Estudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos: un paso importante para el diseño racional de sistemas de liberación controlada de fármacos

Las interacciones moleculares entre cuatro antimaláricos: cloroquina, primaquina, quinina y amodiaquina, con un dímero del ácido itacónico, fueron estudiadas a través de la teoría del funcional de la densidad usando B3LYP/++6-31G(d,p) y el modelo CPCM para el solvente. Cloroquina, primaquina y quini...

Full description

Autores:
Sanchez, L.
Rangel, N.
Flores, V.
Flores, M.
Jimenez, F.
Márquez, E.
Cortes, Eliceo
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5300
Acceso en línea:
https://hdl.handle.net/11323/5300
https://repositorio.cuc.edu.co/
Palabra clave:
DFT
Hidrogel
Antimaláricos
Liberación controlada de fármacos
Energía de interacción
Hydrogel
Antimalarial
Controlled drugs delivery
Binding energy
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id RCUC2_13dca59d916be41a1766a6f256401d4e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5300
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Estudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos: un paso importante para el diseño racional de sistemas de liberación controlada de fármacos
dc.title.translated.spa.fl_str_mv Computational Study Of Itaconic Acid-Antimalarial Compounds Molecular Interactions: An Important Key For Rational Design Of Controlled Drugs-Delivery Systems
Estudi computacional de les interaccions moleculars entre l'àcid itacònic i compostos antimalàrics: un pas important per al disseny racional de sistemes d'alliberament controlat de fàrmacs
title Estudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos: un paso importante para el diseño racional de sistemas de liberación controlada de fármacos
spellingShingle Estudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos: un paso importante para el diseño racional de sistemas de liberación controlada de fármacos
DFT
Hidrogel
Antimaláricos
Liberación controlada de fármacos
Energía de interacción
Hydrogel
Antimalarial
Controlled drugs delivery
Binding energy
title_short Estudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos: un paso importante para el diseño racional de sistemas de liberación controlada de fármacos
title_full Estudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos: un paso importante para el diseño racional de sistemas de liberación controlada de fármacos
title_fullStr Estudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos: un paso importante para el diseño racional de sistemas de liberación controlada de fármacos
title_full_unstemmed Estudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos: un paso importante para el diseño racional de sistemas de liberación controlada de fármacos
title_sort Estudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos: un paso importante para el diseño racional de sistemas de liberación controlada de fármacos
dc.creator.fl_str_mv Sanchez, L.
Rangel, N.
Flores, V.
Flores, M.
Jimenez, F.
Márquez, E.
Cortes, Eliceo
dc.contributor.author.spa.fl_str_mv Sanchez, L.
Rangel, N.
Flores, V.
Flores, M.
Jimenez, F.
Márquez, E.
Cortes, Eliceo
dc.subject.spa.fl_str_mv DFT
Hidrogel
Antimaláricos
Liberación controlada de fármacos
Energía de interacción
Hydrogel
Antimalarial
Controlled drugs delivery
Binding energy
topic DFT
Hidrogel
Antimaláricos
Liberación controlada de fármacos
Energía de interacción
Hydrogel
Antimalarial
Controlled drugs delivery
Binding energy
description Las interacciones moleculares entre cuatro antimaláricos: cloroquina, primaquina, quinina y amodiaquina, con un dímero del ácido itacónico, fueron estudiadas a través de la teoría del funcional de la densidad usando B3LYP/++6-31G(d,p) y el modelo CPCM para el solvente. Cloroquina, primaquina y quinina presentan interacción apreciable con el dímero del ácido itacónico, con energías de interacción en el rango de -17 hasta -6,7 kcal/mol, de naturaleza exotérmica, a través de un proceso de fisisorción. El valor positivo de la energía de interacción para la amodiaquina sugiere una menor probabilidad de que este sea adsorbido por un dímero de ácido itacónico. Los cálculos NBO y la aplicación de la teoría de perturbación de segundo orden indican transferencia de carga desde los compuestos cloroquina y primaquina. Adicionalmente, los resultados sugieren que las interacciones principales son de naturaleza polar, donde los enlaces de hidrógenos juegan un rol principal. Los resultados encontrados a través del método CPCM indican que los complejos entre el dímero de ácido itacónico con cloroquina y primaquina son bastante estables en disolución acuosa; además presentan valores adecuados de LogP y momento dipolar, indicando alta la interacción con el solvente que permitiría el hinchamiento y la liberación controlada de estos fármacos.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-09-25T21:37:00Z
dc.date.available.none.fl_str_mv 2019-09-25T21:37:00Z
dc.date.issued.none.fl_str_mv 2019-02-16
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5300
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/5300
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1. WHO | World Malaria Report 2016 http:// www.who.int/malaria/publications/world-malaria-report-2016/report/en/ (accessed Dec 5, 2018). 2. ilva, S. R.; Almeida, A. C. G.; da Silva, G. A. V.; Ramasawmy, R.; Lopes, S. C. P.; Siqueira, A. M.; Costa, G. L.; Sousa, T. N.; Vieira, J. L. F.; Lacerda, M. V. G.; et al. Chloroquine Resistance Is Associated to Multi-Copy Pvcrt-o Gene in Plasmodium Vivax Malaria in the Brazilian Amazon. Malaria Journal 2018, 17 (1), 267. https:// doi.org/10.1186/s12936-018-2411-5. 3. Taylor, W. R. J.; White, N. J. Antimalarial Drug Toxicity: A Review. Drug Safety 2004, 27 (1), 25–61. https://doi.org/10.2165/00002018- 200427010-00003. 4. Sinha, S.; Medhi, B.; Sehgal, R. Challenges of Drug-Resistant Malaria. Parasite 2014, 21, 61. https://doi.org/10.1051/parasite/2014059. 5. Fernàndez-Busquets, X. Novel Strategies for Plasmodium-Targeted Drug Delivery. Expert Opinion on Drug Delivery 2016, 13 (7), 919–922. https://doi.org/10.1517/17425247.2016.1167038. 6. Park, J.; Ye, M.; Park, K. Biodegradable Polymers for Microencapsulation of Drugs. Molecules 2005, 10 (1), 146–161. https://doi. org/10.3390/10010146. 7. Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S. K. Drug Delivery Systems: An Updated Review. Int J Pharm Investig 2012, 2 (1), 2–11. https://doi. org/10.4103/2230-973X.96920. 8. Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids and Surfaces B: Biointerfaces 2010, 75 (1), 1–18. https://doi. org/10.1016/j.colsurfb.2009.09.001. 9. Ganji, F.; Vasheghani-Farahani, S.; Vasheghani-Farahani, E. Theoretical Description of Hydrogel Swelling: A Review. Iranian Polymer Journal 2010, 19 (5), 375–398. 10. Hoffman, A. S. Hydrogels for Biomedical Applications. Advanced Drug Delivery Reviews 2012, 64, 18–23. https://doi.org/10.1016/j. addr.2012.09.010. 11. Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3 (1), 6. https://doi.org/10.3390/gels3010006. 12. Jaipan, P.; Nguyen, A.; Narayan, R. J. Gelatin-Based Hydrogels for Biomedical Applications. MRS Communications 2017, 7 (3), 416– 426. https://doi.org/10.1557/mrc.2017.92. 13. Bernardi, S.; Zeka, K.; Continenza, M. A. Hydrogels with Natural or Chemical Compounds: In Vitro Biocompatibility. Italian Journal of Anatomy and Embryology 2015, 120 (1), 88. https://doi.org/10.13128/IJAE-16949. 14. Aurand, E. R.; Wagner, J.; Lanning, C.; Bjugstad, K. B. Building Biocompatible Hydrogels for Tissue Engineering of the Brain and Spinal Cord. J Funct Biomater 2012, 3 (4), 839–863. https:// doi.org/10.3390/jfb3040839. 15. Lee, P. I. Kinetics of Drug Release from Hydrogel Matrices. Journal of Controlled Release 1985, 2, 277–288. https://doi.org/10.1016/0168- 3659(85)90051-3. 16. Caccavo, D.; Cascone, S.; Lamberti, G.; Barba, A. A. Modeling the Drug Release from Hydrogel-Based Matrices https://pubs.acs.org/doi/ abs/10.1021/mp500563n (accessed Dec 5, 2018). https://doi.org/10.1021/mp500563n. 17. Fu, Y.; Kao, W. J. Drug Release Kinetics and Transport Mechanisms of Non-Degradable and Degradable Polymeric Delivery Systems. Expert Opin Drug Deliv 2010, 7 (4), 429–444. https:// doi.org/10.1517/17425241003602259. 18. Murambiwa, P.; Masola, B.; Govender, T.; Mukaratirwa, S.; Musabayane, C. T. Anti-Malarial Drug Formulations and Novel Delivery Systems: A Review. Acta Tropica 2011, 118 (2), 71–79. https://doi.org/10.1016/j.actatropica.2011.03.005. 19. Banga, A. K.; Chien, Y. W. Hydrogel-Based Lontotherapeutic Delivery Devices for Transdermal Delivery of Peptide/Protein Drugs. Pharm Res 1993, 10 (5), 697–702. https://doi. org/10.1023/A:1018955631835. 20. Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-Based Hydrogels for Controlled, Localized Drug Delivery. Advanced Drug Delivery Reviews 2010, 62 (1), 83–99. https://doi. org/10.1016/j.addr.2009.07.019. 21. Iordanskii, A. L.; Feldstein, M. M.; Markin, V. S.; Hadgraft, J.; Plate, N. A. Modeling of the Drug Delivery from a Hydrophilic Transdermal Therapeutic System across Polymer Membrane. European Journal of Pharmaceutics and Biopharmaceutics 2000, 49 (3), 287–293. https:// doi.org/10.1016/S0939-6411(00)00063-1. 22. Lee, J. W.; Park, J.-H.; Prausnitz, M. R. Dissolving Microneedles for Transdermal Drug Delivery. Biomaterials 2008, 29 (13), 2113–2124. https:// doi.org/10.1016/j.biomaterials.2007.12.048. 23. Tomić, S. L.; Mićić, M. M.; Dobić, S. N.; Filipović, J. M.; Suljovrujić, E. H. Smart Poly(2-Hydroxyethyl Methacrylate/Itaconic Acid) Hydrogels for Biomedical Application. Radiation Physics and Chemistry 2010, 79 (5), 643–649. https://doi.org/10.1016/j.radphyschem.2009.11.015. 24. Karadag, E.; Saraydin, D.; Güven, O. Interaction of Some Cationic Dyes with Acrylamide/Itaconic Acid Hydrogels. Journal of Applied Polymer Science 1996, 61 (13), 2367–2372. https://doi. org/10.1002/(SICI)1097-4628(19960926)61:13<2 367::AID-APP16>3.0.CO;2-1. 25. Şen, M.; Yakar, A. Controlled Release of Antifungal Drug Terbinafine Hydrochloride from Poly(N-Vinyl 2-Pyrrolidone/Itaconic Acid) Hydrogels. International Journal of Pharmaceutics 2001, 228 (1), 33–41. https://doi.org/10.1016/ S0378-5173(01)00804-3. 26. Katime, I.; Rodríguez, E. ABSORPTION OF METAL IONS AND SWELLING PROPERTIES OF POLY(ACRYLIC ACID-CO-ITACONIC ACID) HYDROGELS. Journal of Macromolecular Science, Part A 2001, 38 (5–6), 543–558. https://doi.org/10.1081/MA-100103366. 27. (Quintana, J. R.; Valderruten, N. E.; Katime, I. Synthesis and Swelling Kinetics of Poly(Dimethylaminoethyl Acrylate Methyl Chloride Quaternary-Co-Itaconic Acid) Hydrogels. Langmuir 1999, 15 (14), 4728–4730. https://doi. org/10.1021/la980982+. 28. Tomić, S. L.; Suljovrujić, E. H.; Filipović, J. M. Biocompatible and Bioadhesive Hydrogels Based on 2-Hydroxyethyl Methacrylate, Monofunctional Poly(Alkylene Glycol)s and Itaconic Acid. Polym. Bull. 2006, 57 (5), 691–702. https:// doi.org/10.1007/s00289-006-0606-3. 29. Chen, K.-S.; Ku, Y.-A.; Lin, H.-R.; Yan, T.-R.; Sheu, D.-C.; Chen, T.-M.; Lin, F.-H. Preparation and Characterization of PH Sensitive Poly(N-Vinyl-2-Pyrrolidone/Itaconic Acid) Copolymer Hydrogels. Materials Chemistry and Physics 2005, 91 (2), 484–489. https://doi. org/10.1016/j.matchemphys.2004.12.037. 30. Mićić, M. M.; Tomić, S. L.; Filipović, J. M.; Suljovrujić, E. Release and Diffusion Studies of Hydrogels Based on Itaconic Acid. Materials Science Forum 2007, 555, 441–446. https://doi. org/10.4028/www.scientific.net/MSF.555.441. 31. Sakthivel, M.; Franklin, D. S.; Guhanathan, S. PH-Sensitive Itaconic Acid Based Polymeric Hydrogels for Dye Removal Applications. Ecotoxicology and Environmental Safety 2016, 134, 427–432. https://doi.org/10.1016/j.ecoenv.2015.11.004. 32. Bera, R.; Dey, A.; Chakrabarty, D. Synthesis, Characterization, and Drug Release Study of Acrylamide-Co-Itaconic Acid Based Smart Hydrogel. Polymer Engineering & Science 2015, 55 (1), 113–122. https://doi.org/10.1002/pen.23874. 33. Ahmed, E. M. Hydrogel: Preparation, Characterization, and Applications: A Review. Journal of Advanced Research 2015, 6 (2), 105–121. https://doi.org/10.1016/j.jare.2013.07.006. 34. Abobatta, W. Impact of Hydrogel Polymer in Agricultural Sector. AAEOA 2018, 1 (2), 6. https://doi.org//. 35. Liu, J.; Xiao, Y.; Allen, C. Polymer–Drug Compatibility: A Guide to the Development of Delivery Systems for the Anticancer Agent, Ellipticine. Journal of Pharmaceutical Sciences 2004, 93 (1), 132–143. https://doi.org/10.1002/ jps.10533. 36. Mohamed, A. I.; Abd-Motagaly, A. M. E.; Ahmed, O. A. A.; Amin, S.; Mohamed Ali, A. I. Investigation of Drug-Polymer Compatibility Using Chemometric-Assisted UV-Spectrophotometry. Pharmaceutics 2017, 9 (1). https://doi. org/10.3390/pharmaceutics9010007. 37. Bouma, M.; Nuijen, B.; Stewart, D. R.; Rice, J. R.; Jansen, B. a. J.; Reedijk, J.; Bult, A.; Beijnen, J. H. Stability and Compatibility of the Investigational Polymer-Conjugated Platinum Anticancer Agent AP 5280 in Infusion Systems and Its Hemolytic Potential. Anti-Cancer Drugs 2002, 13 (9), 915. 38. Vueba, M. L.; Veiga, F.; Sousa, J. J.; Pina, P. M. E. Compatibility Studies Between Ibuprofen or Ketoprofen with Cellulose Ether Polymer Mixtures Using Thermal Analysis. Drug Development and Industrial Pharmacy 2005, 31 (10), 943–949. https://doi.org/10.1080/03639040500306153. 39. Martinez-Ruvalcaba, A.; Sanchez-Diaz, J. C.; Becerra, F.; Cruz-Barba, L. E.; Gonzalez-Alvarez, A. Swelling Characterization and Drug Delivery Kinetics of Polyacrylamide-Co-Itaconic Acid/Chitosan Hydrogels. Express Polymer Letters 2009, 3 (1), 25–32. https://doi.org/10.3144/ expresspolymlett.2009.5. 40. Information, N. C. for B.; Pike, U. S. N. L. of M. 8600 R.; MD, B.; Usa, 20894. Pharmacology of Antimalarial Drugs; World Health Organization, 2015. 41. Reddy, N. N.; Varaprasad, K.; Ravindra, S.; Reddy, G. V. S.; Reddy, K. M. S.; Mohan Reddy, K. M.; Raju, K. M. Evaluation of Blood Compatibility and Drug Release Studies of Gelatin Based Magnetic Hydrogel Nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 385 (1), 20–27. https://doi. org/10.1016/j.colsurfa.2011.05.006. 42. Yang, J. M.; Su, W. Y.; Leu, T. L.; Yang, M. C. Evaluation of Chitosan/PVA Blended Hydrogel Membranes. Journal of Membrane Science 2004, 236 (1), 39–51. https://doi.org/10.1016/j. memsci.2004.02.005 43. Makarand V. Risbud, R. R. B. Polyacrylamide-Chitosan Hydrogels: In Vitro Biocompatibility and Sustained Antibiotic Release Studies. Drug Delivery 2000, 7 (2), 69–75. https://doi.org/10.1080/107175400266623. 44. S. Kohane, D.; Langer, R. Biocompatibility and Drug Delivery Systems. Chemical Science 2010, 1 (4), 441–446. https://doi.org/10.1039/ C0SC00203H. 45. Santos-Magalhães, N. S.; Mosqueira, V. C. F. Nanotechnology Applied to the Treatment of Malaria. Advanced Drug Delivery Reviews 2010, 62 (4), 560–575. https://doi.org/10.1016/j. addr.2009.11.024. 46. Jawalkar, S. S.; Raju; Halligudi, S. B.; Sairam, M.; Aminabhavi, T. M. Molecular Modeling Simulations to Predict Compatibility of Poly(Vinyl Alcohol) and Chitosan Blends: A Comparison with Experiments. The Journal of Physical Chemistry B 2007, 111 (10), 2431–2439. https:// doi.org/10.1021/jp0668495. 47. Goldbeck, G. The Economic Impact of Molecular Modelling. 2012, 46. 48. Xu, H.; Wang, Q.; Fan, G.; Chu, X. Theoretical Study of Boron Nitride Nanotubes as Drug Delivery Vehicles of Some Anticancer Drugs. Theoretical Chemistry Accounts 2018, 137 (7). https://doi.org/10.1007/s00214-018-2284-2. 49. Saikia, N.; Deka, R. C. Theoretical Study on Pyrazinamide Adsorption onto Covalently Functionalized (5,5) Metallic Single-Walled Carbon Nanotube. Chemical Physics Letters 2010, 500 (1–3), 65–70. https://doi.org/10.1016/j. cplett.2010.09.075. 50. Gallo, M.; Favila, A.; Glossman-Mitnik, D. DFT Studies of Functionalized Carbon Nanotubes and Fullerenes as Nanovectors for Drug Delivery of Antitubercular Compounds. Chemical Physics Letters 2007, 447 (1–3), 105–109. https://doi.org/10.1016/j.cplett.2007.08.098. 51. Huynh, L.; Neale, C.; Pomès, R.; Allen, C. Computational Approaches to the Rational Design of Nanoemulsions, Polymeric Micelles, and Dendrimers for Drug Delivery. Nanomedicine: Nanotechnology, Biology and Medicine 2012, 8 (1), 20–36. https://doi.org/10.1016/j. nano.2011.05.006. 52. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian16 Revision B.01; Gaussian, Inc.: Wallingford CT, 2016. 53. Fitzpatrick, R. Thermodynamics and Statistical Mechanics. 286. 54. Brazón, E. A. M.; Flores-Sumoza, M. C.; Gómez, E. C.; Puello-Polo, E. Estudio de la Influencia de la polarizabilidad del grupo vecino C=X, en la cinética de eliminación de cloruro de hidrógeno a partir de cloruros de alquilos β- sustituidos (X = CH2, S, NH, PH), usando la teoría del funcional de la densidad. Afinidad 2018, 75 (581). 55. Jurkowski, B.; Pesetskii, S. S.; Olkhov, Y. A.; Krivoguz, Y. M.; Kelar, K. Investigation of Molecular Structure of LDPE Modified by Itaconic Acid Grafting. Journal of Applied Polymer Science 1999, 71 (11), 1771–1779. https://doi. org/10.1002/(SICI)1097-4628(19990314)71:11<1 771::AID-APP6>3.0.CO;2-6. 56. Liu, Y.; Wang, F.; Tan, T.; Lei, M. Study of the Properties of Molecularly Imprinted Polymers by Computational and Conformational Analysis. Analytica Chimica Acta 2007, 581 (1), 137– 146. https://doi.org/10.1016/j.aca.2006.08.015. 57. Nakabayashi, T.; Sato, H.; Hirata, F.; Nishi, N. Theoretical Study on the Structures and Energies of Acetic Acid Dimers in Aqueous Solution. J. Phys. Chem. A 2001, 105 (1), 245–250. https:// doi.org/10.1021/jp0030239. 58. Scaranto, J.; Mallia, G.; Harrison, N. M. An Efficient Method for Computing the Binding Energy of an Adsorbed Molecule within a Periodic Approach. The Application to Vinyl Fluoride at Rutile TiO2(110) Surface. Computational Materials Science 2011, 50 (7), 2080–2086. https:// doi.org/10.1016/j.commatsci.2011.02.011. 59. Chunsrivirot, S.; Trout, B. L. Free Energy of Binding of a Small Molecule to an Amorphous Polymer in a Solvent. Langmuir 2011, 27 (11), 6910–6919. https://doi.org/10.1021/la201011q. 60. Gutowski, M.; Van Lenthe, J. H.; Verbeek, J.; Van Duijneveldt, F. B.; Chałasinski, G. The Basis Set Superposition Error in Correlated Electronic Structure Calculations. Chemical Physics Letters 1986, 124 (4), 370–375. https://doi. org/10.1016/0009-2614(86)85036-9. 61. Kruse, H.; Grimme, S. A Geometrical Correction for the Inter- and Intra-Molecular Basis Set Superposition Error in Hartree-Fock and Density Functional Theory Calculations for Large Systems. The Journal of Chemical Physics 2012, 136 (15), 154101. https://doi. org/10.1063/1.3700154. 62. Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chemical Reviews 2003, 103 (5), 1793–1874. https://doi. org/10.1021/cr990029p. 63. Mennucci, B. Polarizable Continuum Model. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2 (3), 386–404. https:// doi.org/10.1002/wcms.1086. 64. Viswanadhan, V. N.; Ghose, A. K.; Revankar, G. R.; Robins, R. K. An Estimation of the Atomic Contribution to Octanol-Water Partition Coefficient and Molar Refractivity from Fundamental Atomic and Structural Properties: Its Uses in Computer Aided Drug Design. Mathematical and Computer Modelling 1990, 14, 505–510. https://doi.org/10.1016/0895-7177(90)90234-E. 65. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46 (1–3), 3–26. 66. Glendening, E. D.; Landis, C. R.; Weinhold, F. Natural Bond Orbital Methods. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2 (1), 1–42. https://doi. org/10.1002/wcms.51. 67. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Reviews 1988, 88 (6), 899–926. https://doi. org/10.1021/cr00088a005. 68. Lindstrom, M. J.; Bates, D. M. Newton—Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data. Journal of the American Statistical Association 1988, 83 (404), 1014–1022. https://doi.org/10.10 80/01621459.1988.10478693. 69. Andersson, K.; Roos, B. O. Multiconfigurational Second-Order Perturbation Theory: A Test of Geometries and Binding Energies. International Journal of Quantum Chemistry 1993, 45 (6), 591–607. https://doi.org/10.1002/ qua.560450610.
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Afinidad IQS
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f7206bf8-bfb7-4079-b190-534effeca90a/download
https://repositorio.cuc.edu.co/bitstreams/b0a9eff4-8905-4f65-aa58-2b735c8b2485/download
https://repositorio.cuc.edu.co/bitstreams/d7e1dfd9-ddc1-4b5f-a87b-254a54cd98ed/download
https://repositorio.cuc.edu.co/bitstreams/91fdd62a-e41d-4e7f-a81a-809d39bec2a7/download
https://repositorio.cuc.edu.co/bitstreams/70d6d95a-6013-48f0-a29e-04ad11b9dd37/download
bitstream.checksum.fl_str_mv 42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
d078627a2216dd5927abab00544f6bb3
a56d74cca4239201630ab4c2723a32b2
822e872a8d0ff1ce343e3016e2fc63ef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166894482358272
spelling Sanchez, L.Rangel, N.Flores, V.Flores, M.Jimenez, F.Márquez, E.Cortes, Eliceo2019-09-25T21:37:00Z2019-09-25T21:37:00Z2019-02-16https://hdl.handle.net/11323/5300Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Las interacciones moleculares entre cuatro antimaláricos: cloroquina, primaquina, quinina y amodiaquina, con un dímero del ácido itacónico, fueron estudiadas a través de la teoría del funcional de la densidad usando B3LYP/++6-31G(d,p) y el modelo CPCM para el solvente. Cloroquina, primaquina y quinina presentan interacción apreciable con el dímero del ácido itacónico, con energías de interacción en el rango de -17 hasta -6,7 kcal/mol, de naturaleza exotérmica, a través de un proceso de fisisorción. El valor positivo de la energía de interacción para la amodiaquina sugiere una menor probabilidad de que este sea adsorbido por un dímero de ácido itacónico. Los cálculos NBO y la aplicación de la teoría de perturbación de segundo orden indican transferencia de carga desde los compuestos cloroquina y primaquina. Adicionalmente, los resultados sugieren que las interacciones principales son de naturaleza polar, donde los enlaces de hidrógenos juegan un rol principal. Los resultados encontrados a través del método CPCM indican que los complejos entre el dímero de ácido itacónico con cloroquina y primaquina son bastante estables en disolución acuosa; además presentan valores adecuados de LogP y momento dipolar, indicando alta la interacción con el solvente que permitiría el hinchamiento y la liberación controlada de estos fármacos.The molecular interactions between four widely used antimalaric i.e, chloroquine, primaquine, quinine and amodiaquine, with an itaconic acid dimer as a hydrogel model, have been studied by the mean of the Density Functional Theory calculation in both, vacuum and water environment, using B3LYP/++6-31G(d,p) basis set and PCM model of solvent. Chloroquine, primaquine, and quinine show a suitable interaction with the itaconic acid dimer, with binding energy into the range of -17 to -6.7 kcal/ mol. These values of binding energies suggest the formation of stable and exothermic complexes in the range of physisorption energy. By contrast, the positive value of binding energy for amodiaquine indicates a little chance to be absorbed into the hydrogel polymer. The NBO calculation and the second order perturbation theory indicate a strong charge-transference from chloroquine and primaquine to itaconic acid dimer. In addition, these results suppose the interactions are mainly polar in nature where the hydrogen bond plays a pivotal role in complex stabilization. On the other hand, the CPCM calculations suggest the chloroquine and primaquine complex are stables, with suitable values of both, LogP and dipole momentum implying the swelling of these complex in water and the eventual drugs controlled-delivery from the polymeric matrix.Sanchez, L.Rangel, N.Flores, V.Flores, M.Jimenez, F.Márquez, E.Cortes, Eliceo-will be generated-orcid-0000-0002-9825-7722-600spaAfinidad IQShttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2DFTHidrogelAntimaláricosLiberación controlada de fármacosEnergía de interacciónHydrogelAntimalarialControlled drugs deliveryBinding energyEstudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos: un paso importante para el diseño racional de sistemas de liberación controlada de fármacosComputational Study Of Itaconic Acid-Antimalarial Compounds Molecular Interactions: An Important Key For Rational Design Of Controlled Drugs-Delivery SystemsEstudi computacional de les interaccions moleculars entre l'àcid itacònic i compostos antimalàrics: un pas important per al disseny racional de sistemes d'alliberament controlat de fàrmacsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. WHO | World Malaria Report 2016 http:// www.who.int/malaria/publications/world-malaria-report-2016/report/en/ (accessed Dec 5, 2018). 2. ilva, S. R.; Almeida, A. C. G.; da Silva, G. A. V.; Ramasawmy, R.; Lopes, S. C. P.; Siqueira, A. M.; Costa, G. L.; Sousa, T. N.; Vieira, J. L. F.; Lacerda, M. V. G.; et al. Chloroquine Resistance Is Associated to Multi-Copy Pvcrt-o Gene in Plasmodium Vivax Malaria in the Brazilian Amazon. Malaria Journal 2018, 17 (1), 267. https:// doi.org/10.1186/s12936-018-2411-5. 3. Taylor, W. R. J.; White, N. J. Antimalarial Drug Toxicity: A Review. Drug Safety 2004, 27 (1), 25–61. https://doi.org/10.2165/00002018- 200427010-00003. 4. Sinha, S.; Medhi, B.; Sehgal, R. Challenges of Drug-Resistant Malaria. Parasite 2014, 21, 61. https://doi.org/10.1051/parasite/2014059. 5. Fernàndez-Busquets, X. Novel Strategies for Plasmodium-Targeted Drug Delivery. Expert Opinion on Drug Delivery 2016, 13 (7), 919–922. https://doi.org/10.1517/17425247.2016.1167038. 6. Park, J.; Ye, M.; Park, K. Biodegradable Polymers for Microencapsulation of Drugs. Molecules 2005, 10 (1), 146–161. https://doi. org/10.3390/10010146. 7. Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S. K. Drug Delivery Systems: An Updated Review. Int J Pharm Investig 2012, 2 (1), 2–11. https://doi. org/10.4103/2230-973X.96920. 8. Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids and Surfaces B: Biointerfaces 2010, 75 (1), 1–18. https://doi. org/10.1016/j.colsurfb.2009.09.001. 9. Ganji, F.; Vasheghani-Farahani, S.; Vasheghani-Farahani, E. Theoretical Description of Hydrogel Swelling: A Review. Iranian Polymer Journal 2010, 19 (5), 375–398. 10. Hoffman, A. S. Hydrogels for Biomedical Applications. Advanced Drug Delivery Reviews 2012, 64, 18–23. https://doi.org/10.1016/j. addr.2012.09.010. 11. Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3 (1), 6. https://doi.org/10.3390/gels3010006. 12. Jaipan, P.; Nguyen, A.; Narayan, R. J. Gelatin-Based Hydrogels for Biomedical Applications. MRS Communications 2017, 7 (3), 416– 426. https://doi.org/10.1557/mrc.2017.92. 13. Bernardi, S.; Zeka, K.; Continenza, M. A. Hydrogels with Natural or Chemical Compounds: In Vitro Biocompatibility. Italian Journal of Anatomy and Embryology 2015, 120 (1), 88. https://doi.org/10.13128/IJAE-16949. 14. Aurand, E. R.; Wagner, J.; Lanning, C.; Bjugstad, K. B. Building Biocompatible Hydrogels for Tissue Engineering of the Brain and Spinal Cord. J Funct Biomater 2012, 3 (4), 839–863. https:// doi.org/10.3390/jfb3040839. 15. Lee, P. I. Kinetics of Drug Release from Hydrogel Matrices. Journal of Controlled Release 1985, 2, 277–288. https://doi.org/10.1016/0168- 3659(85)90051-3. 16. Caccavo, D.; Cascone, S.; Lamberti, G.; Barba, A. A. Modeling the Drug Release from Hydrogel-Based Matrices https://pubs.acs.org/doi/ abs/10.1021/mp500563n (accessed Dec 5, 2018). https://doi.org/10.1021/mp500563n. 17. Fu, Y.; Kao, W. J. Drug Release Kinetics and Transport Mechanisms of Non-Degradable and Degradable Polymeric Delivery Systems. Expert Opin Drug Deliv 2010, 7 (4), 429–444. https:// doi.org/10.1517/17425241003602259. 18. Murambiwa, P.; Masola, B.; Govender, T.; Mukaratirwa, S.; Musabayane, C. T. Anti-Malarial Drug Formulations and Novel Delivery Systems: A Review. Acta Tropica 2011, 118 (2), 71–79. https://doi.org/10.1016/j.actatropica.2011.03.005. 19. Banga, A. K.; Chien, Y. W. Hydrogel-Based Lontotherapeutic Delivery Devices for Transdermal Delivery of Peptide/Protein Drugs. Pharm Res 1993, 10 (5), 697–702. https://doi. org/10.1023/A:1018955631835. 20. Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-Based Hydrogels for Controlled, Localized Drug Delivery. Advanced Drug Delivery Reviews 2010, 62 (1), 83–99. https://doi. org/10.1016/j.addr.2009.07.019. 21. Iordanskii, A. L.; Feldstein, M. M.; Markin, V. S.; Hadgraft, J.; Plate, N. A. Modeling of the Drug Delivery from a Hydrophilic Transdermal Therapeutic System across Polymer Membrane. European Journal of Pharmaceutics and Biopharmaceutics 2000, 49 (3), 287–293. https:// doi.org/10.1016/S0939-6411(00)00063-1. 22. Lee, J. W.; Park, J.-H.; Prausnitz, M. R. Dissolving Microneedles for Transdermal Drug Delivery. Biomaterials 2008, 29 (13), 2113–2124. https:// doi.org/10.1016/j.biomaterials.2007.12.048. 23. Tomić, S. L.; Mićić, M. M.; Dobić, S. N.; Filipović, J. M.; Suljovrujić, E. H. Smart Poly(2-Hydroxyethyl Methacrylate/Itaconic Acid) Hydrogels for Biomedical Application. Radiation Physics and Chemistry 2010, 79 (5), 643–649. https://doi.org/10.1016/j.radphyschem.2009.11.015. 24. Karadag, E.; Saraydin, D.; Güven, O. Interaction of Some Cationic Dyes with Acrylamide/Itaconic Acid Hydrogels. Journal of Applied Polymer Science 1996, 61 (13), 2367–2372. https://doi. org/10.1002/(SICI)1097-4628(19960926)61:13<2 367::AID-APP16>3.0.CO;2-1. 25. Şen, M.; Yakar, A. Controlled Release of Antifungal Drug Terbinafine Hydrochloride from Poly(N-Vinyl 2-Pyrrolidone/Itaconic Acid) Hydrogels. International Journal of Pharmaceutics 2001, 228 (1), 33–41. https://doi.org/10.1016/ S0378-5173(01)00804-3. 26. Katime, I.; Rodríguez, E. ABSORPTION OF METAL IONS AND SWELLING PROPERTIES OF POLY(ACRYLIC ACID-CO-ITACONIC ACID) HYDROGELS. Journal of Macromolecular Science, Part A 2001, 38 (5–6), 543–558. https://doi.org/10.1081/MA-100103366. 27. (Quintana, J. R.; Valderruten, N. E.; Katime, I. Synthesis and Swelling Kinetics of Poly(Dimethylaminoethyl Acrylate Methyl Chloride Quaternary-Co-Itaconic Acid) Hydrogels. Langmuir 1999, 15 (14), 4728–4730. https://doi. org/10.1021/la980982+. 28. Tomić, S. L.; Suljovrujić, E. H.; Filipović, J. M. Biocompatible and Bioadhesive Hydrogels Based on 2-Hydroxyethyl Methacrylate, Monofunctional Poly(Alkylene Glycol)s and Itaconic Acid. Polym. Bull. 2006, 57 (5), 691–702. https:// doi.org/10.1007/s00289-006-0606-3. 29. Chen, K.-S.; Ku, Y.-A.; Lin, H.-R.; Yan, T.-R.; Sheu, D.-C.; Chen, T.-M.; Lin, F.-H. Preparation and Characterization of PH Sensitive Poly(N-Vinyl-2-Pyrrolidone/Itaconic Acid) Copolymer Hydrogels. Materials Chemistry and Physics 2005, 91 (2), 484–489. https://doi. org/10.1016/j.matchemphys.2004.12.037. 30. Mićić, M. M.; Tomić, S. L.; Filipović, J. M.; Suljovrujić, E. Release and Diffusion Studies of Hydrogels Based on Itaconic Acid. Materials Science Forum 2007, 555, 441–446. https://doi. org/10.4028/www.scientific.net/MSF.555.441. 31. Sakthivel, M.; Franklin, D. S.; Guhanathan, S. PH-Sensitive Itaconic Acid Based Polymeric Hydrogels for Dye Removal Applications. Ecotoxicology and Environmental Safety 2016, 134, 427–432. https://doi.org/10.1016/j.ecoenv.2015.11.004. 32. Bera, R.; Dey, A.; Chakrabarty, D. Synthesis, Characterization, and Drug Release Study of Acrylamide-Co-Itaconic Acid Based Smart Hydrogel. Polymer Engineering & Science 2015, 55 (1), 113–122. https://doi.org/10.1002/pen.23874. 33. Ahmed, E. M. Hydrogel: Preparation, Characterization, and Applications: A Review. Journal of Advanced Research 2015, 6 (2), 105–121. https://doi.org/10.1016/j.jare.2013.07.006. 34. Abobatta, W. Impact of Hydrogel Polymer in Agricultural Sector. AAEOA 2018, 1 (2), 6. https://doi.org//. 35. Liu, J.; Xiao, Y.; Allen, C. Polymer–Drug Compatibility: A Guide to the Development of Delivery Systems for the Anticancer Agent, Ellipticine. Journal of Pharmaceutical Sciences 2004, 93 (1), 132–143. https://doi.org/10.1002/ jps.10533. 36. Mohamed, A. I.; Abd-Motagaly, A. M. E.; Ahmed, O. A. A.; Amin, S.; Mohamed Ali, A. I. Investigation of Drug-Polymer Compatibility Using Chemometric-Assisted UV-Spectrophotometry. Pharmaceutics 2017, 9 (1). https://doi. org/10.3390/pharmaceutics9010007. 37. Bouma, M.; Nuijen, B.; Stewart, D. R.; Rice, J. R.; Jansen, B. a. J.; Reedijk, J.; Bult, A.; Beijnen, J. H. Stability and Compatibility of the Investigational Polymer-Conjugated Platinum Anticancer Agent AP 5280 in Infusion Systems and Its Hemolytic Potential. Anti-Cancer Drugs 2002, 13 (9), 915. 38. Vueba, M. L.; Veiga, F.; Sousa, J. J.; Pina, P. M. E. Compatibility Studies Between Ibuprofen or Ketoprofen with Cellulose Ether Polymer Mixtures Using Thermal Analysis. Drug Development and Industrial Pharmacy 2005, 31 (10), 943–949. https://doi.org/10.1080/03639040500306153. 39. Martinez-Ruvalcaba, A.; Sanchez-Diaz, J. C.; Becerra, F.; Cruz-Barba, L. E.; Gonzalez-Alvarez, A. Swelling Characterization and Drug Delivery Kinetics of Polyacrylamide-Co-Itaconic Acid/Chitosan Hydrogels. Express Polymer Letters 2009, 3 (1), 25–32. https://doi.org/10.3144/ expresspolymlett.2009.5. 40. Information, N. C. for B.; Pike, U. S. N. L. of M. 8600 R.; MD, B.; Usa, 20894. Pharmacology of Antimalarial Drugs; World Health Organization, 2015. 41. Reddy, N. N.; Varaprasad, K.; Ravindra, S.; Reddy, G. V. S.; Reddy, K. M. S.; Mohan Reddy, K. M.; Raju, K. M. Evaluation of Blood Compatibility and Drug Release Studies of Gelatin Based Magnetic Hydrogel Nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 385 (1), 20–27. https://doi. org/10.1016/j.colsurfa.2011.05.006. 42. Yang, J. M.; Su, W. Y.; Leu, T. L.; Yang, M. C. Evaluation of Chitosan/PVA Blended Hydrogel Membranes. Journal of Membrane Science 2004, 236 (1), 39–51. https://doi.org/10.1016/j. memsci.2004.02.005 43. Makarand V. Risbud, R. R. B. Polyacrylamide-Chitosan Hydrogels: In Vitro Biocompatibility and Sustained Antibiotic Release Studies. Drug Delivery 2000, 7 (2), 69–75. https://doi.org/10.1080/107175400266623. 44. S. Kohane, D.; Langer, R. Biocompatibility and Drug Delivery Systems. Chemical Science 2010, 1 (4), 441–446. https://doi.org/10.1039/ C0SC00203H. 45. Santos-Magalhães, N. S.; Mosqueira, V. C. F. Nanotechnology Applied to the Treatment of Malaria. Advanced Drug Delivery Reviews 2010, 62 (4), 560–575. https://doi.org/10.1016/j. addr.2009.11.024. 46. Jawalkar, S. S.; Raju; Halligudi, S. B.; Sairam, M.; Aminabhavi, T. M. Molecular Modeling Simulations to Predict Compatibility of Poly(Vinyl Alcohol) and Chitosan Blends: A Comparison with Experiments. The Journal of Physical Chemistry B 2007, 111 (10), 2431–2439. https:// doi.org/10.1021/jp0668495. 47. Goldbeck, G. The Economic Impact of Molecular Modelling. 2012, 46. 48. Xu, H.; Wang, Q.; Fan, G.; Chu, X. Theoretical Study of Boron Nitride Nanotubes as Drug Delivery Vehicles of Some Anticancer Drugs. Theoretical Chemistry Accounts 2018, 137 (7). https://doi.org/10.1007/s00214-018-2284-2. 49. Saikia, N.; Deka, R. C. Theoretical Study on Pyrazinamide Adsorption onto Covalently Functionalized (5,5) Metallic Single-Walled Carbon Nanotube. Chemical Physics Letters 2010, 500 (1–3), 65–70. https://doi.org/10.1016/j. cplett.2010.09.075. 50. Gallo, M.; Favila, A.; Glossman-Mitnik, D. DFT Studies of Functionalized Carbon Nanotubes and Fullerenes as Nanovectors for Drug Delivery of Antitubercular Compounds. Chemical Physics Letters 2007, 447 (1–3), 105–109. https://doi.org/10.1016/j.cplett.2007.08.098. 51. Huynh, L.; Neale, C.; Pomès, R.; Allen, C. Computational Approaches to the Rational Design of Nanoemulsions, Polymeric Micelles, and Dendrimers for Drug Delivery. Nanomedicine: Nanotechnology, Biology and Medicine 2012, 8 (1), 20–36. https://doi.org/10.1016/j. nano.2011.05.006. 52. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian16 Revision B.01; Gaussian, Inc.: Wallingford CT, 2016. 53. Fitzpatrick, R. Thermodynamics and Statistical Mechanics. 286. 54. Brazón, E. A. M.; Flores-Sumoza, M. C.; Gómez, E. C.; Puello-Polo, E. Estudio de la Influencia de la polarizabilidad del grupo vecino C=X, en la cinética de eliminación de cloruro de hidrógeno a partir de cloruros de alquilos β- sustituidos (X = CH2, S, NH, PH), usando la teoría del funcional de la densidad. Afinidad 2018, 75 (581). 55. Jurkowski, B.; Pesetskii, S. S.; Olkhov, Y. A.; Krivoguz, Y. M.; Kelar, K. Investigation of Molecular Structure of LDPE Modified by Itaconic Acid Grafting. Journal of Applied Polymer Science 1999, 71 (11), 1771–1779. https://doi. org/10.1002/(SICI)1097-4628(19990314)71:11<1 771::AID-APP6>3.0.CO;2-6. 56. Liu, Y.; Wang, F.; Tan, T.; Lei, M. Study of the Properties of Molecularly Imprinted Polymers by Computational and Conformational Analysis. Analytica Chimica Acta 2007, 581 (1), 137– 146. https://doi.org/10.1016/j.aca.2006.08.015. 57. Nakabayashi, T.; Sato, H.; Hirata, F.; Nishi, N. Theoretical Study on the Structures and Energies of Acetic Acid Dimers in Aqueous Solution. J. Phys. Chem. A 2001, 105 (1), 245–250. https:// doi.org/10.1021/jp0030239. 58. Scaranto, J.; Mallia, G.; Harrison, N. M. An Efficient Method for Computing the Binding Energy of an Adsorbed Molecule within a Periodic Approach. The Application to Vinyl Fluoride at Rutile TiO2(110) Surface. Computational Materials Science 2011, 50 (7), 2080–2086. https:// doi.org/10.1016/j.commatsci.2011.02.011. 59. Chunsrivirot, S.; Trout, B. L. Free Energy of Binding of a Small Molecule to an Amorphous Polymer in a Solvent. Langmuir 2011, 27 (11), 6910–6919. https://doi.org/10.1021/la201011q. 60. Gutowski, M.; Van Lenthe, J. H.; Verbeek, J.; Van Duijneveldt, F. B.; Chałasinski, G. The Basis Set Superposition Error in Correlated Electronic Structure Calculations. Chemical Physics Letters 1986, 124 (4), 370–375. https://doi. org/10.1016/0009-2614(86)85036-9. 61. Kruse, H.; Grimme, S. A Geometrical Correction for the Inter- and Intra-Molecular Basis Set Superposition Error in Hartree-Fock and Density Functional Theory Calculations for Large Systems. The Journal of Chemical Physics 2012, 136 (15), 154101. https://doi. org/10.1063/1.3700154. 62. Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chemical Reviews 2003, 103 (5), 1793–1874. https://doi. org/10.1021/cr990029p. 63. Mennucci, B. Polarizable Continuum Model. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2 (3), 386–404. https:// doi.org/10.1002/wcms.1086. 64. Viswanadhan, V. N.; Ghose, A. K.; Revankar, G. R.; Robins, R. K. An Estimation of the Atomic Contribution to Octanol-Water Partition Coefficient and Molar Refractivity from Fundamental Atomic and Structural Properties: Its Uses in Computer Aided Drug Design. Mathematical and Computer Modelling 1990, 14, 505–510. https://doi.org/10.1016/0895-7177(90)90234-E. 65. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46 (1–3), 3–26. 66. Glendening, E. D.; Landis, C. R.; Weinhold, F. Natural Bond Orbital Methods. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2 (1), 1–42. https://doi. org/10.1002/wcms.51. 67. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Reviews 1988, 88 (6), 899–926. https://doi. org/10.1021/cr00088a005. 68. Lindstrom, M. J.; Bates, D. M. Newton—Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data. Journal of the American Statistical Association 1988, 83 (404), 1014–1022. https://doi.org/10.10 80/01621459.1988.10478693. 69. Andersson, K.; Roos, B. O. Multiconfigurational Second-Order Perturbation Theory: A Test of Geometries and Binding Energies. International Journal of Quantum Chemistry 1993, 45 (6), 591–607. https://doi.org/10.1002/ qua.560450610.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/f7206bf8-bfb7-4079-b190-534effeca90a/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/b0a9eff4-8905-4f65-aa58-2b735c8b2485/download8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALEstudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos un paso importante para el diseño racional de sistemas de liberación controlada de fármacos.pdfEstudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos un paso importante para el diseño racional de sistemas de liberación controlada de fármacos.pdfapplication/pdf1219435https://repositorio.cuc.edu.co/bitstreams/d7e1dfd9-ddc1-4b5f-a87b-254a54cd98ed/downloadd078627a2216dd5927abab00544f6bb3MD51THUMBNAILEstudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos un paso importante para el diseño racional de sistemas de liberación controlada de fármacos.pdf.jpgEstudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos un paso importante para el diseño racional de sistemas de liberación controlada de fármacos.pdf.jpgimage/jpeg61580https://repositorio.cuc.edu.co/bitstreams/91fdd62a-e41d-4e7f-a81a-809d39bec2a7/downloada56d74cca4239201630ab4c2723a32b2MD55TEXTEstudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos un paso importante para el diseño racional de sistemas de liberación controlada de fármacos.pdf.txtEstudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos un paso importante para el diseño racional de sistemas de liberación controlada de fármacos.pdf.txttext/plain49083https://repositorio.cuc.edu.co/bitstreams/70d6d95a-6013-48f0-a29e-04ad11b9dd37/download822e872a8d0ff1ce343e3016e2fc63efMD5611323/5300oai:repositorio.cuc.edu.co:11323/53002024-09-17 14:23:11.511http://creativecommons.org/publicdomain/zero/1.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=