks and Spatial Economics, 20(3), 757–783. https://doi.org/10.1007/S11067-020-09500-X/TABLES/5Kazemi Matin, R., Azadi, M., & Saen, R. F. (2022a). Measuring the sustainability and resilience of blood supply chains. Decision Support Systems, 161, 113629. https://doi.org/10.1016/J.DSS.2021.113629Kazemi Matin, R., Azadi, M., & Saen, R. F. (2022b). Measuring the sustainability and resilience of blood supply chains. Decision Support Systems, 161. https://doi.org/10.1016/j.dss.2021.113629Lee, S. M., Lee, G., Kim, T. K., Le, T., Hao, J., Jung, Y. M., Park, C. W., Park, J. S., Jun, J. K., Lee, H. C., & Kim, D. (2022). Development and Validation of a Prediction Model for Need for Massive Transfusion during Surgery Using Intraoperative Hemodynamic Monitoring Data. JAMA Network Open, 5(12), E2246637. https://doi.org/10.1001/jamanetworkopen.2022.46637Li, N., Chiang, F., Down, D. G., & Heddle, N. M. (2021). A decision integration strategy for short-term demand forecasting and ordering for red blood cell components. Operations Research for Health Care, 29. https://doi.org/10.1016/j.orhc.2021.100290Li, Q., Ma, Z., & Yang, F. (2022). Blood component preparation-inventory problem with stochastic demand and supply. International Transactions in Operational Research, 29(5), 2921–2943. https://doi.org/10.1111/ITOR.13073Li, X., Fan, H., Liu, J., & Xun, Q. (2022). Staff scheduling in blood collection problems. Annals of Operations Research, 316(1), 365–400. https://doi.org/10.1007/S10479-020- 03688-4/TABLES/23Liu, P., Hendalianpour, A., Razmi, J., & Sangari, M. S. (2021). A solution algorithm for integrated production-inventory-routing of perishable goods with transshipment and uncertain demand. Complex and Intelligent Systems, 7(3), 1349–1365. https://doi.org/10.1007/s40747-020-00264-yLiu, W., Ke, G. Y., Chen, J., & Zhang, L. (2020). Scheduling the distribution of blood products: A vendor-managed inventory routing approach. Transportation Research Part E: Logistics and Transportation Review, 140, 101964. https://doi.org/10.1016/J.TRE.2020.101964Liu, Y., & Deng, G. (2022). Automating inventorying of blood stations: A system based on ultrahigh-frequency radio-frequency identification (UHF RFID) technology. Transfusion Clinique et Biologique, 29(2), 134–137. https://doi.org/10.1016/j.tracli.2021.12.003Lowalekar, H., & Ravichandran, N. (2014). Blood bank inventory management in India. OPSEARCH, 51(3), 376–399. https://doi.org/10.1007/S12597-013-0148-Z/TABLES/3Luo, Z., & Chen, X. (2022). Ordering policies for heterogeneous platelets demand with unreliable supply and substitution. Journal of the Operational Research Society, 73(4), 919–935. https://doi.org/10.1080/01605682.2021.1877577Mansur, A., Vanany, I., & Arvitrida, N. I. (2023). Horizontal collaboration in a decentralised system: Indonesian blood supply chain. Supply Chain Forum: An International Journal, 24(3), 334–350. https://doi.org/10.1080/16258312.2022.2161287Mohammadi, N., Seyedi, S. H., Farhadi, P., Shahmohamadi, J., Ganjeh, Z. A., & Salehi, Z. (2022). Development of a scenario-based blood bank model to maximize reducing the blood wastage. Transfusion Clinique et Biologique, 29(1), 16–19. https://doi.org/10.1016/j.tracli.2021.10.003Moslemi, S., & Pasandideh, S. H. R. (2021). A location-allocation model for quality-based blood supply chain under IER uncertainty. RAIRO - Operations Research, 55, S967– S998. https://doi.org/10.1051/ro/2020035MSP-Ecuador.2013. (n.d.). Ministerio de Salud Pública-Ecuador-2013. Retrieved February 5, 2024, from https://www.salud.gob.ec/msp-promueve-la-donacion-de-sangre-un-gesto altruista-que-salva-vidas/ Nisingizwe, M. P., Ndishimye, P., Swaibu, K., Nshimiyimana, L., Karame, P., Dushimiyimana, V., Musabyimana, J. P., Musanabaganwa, C., Nsanzimana, S., & LawM. R. (2022). Effect of unmanned aerial vehicle (drone) delivery on blood product delivery time and wastage in Rwanda: a retrospective, cross-sectional study and time series analysis. The Lancet Global Health, 10(4), e564–e569. https://doi.org/10.1016/S2214-109X(22)00048-1Noble, J., John, K., & Paul, B. (2022). A new (q*, S) policy to manage inventory for low shelf life products facing deterioration in quality and age differentiated requirements. Computers and Industrial Engineering, 173. https://doi.org/10.1016/j.cie.2022.108706Ogliari, K. S., Loth, F. B., Halon, M. L., Immig, M. L., da Silva, C. G., Ogliari, A. S., De Lima Brum, D. E., & Beckenkamp, L. R. (2022). Relocating to a new facility: The challenge of a cord blood banking transferral in Brazil. Transfusion, 62(11), 2297–2303. https://doi.org/10.1111/TRF.17112OMS- Ginebra.2014. (n.d.). Disponibilidad y seguridad de la sangre. Retrieved February 5, 2024, from https://www.who.int/es/news-room/fact-sheets/detail/blood-safety-and availabilityOsorio, A. F., Brailsford, S. C., & Smith, H. K. (2015). A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making. International Journal of Production Research, 53(24), 7191–7212. https://doi.org/10.1080/00207543.2015.1005766Patidar, G. K., Thachil, J., Dhiman, Y., Oreh, A., Vrielink, H., van den Berg, K., Grubovic Rastvorceva, R. M., So-Osman, C., & Al-Riyami, A. Z. (2022). Management of blood transfusion services in low-resource countries. Vox Sanguinis, 117(12), 1375–1383. https://doi.org/10.1111/vox.13373Phan-Tang, M., Lee, C. M., Fang, A., Rioveros, J., Siletz, A. E., Cryer, H., McGonigle, A. M., Ziman, A., & Ward, D. C. (2022). Logistics of managing a trauma whole blood inventory in a civilian level 1 trauma center. Transfusion, 62(9), 1772–1778. https://doi.org/10.1111/TRF.17035Pirabán-Ramírez, A., Guerrero-Rueda, W. J., & Labadie, N. (2022). The multi-trip vehicle routing problem with increasing profits for the blood transportation: An iterated local search metaheuristic. Computers and Industrial Engineering, 170. https://doi.org/10.1016/j.cie.2022.108294Rajendran, S. (2021). Application of blockchain technique to reduce platelet wastage and shortage by forming hospital collaborative networks. IISE Transactions on Healthcare Systems Engineering, 11(2), 128–144. https://doi.org/10.1080/24725579.2020.1864522Rapodile, T., Mitchel, J., Swanevelder, R., Murphy, E. L., & van den Berg, K. (2021). Re engineering the medical assessment of blood donors in South Africa: The balance between supply and safety. Transfusion, 61(12), 3361–3371. https://doi.org/10.1111/TRF.16702Rashidzadeh, E., Hadji Molana, S. M., Soltani, R., & Hafezalkotob, A. (2021). Assessing the sustainability of using drone technology for last-mile delivery in a blood supply chain. Journal of Modelling in Management, 16(4), 1376–1402. https://doi.org/10.1108/JM2- 09-2020-0241/FULL/XMLRavindra Sarode. (2022). (RaviSarode - The University of Texas Southwestern Medical Center 2022.Rigal, J.-C., Riche, V. P., Tching-Sin, M., Fronteau, C., Huon, J.-F., Cadiet, J., Boukhari, R., Vourc’, M., & Rozec, B. (2020). Cost of red blood cell transfusion; evaluation in a French academic hospital. https://doi.org/10.1016/j.tracli.2020.08.002ïRincón, L. (n.d.). INTRODUCCI´ONINTRODUCCI´ INTRODUCCI´ON A LOS PROCESOS ESTOC´ASTICOSESTOC´ ESTOC´ASTICOS. Retrieved February 5, 2024, from http://www.matematicas.unam.mx/lars. Rosenhead. (n.d.). Rosenhead et al., 1972.Salazar-Concha, C., & Ramírez-Correa, P. (2021). Predicting the intention to donate blood among blood donors using a decision tree algorithm. Symmetry, 13(8). https://doi.org/10.3390/sym13081460 Salazar-Concha, C., Ramírez-Correa, P., Karwowski, W., Parsaei, B., Parsaei, H. R., Carlos,J., & Alcantud, R. (2021). Predicting the Intention to Donate Blood among Blood Donors Using a Decision Tree Algorithm. Symmetry 2021, Vol. 13, Page 1460, 13(8), 1460. https://doi.org/10.3390/SYM13081460Samani, M. R. G., Hosseini-Motlagh, S. M., & Homaei, S. (2020). A reactive phase against disruptions for designing a proactive platelet supply network. Transportation Research Part E: Logistics and Transportation Review, 140, 102008. https://doi.org/10.1016/J.TRE.2020.102008 Scopus - Document details - A fuzzy-based prediction approach for blood delivery using machine learning and genetic algorithm. (n.d.). Retrieved February 3, 2024, from https://www-scopus-com.ezproxy.cuc.edu.co/record/display.uri?eid=2-s2.0- 85118996855&origin=resultslist&sort=plf f&src=s&sid=23755ed87f6038627bfcdb6cfc9c130b&sot=b&sdt=b&s=TITLE-ABS KEY%28A+FUZZY BASED+PREDICTION+APPROACH+FOR+BLOOD+DELIVERY+USING+MACHI NE+LEARNING+AND+GENETIC+ALGORITHM%29&sl=112&sessionSearchId=23 755ed87f6038627bfcdb6cfc9c130b&relpos=0Scopus - Document details - A qualitative, patient-centered perspective toward plasma products supply chain network design with risk controlling. (n.d.). Retrieved February 3, 2024, from https://www-scopus-com.ezproxy.cuc.edu.co/record/display.uri?eid=2-s2.0- 85085711331&origin=resultslist&sort=plf f&src=s&sid=28bf7f5a583b8e13676c404ed4a84571&sot=b&sdt=b&s=TITLE-ABS KEY%28A+QUALITATIVE%2C+PATIENT CENTERED+PERSPECTIVE+TOWARD+PLASMA+PRODUCTS+SUPPLY+CHAIN +NETWORK+DESIGN+WITH+RISK+CONTROLLING%29&sl=142&sessionSearchI d=28bf7f5a583b8e13676c404ed4a84571&relpos=0Shokouhifar, M., Sabbaghi, M. M., & Pilevari, N. (2021). Inventory management in blood supply chain considering fuzzy supply/demand uncertainties and lateral transshipment. Transfusion and Apheresis Science, 60(3). https://doi.org/10.1016/j.transci.2021.103103Sohrabi, M., Zandieh, M., & Shokouhifar, M. (2022). Sustainable inventory management in blood banks considering health equity using a combined metaheuristic-based robust fuzzy stochastic programming. Socio-Economic Planning Sciences. https://doi.org/10.1016/j.seps.2022.101462Stanger, S. H. W., Yates, N., Wilding, R., & Cotton, S. (2012). Blood Inventory Management: Hospital Best Practice. Transfusion Medicine Reviews, 26(2), 153–163. https://doi.org/10.1016/J.TMRV.2011.09.001Stock, B., & Möckel, L. (2021). Characterization of blood donors and non-blood donors in Germany using an online survey. Health and Technology, 11(3), 595–602. https://doi.org/10.1007/S12553-021-00532-Y/TABLES/2 Tadarok, S., Fakhrzad, M. B., Jokardarabi, M., & Jafari-Nodoushan, A. (2021). A mathematical model for a blood supply chain network with the robust fuzzy possibilistic programming approach: A case study at Namazi hospital. International Journal of Engineering Transactions C: Aspects, 34(6), 1495–1504. https://doi.org/10.5829/ije.2021.34.06c.13Torrado, A., & Barbosa-Póvoa, A. (2022). Towards an Optimized and Sustainable Blood Supply Chain Network under Uncertainty: A Literature Review. Cleaner Logistics and Supply Chain, 3. https://doi.org/10.1016/j.clscn.2022.100028Trong, P. N., Vo, H. K., Huong, L. H., Gia, K. H., Dang, K. T., Van, H. Le, Huu, N. H., Huyen, T. N., Nguyen, T. A., Phu, L. V. C., Quoc, D. N. T., Khanh, B. Le, & Tuan, K.Le. (2022). Blood and Product-Chain: Blood and its Products Supply Chain Management based on Blockchain Approach. International Journal of Advanced Computer Science and Applications, 13(11), 743–750. https://doi.org/10.14569/IJACSA.2022.0131186Twumasi, C., & Twumasi, J. (2022). Machine learning algorithms for forecasting and backcasting blood demand data with missing values and outliers: A study of Tema General Hospital of Ghana. International Journal of Forecasting, 38(3), 1258–1277. https://doi.org/10.1016/j.ijforecast.2021.10.008Universidad, P., Carvajal-Hernández, J., David, J., Osorio-Muriel, ;, & Felipe, A. (n.d.). A Simulation-Based Optimization Algorithm for the Vendor-Managed Inventory Problem for Blood Platelets*. 26, 1–21. https://doi.org/10.11144/Javeriana.iued26.sboa U.S FOOD & DRUG. (n.d.). FDA en español | FDA. Retrieved February 5, 2024, from https://www.fda.gov/about-fda/fda-en-espanolVan Sambeeck, J. H. J., Van Brummelen, S. P. J., Van Dijk, N. M., & Janssen, M. P. (2022). Optimal blood issuing by comprehensive matching. European Journal of Operational Research, 296, 240–253. https://doi.org/10.1016/j.ejor.2021.02.054Vinkenoog, M. ;, Leeuwen, M., Van, ;, Janssen, M. P., Vinkenoog, M., Matthijs Van Leeuwen, |, & Janssen, M. P. (2022). Explainable haemoglobin deferral predictions using machine learning models: interpretation and consequences for the blood supply. Vox Sanguinis, 117(11), 1262–1270. https://doi.org/10.1111/vox.13350Wemelsfelder, M. L., den Hertog, D., Wisman, O., Ihalainen, J., & Janssen, M. P. (2022). Determining optimal locations for blood distribution centers. Transfusion, 62(12), 2515– 2524. https://doi.org/10.1111/trf.17147Xiang, R. F., Quinn, J. G., Watson, S., Kumar-Misir, A., & Cheng, C. (2021). Application of unsupervised machine learning to identify areas of blood product wastage in transfusion medicine. Vox Sanguinis, 116(9), 955–964. https://doi.org/10.1111/VOX.13089Xu, Y., & Szmerekovsky, J. (2022). A multi-product multi-period stochastic model for a blood supply chain considering blood substitution and demand uncertainty. Health Care Management Science, 25(3), 441–459. https://doi.org/10.1007/S10729-022-09593- 5/TABLES/14Zhou, Y., Zou, T., Liu, C., Yu, H., Chen, L., & Su, J. (2021). Blood supply chain operation considering lifetime and transshipment under uncertain environment. Applied Soft Computing, 106, 107364. https://doi.org/10.1016/J.ASOC.2021.107364Blood productsRegulationsDonorsCollectionTransportProcessingTestingInventoriesTransfusionsPatientsDemandCostsHemoderivadosRegulacionesDonantesRecolecciónTransporteProcesamientoPruebasInventariosTransfusionesPacientesDemandaCostosPublicationORIGINALRevisión y Actualización Literaria de Modelos y Métodos Cuantitativos Aplicados en la Gestión de las Cadenas de Suministro de Sangre entre 2019 y 2022.pdfRevisión y Actualización Literaria de Modelos y Métodos Cuantitativos Aplicados en la Gestión de las Cadenas de Suministro de Sangre entre 2019 y 2022.pdfTesisapplication/pdf712853https://repositorio.cuc.edu.co/bitstreams/93ae65f0-d93f-48c8-9f77-d8ca18af927f/download5c9eb7591bb99fc14d26efa32d79beaeMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/b59d0cb7-852a-47c6-95ee-e0f9f8e82ce2/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTRevisión y Actualización Literaria de Modelos y Métodos Cuantitativos Aplicados en la Gestión de las Cadenas de Suministro de Sangre entre 2019 y 2022.pdf.txtRevisión y Actualización Literaria de Modelos y Métodos Cuantitativos Aplicados en la Gestión de las Cadenas de Suministro de Sangre entre 2019 y 2022.pdf.txtExtracted texttext/plain105185https://repositorio.cuc.edu.co/bitstreams/eef5e2ac-9842-43b6-b3d1-173b9e98190e/download8179be31c45ef671a135d1c98b1f0570MD53THUMBNAILRevisión y Actualización Literaria de Modelos y Métodos Cuantitativos Aplicados en la Gestión de las Cadenas de Suministro de Sangre entre 2019 y 2022.pdf.jpgRevisión y Actualización Literaria de Modelos y Métodos Cuantitativos Aplicados en la Gestión de las Cadenas de Suministro de Sangre entre 2019 y 2022.pdf.jpgGenerated Thumbnailimage/jpeg6482https://repositorio.cuc.edu.co/bitstreams/ede509b0-859b-43b0-9340-f62956ecc3f7/downloade77d5670a4f8a52e8e45144c7a4cca89MD5411323/13021oai:repositorio.cuc.edu.co:11323/130212024-09-17 14:09:24.288https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=