Solving the problem of optimizing wind farm design using genetic algorithms
Renewable energies have become a topic of great interest in recent years because the natural sources used for the generation of these energies are inexhaustible and non-polluting. In fact, environmental sustainability requires a considerable reduction in the use of fossil fuels, which are highly pol...
- Autores:
-
amelec, viloria
Nuñez Lobo, Hugo
Pineda, Omar
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7967
- Acceso en línea:
- https://hdl.handle.net/11323/7967
https://doi.org/10.1088/1757-899X/872/1/012029
https://repositorio.cuc.edu.co/
- Palabra clave:
- Wind Turbines
Wind Fields
Wake Effect
Combinatorial Optimization
Genetic Algorithms
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_12caeaf3d4f2d2e712dd82d3ebc2184c |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7967 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Solving the problem of optimizing wind farm design using genetic algorithms |
title |
Solving the problem of optimizing wind farm design using genetic algorithms |
spellingShingle |
Solving the problem of optimizing wind farm design using genetic algorithms Wind Turbines Wind Fields Wake Effect Combinatorial Optimization Genetic Algorithms |
title_short |
Solving the problem of optimizing wind farm design using genetic algorithms |
title_full |
Solving the problem of optimizing wind farm design using genetic algorithms |
title_fullStr |
Solving the problem of optimizing wind farm design using genetic algorithms |
title_full_unstemmed |
Solving the problem of optimizing wind farm design using genetic algorithms |
title_sort |
Solving the problem of optimizing wind farm design using genetic algorithms |
dc.creator.fl_str_mv |
amelec, viloria Nuñez Lobo, Hugo Pineda, Omar |
dc.contributor.author.spa.fl_str_mv |
amelec, viloria Nuñez Lobo, Hugo Pineda, Omar |
dc.subject.spa.fl_str_mv |
Wind Turbines Wind Fields Wake Effect Combinatorial Optimization Genetic Algorithms |
topic |
Wind Turbines Wind Fields Wake Effect Combinatorial Optimization Genetic Algorithms |
description |
Renewable energies have become a topic of great interest in recent years because the natural sources used for the generation of these energies are inexhaustible and non-polluting. In fact, environmental sustainability requires a considerable reduction in the use of fossil fuels, which are highly polluting and unsustainable [1]. In addition, serious environmental pollution is threatening human health, and many public concerns have been raised [2]. As a result, many countries have proposed ambitious plans for the production of green energy, including wind power, and consequently, the market for wind energy is expanding rapidly worldwide [3]. In this research, an evolutionary metaheuristic is implemented, specifically genetic algorithms. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-09-15 |
dc.date.accessioned.none.fl_str_mv |
2021-03-08T19:13:02Z |
dc.date.available.none.fl_str_mv |
2021-03-08T19:13:02Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
17578981 1757899X |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7967 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1088/1757-899X/872/1/012029 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
17578981 1757899X Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7967 https://doi.org/10.1088/1757-899X/872/1/012029 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Mittal, P., & Mitra, K. (2020). Efficient Wind Farm Micro-siting using Novel Optimization Approaches (Doctoral dissertation, Indian Institute of Technology Hyderabad). [2] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371 [3] Ryerkerk, M. L., Averill, R. C., Deb, K., & Goodman, E. D. (2017). Solving metameric variable-length optimization problems using genetic algorithms. Genetic Programming and Evolvable Machines, 18(2), 247-277 [4] Moreno-Carbonell, S., Sánchez-Úbeda, E. F., & Muñoz, A. (2020). Rethinking weather station selection for electric load forecasting using genetic algorithms. International Journal of Forecasting, 36(2), 695-712. [5] Li, Q. S., Liu, D. K., Fang, J. Q., & Tam, C. M. (2000). Multi-level optimal design of buildings with active control under winds using genetic algorithms. Journal of Wind Engineering and Industrial Aerodynamics, 86(1), 65-86 [6] Rinaldi, G., Pillai, A. C., Thies, P. R., & Johanning, L. (2019). Multi-objective optimization of the operation and maintenance assets of an offshore wind farm using genetic algorithms. Wind Engineering, 0309524X19849826 [7] Sanchez, L., Vásquez, C., & Viloria, A. (2018, June). Conglomerates of Latin American countries and public policies for the sustainable development of the electric power generation sector. In International Conference on Data Mining and Big data (pp. 759- 766). Springer, Cham [8] Diveux, T., Sebastian, P., Bernard, D., Puiggali, J. R., & Grandidier, J. Y. (2001). Horizontal axis wind turbine systems: optimization using genetic algorithms. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 4(4), 151-171 [9] Garcia, J., Khosravi, A., Poley, R., Assad, M., & Machado, L. (2019, March). Multiobjective optimization of air conditioning system with the low GWP refrigerant R1234yf using genetic algorithm. In 2019 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1-7). IEEE [10] Abdelsalam, A. M., & El-Shorbagy, M. A. (2018). Optimization of wind turbines siting in a wind farm using genetic algorithm based local search. Renewable Energy, 123, 748- 755. [11] Thejaswini, R., & Raju, H. P. (2018, February). Optimizing Wind Turbine-Generator Design Using Genetic Algorithm. In 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC) (pp. 1-5). IEEE [12] Guerrero, M., Montoya, F. G., Baños, R., Alcayde, A., & Gil, C. (2018). Community detection in national-scale high voltage transmission networks using genetic algorithms. Advanced Engineering Informatics, 38, 232-241. [13] Tao, S., Xu, Q., Feijoo, A., Hou, P., & Zheng, G. (2020). Bi-hierarchy optimization of a wind farm considering environmental impact. IEEE Transactions on Sustainable Energy. [14] Wan, C., Wang, J., Yang, G., & Zhang, X. (2010, June). Optimal micro-siting of wind farms by particle swarm optimization. In International Conference in Swarm Intelligence (pp. 198-205). Springer, Berlin, Heidelberg [15] Daneshfar, F., & Bevrani, H. (2012). Multiobjective design of load frequency control using genetic algorithms. International Journal of Electrical Power & Energy Systems, 42(1), 257-263. [16] Song, M., Chen, K., & Wang, J. (2020). A two-level approach for three-dimensional micro-siting optimization of large-scale wind farms. Energy, 190, 116340 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.publisher.program.spa.fl_str_mv |
Retracted |
dc.source.spa.fl_str_mv |
IOP Conference Series: Materials Science and Engineering |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1757-899X/872/1/012194 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/742d7607-6532-44b0-b1a8-0879d3d13432/download https://repositorio.cuc.edu.co/bitstreams/7c6bcdd8-9e6d-4068-b4bc-499b57021d1b/download https://repositorio.cuc.edu.co/bitstreams/03f48f49-8a18-4320-84db-4d6175c1619a/download https://repositorio.cuc.edu.co/bitstreams/837224f6-0b6b-44c1-844b-43008319e1b3/download https://repositorio.cuc.edu.co/bitstreams/5dfdbb48-d790-44c2-b6f6-6a85c983cb52/download |
bitstream.checksum.fl_str_mv |
42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 2d79f80ea2b4d2540748fd4dd67e1b8f c8fc581a3d807f3774c24b21a8a6cc03 7b0541da4cdfe029a1ef7bc160b34b51 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760854564077568 |
spelling |
amelec, viloriaNuñez Lobo, HugoPineda, Omar2021-03-08T19:13:02Z2021-03-08T19:13:02Z2020-09-15175789811757899Xhttps://hdl.handle.net/11323/7967https://doi.org/10.1088/1757-899X/872/1/012029Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Renewable energies have become a topic of great interest in recent years because the natural sources used for the generation of these energies are inexhaustible and non-polluting. In fact, environmental sustainability requires a considerable reduction in the use of fossil fuels, which are highly polluting and unsustainable [1]. In addition, serious environmental pollution is threatening human health, and many public concerns have been raised [2]. As a result, many countries have proposed ambitious plans for the production of green energy, including wind power, and consequently, the market for wind energy is expanding rapidly worldwide [3]. In this research, an evolutionary metaheuristic is implemented, specifically genetic algorithms.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Nuñez Lobo, HugoPineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaRetractedCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2IOP Conference Series: Materials Science and Engineeringhttps://iopscience.iop.org/article/10.1088/1757-899X/872/1/012194Wind TurbinesWind FieldsWake EffectCombinatorial OptimizationGenetic AlgorithmsSolving the problem of optimizing wind farm design using genetic algorithmsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Mittal, P., & Mitra, K. (2020). Efficient Wind Farm Micro-siting using Novel Optimization Approaches (Doctoral dissertation, Indian Institute of Technology Hyderabad).[2] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371[3] Ryerkerk, M. L., Averill, R. C., Deb, K., & Goodman, E. D. (2017). Solving metameric variable-length optimization problems using genetic algorithms. Genetic Programming and Evolvable Machines, 18(2), 247-277[4] Moreno-Carbonell, S., Sánchez-Úbeda, E. F., & Muñoz, A. (2020). Rethinking weather station selection for electric load forecasting using genetic algorithms. International Journal of Forecasting, 36(2), 695-712.[5] Li, Q. S., Liu, D. K., Fang, J. Q., & Tam, C. M. (2000). Multi-level optimal design of buildings with active control under winds using genetic algorithms. Journal of Wind Engineering and Industrial Aerodynamics, 86(1), 65-86[6] Rinaldi, G., Pillai, A. C., Thies, P. R., & Johanning, L. (2019). Multi-objective optimization of the operation and maintenance assets of an offshore wind farm using genetic algorithms. Wind Engineering, 0309524X19849826[7] Sanchez, L., Vásquez, C., & Viloria, A. (2018, June). Conglomerates of Latin American countries and public policies for the sustainable development of the electric power generation sector. In International Conference on Data Mining and Big data (pp. 759- 766). Springer, Cham[8] Diveux, T., Sebastian, P., Bernard, D., Puiggali, J. R., & Grandidier, J. Y. (2001). Horizontal axis wind turbine systems: optimization using genetic algorithms. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 4(4), 151-171[9] Garcia, J., Khosravi, A., Poley, R., Assad, M., & Machado, L. (2019, March). Multiobjective optimization of air conditioning system with the low GWP refrigerant R1234yf using genetic algorithm. In 2019 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1-7). IEEE[10] Abdelsalam, A. M., & El-Shorbagy, M. A. (2018). Optimization of wind turbines siting in a wind farm using genetic algorithm based local search. Renewable Energy, 123, 748- 755.[11] Thejaswini, R., & Raju, H. P. (2018, February). Optimizing Wind Turbine-Generator Design Using Genetic Algorithm. In 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC) (pp. 1-5). IEEE[12] Guerrero, M., Montoya, F. G., Baños, R., Alcayde, A., & Gil, C. (2018). Community detection in national-scale high voltage transmission networks using genetic algorithms. Advanced Engineering Informatics, 38, 232-241.[13] Tao, S., Xu, Q., Feijoo, A., Hou, P., & Zheng, G. (2020). Bi-hierarchy optimization of a wind farm considering environmental impact. IEEE Transactions on Sustainable Energy.[14] Wan, C., Wang, J., Yang, G., & Zhang, X. (2010, June). Optimal micro-siting of wind farms by particle swarm optimization. In International Conference in Swarm Intelligence (pp. 198-205). Springer, Berlin, Heidelberg[15] Daneshfar, F., & Bevrani, H. (2012). Multiobjective design of load frequency control using genetic algorithms. International Journal of Electrical Power & Energy Systems, 42(1), 257-263.[16] Song, M., Chen, K., & Wang, J. (2020). A two-level approach for three-dimensional micro-siting optimization of large-scale wind farms. Energy, 190, 116340PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/742d7607-6532-44b0-b1a8-0879d3d13432/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/7c6bcdd8-9e6d-4068-b4bc-499b57021d1b/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALSolving the problem of optimizing wind farm design using genetic.pdfSolving the problem of optimizing wind farm design using genetic.pdfapplication/pdf2152123https://repositorio.cuc.edu.co/bitstreams/03f48f49-8a18-4320-84db-4d6175c1619a/download2d79f80ea2b4d2540748fd4dd67e1b8fMD51THUMBNAILSolving the problem of optimizing wind farm design using genetic.pdf.jpgSolving the problem of optimizing wind farm design using genetic.pdf.jpgimage/jpeg35468https://repositorio.cuc.edu.co/bitstreams/837224f6-0b6b-44c1-844b-43008319e1b3/downloadc8fc581a3d807f3774c24b21a8a6cc03MD54TEXTSolving the problem of optimizing wind farm design using genetic.pdf.txtSolving the problem of optimizing wind farm design using genetic.pdf.txttext/plain22682https://repositorio.cuc.edu.co/bitstreams/5dfdbb48-d790-44c2-b6f6-6a85c983cb52/download7b0541da4cdfe029a1ef7bc160b34b51MD5511323/7967oai:repositorio.cuc.edu.co:11323/79672024-09-17 14:11:39.725http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |