Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse
The prediction of gradients in a naturally ventilated greenhouse is difficult to achieve, due to the inherently stochastic nature of the airflow. Bayesian networks are numerical uncertainty techniques that can be used to study this problem. A set of experimental data was obtained: air temperature, a...
- Autores:
-
Silva, Jesús
NAVARRO, EVARISTO
Varela Izquierdo, Noel
Pineda, Omar
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7825
- Acceso en línea:
- https://hdl.handle.net/11323/7825
https://repositorio.cuc.edu.co/
- Palabra clave:
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_1137730538290749d6fdb4f347a4f1ab |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7825 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse |
title |
Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse |
spellingShingle |
Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse |
title_short |
Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse |
title_full |
Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse |
title_fullStr |
Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse |
title_full_unstemmed |
Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse |
title_sort |
Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse |
dc.creator.fl_str_mv |
Silva, Jesús NAVARRO, EVARISTO Varela Izquierdo, Noel Pineda, Omar |
dc.contributor.author.spa.fl_str_mv |
Silva, Jesús NAVARRO, EVARISTO Varela Izquierdo, Noel Pineda, Omar |
description |
The prediction of gradients in a naturally ventilated greenhouse is difficult to achieve, due to the inherently stochastic nature of the airflow. Bayesian networks are numerical uncertainty techniques that can be used to study this problem. A set of experimental data was obtained: air temperature, air humidity, wind speed, and CO2 concentration at one and three meters above the ground in the growing space. The data set was discretized and used to develop a Bayesian Network model that describes the relationships between the studied variables. The model shows the differences that allow to identify the degree of dependence of the variables, as well as to quantify their inference. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-04T23:21:47Z |
dc.date.available.none.fl_str_mv |
2021-02-04T23:21:47Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7825 |
dc.identifier.doi.spa.fl_str_mv |
10.1088/1757-899X/872/1/012028 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7825 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
10.1088/1757-899X/872/1/012028 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Jung, D. H., Kim, H. S., Jhin, C., Kim, H. J., & Park, S. H. (2020). Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse. Computers and Electronics in Agriculture, 173, 105402. [2] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371 [3] Silveira. Soil prediction using artificial neural networks and topographic attributes. Geoderma,. 2013. 2013, IEEE, págs. 192-197. [4] Noh, D. H., An, S. Y., & Kim, J. (2017, July). Implementation of optimal greenhouse control: Multiple influences approach. In 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 261-265). [5] Cañadas, J., Sánchez-Molina, J. A., Rodríguez, F., & del Águila, I. M. (2017). Improving automatic climate control with decision support techniques to minimize disease effects in greenhouse tomatoes. Information Processing in Agriculture, 4(1), 50-63 [6] Borunda, M., Jaramillo, O. A., Reyes, A., &Ibargüengoytia, P. H. (2016). Bayesian networks in renewable energy systems: A bibliographical survey. Renewable and Sustainable Energy Reviews, 62, 32-45. [7] Hemming, S., de Zwart, F., Elings, A., Righini, I., &Petropoulou, A. (2019). Remote Control of Greenhouse Vegetable Production with Artificial Intelligence—Greenhouse Climate, Irrigation, and Crop Production. Sensors, 19(8), 1807 [8] Yan, J., Li, X., Shi, Y., Sun, S., & Wang, H. (2019). The effect of intention analysis-based fraud detection systems in repeated supply Chain quality inspection: A context of learning and contract. Information & Management, 103177. [9] de Wilde, P., & Tian, W. (2009, September). Identification of key factors for uncertainty in the prediction of the thermal performance of an office building under climate change. In Building Simulation (Vol. 2, No. 3, pp. 157-174). Tsinghua Press [10] Søvik, A. K., Augustin, J., Heikkinen, K., Huttunen, J. T., Necki, J. M., Karjalainen, S. M., ... &Teiter, S. (2006). Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. Journal of environmental quality, 35(6), 2360-2373. [11] Roldán, J. J., Garcia-Aunon, P., Garzón, M., De León, J., Del Cerro, J., & Barrientos, A. (2016). Heterogeneous multi-robot system for mapping environmental variables of greenhouses. Sensors, 16(7), 1018. [12] Rasheed, A., Lee, J. W., Kim, H. T., & Lee, H. W. (2019). Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse. 시설원예· 식물공장, 28(3), 225-233. [13] Akrami, M., Javadi, A. A., Hassanein, M. J., Farmani, R., Dibaj, M., Tabor, G. R., &Negm, A. (2020). Study of the Effects of Vent Configuration on Mono-Span Greenhouse Ventilation Using Computational Fluid Dynamics. Sustainability, 12(3), 986. [14] Yang, R., Zhang, X., Ye, X., Wang, C., & Li, X. (2020). Ventilation modes and greenhouse structures affect 222 Rn concentration in greenhouses in China. Journal of Radioanalytical and Nuclear Chemistry, 1-9 [15] Abdel-Ghany, A. M., & Al-Helal, I. M. (2020). Toward Sustainable Agriculture: Net-Houses Instead of Greenhouses for Saving Energy and Water in Arid Regions. In Sustaining Resources for Tomorrow (pp. 83-98). Springer, Cham. [16] Tallaksen, J., Johnston, L., Sharpe, K., Reese, M., & Buchanan, E. (2020). Reducing life cycle fossil energy and greenhouse gas emissions for Midwest swine production systems. Journal of Cleaner Production, 246, 118998 [17] Esmaeli, H., &Roshandel, R. (2020). Optimal design for solar greenhouses based on climate conditions. Renewable Energy, 145, 1255-1265. [18] Munar, E. A. V., & Aldana, C. R. B. (2019). Study of natural ventilation in a Gothic multitunnel greenhouse designed to produce rose (Rosa spp.) in the high-Andean tropic. Ornamental Horticulture, 25(2), 133-143 [19] Villagrán, E. A., Romero, E. J. B., &Bojacá, C. R. (2019). Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosystems Engineering, 188, 288-304. [20] Sanchez, L., Vásquez, C., & Viloria, A. (2018, June). Conglomerates of Latin American countries and public policies for the sustainable development of the electric power generation sector. In International Conference on Data Mining and Big data (pp. 759-766). Springer, Cham. |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
ICMSMT |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1757-899X/872/1/012028/pdf |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/de5313fd-2529-43d3-a2c9-ac6118e163ce/download https://repositorio.cuc.edu.co/bitstreams/f22973f5-a2c0-4879-bca4-94a8fc0490b0/download https://repositorio.cuc.edu.co/bitstreams/eccdf10f-4224-4322-a40c-acf3fe5fc8fa/download https://repositorio.cuc.edu.co/bitstreams/425223b3-8be7-4e0f-a927-27c806308bf0/download https://repositorio.cuc.edu.co/bitstreams/14b86d2a-49ea-42a9-95f5-6a016e4dcff2/download https://repositorio.cuc.edu.co/bitstreams/426a1ef7-6079-4d88-af45-82f40bf8e3f0/download https://repositorio.cuc.edu.co/bitstreams/99cb72fa-6c84-4ec0-90f2-24bbfd0001e8/download https://repositorio.cuc.edu.co/bitstreams/78d22103-371c-4266-88ca-d3fa8bb47b89/download |
bitstream.checksum.fl_str_mv |
e30e9215131d99561d40d6b0abbe9bad 0f4b97a9a8d6975475bc0bd8710c1eb8 c3e0a6f63b067032fac74b5a7f2b02d7 4460e5956bc1d1639be9ae6146a50347 7dc26e2fac73ebac163da34dee581cc6 6aeffd38f2717f8679fa70a556cf2256 5c8cdad168d56f5a69ed9f63912dcff2 6ed23bf9374967b11f92fbf72a7b97e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760812664029184 |
spelling |
Silva, JesúsNAVARRO, EVARISTOVarela Izquierdo, NoelPineda, Omar2021-02-04T23:21:47Z2021-02-04T23:21:47Z2020https://hdl.handle.net/11323/782510.1088/1757-899X/872/1/012028Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The prediction of gradients in a naturally ventilated greenhouse is difficult to achieve, due to the inherently stochastic nature of the airflow. Bayesian networks are numerical uncertainty techniques that can be used to study this problem. A set of experimental data was obtained: air temperature, air humidity, wind speed, and CO2 concentration at one and three meters above the ground in the growing space. The data set was discretized and used to develop a Bayesian Network model that describes the relationships between the studied variables. The model shows the differences that allow to identify the degree of dependence of the variables, as well as to quantify their inference.Silva, JesúsNAVARRO, EVARISTO-will be generated-orcid-0000-0003-4549-502X-600Varela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ICMSMThttps://iopscience.iop.org/article/10.1088/1757-899X/872/1/012028/pdfBayesian networks applied to climate conditions inside a naturally ventilated greenhouseArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Jung, D. H., Kim, H. S., Jhin, C., Kim, H. J., & Park, S. H. (2020). Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse. Computers and Electronics in Agriculture, 173, 105402.[2] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371[3] Silveira. Soil prediction using artificial neural networks and topographic attributes. Geoderma,. 2013. 2013, IEEE, págs. 192-197.[4] Noh, D. H., An, S. Y., & Kim, J. (2017, July). Implementation of optimal greenhouse control: Multiple influences approach. In 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 261-265).[5] Cañadas, J., Sánchez-Molina, J. A., Rodríguez, F., & del Águila, I. M. (2017). Improving automatic climate control with decision support techniques to minimize disease effects in greenhouse tomatoes. Information Processing in Agriculture, 4(1), 50-63[6] Borunda, M., Jaramillo, O. A., Reyes, A., &Ibargüengoytia, P. H. (2016). Bayesian networks in renewable energy systems: A bibliographical survey. Renewable and Sustainable Energy Reviews, 62, 32-45.[7] Hemming, S., de Zwart, F., Elings, A., Righini, I., &Petropoulou, A. (2019). Remote Control of Greenhouse Vegetable Production with Artificial Intelligence—Greenhouse Climate, Irrigation, and Crop Production. Sensors, 19(8), 1807[8] Yan, J., Li, X., Shi, Y., Sun, S., & Wang, H. (2019). The effect of intention analysis-based fraud detection systems in repeated supply Chain quality inspection: A context of learning and contract. Information & Management, 103177.[9] de Wilde, P., & Tian, W. (2009, September). Identification of key factors for uncertainty in the prediction of the thermal performance of an office building under climate change. In Building Simulation (Vol. 2, No. 3, pp. 157-174). Tsinghua Press[10] Søvik, A. K., Augustin, J., Heikkinen, K., Huttunen, J. T., Necki, J. M., Karjalainen, S. M., ... &Teiter, S. (2006). Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. Journal of environmental quality, 35(6), 2360-2373.[11] Roldán, J. J., Garcia-Aunon, P., Garzón, M., De León, J., Del Cerro, J., & Barrientos, A. (2016). Heterogeneous multi-robot system for mapping environmental variables of greenhouses. Sensors, 16(7), 1018.[12] Rasheed, A., Lee, J. W., Kim, H. T., & Lee, H. W. (2019). Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse. 시설원예· 식물공장, 28(3), 225-233.[13] Akrami, M., Javadi, A. A., Hassanein, M. J., Farmani, R., Dibaj, M., Tabor, G. R., &Negm, A. (2020). Study of the Effects of Vent Configuration on Mono-Span Greenhouse Ventilation Using Computational Fluid Dynamics. Sustainability, 12(3), 986.[14] Yang, R., Zhang, X., Ye, X., Wang, C., & Li, X. (2020). Ventilation modes and greenhouse structures affect 222 Rn concentration in greenhouses in China. Journal of Radioanalytical and Nuclear Chemistry, 1-9[15] Abdel-Ghany, A. M., & Al-Helal, I. M. (2020). Toward Sustainable Agriculture: Net-Houses Instead of Greenhouses for Saving Energy and Water in Arid Regions. In Sustaining Resources for Tomorrow (pp. 83-98). Springer, Cham.[16] Tallaksen, J., Johnston, L., Sharpe, K., Reese, M., & Buchanan, E. (2020). Reducing life cycle fossil energy and greenhouse gas emissions for Midwest swine production systems. Journal of Cleaner Production, 246, 118998[17] Esmaeli, H., &Roshandel, R. (2020). Optimal design for solar greenhouses based on climate conditions. Renewable Energy, 145, 1255-1265.[18] Munar, E. A. V., & Aldana, C. R. B. (2019). Study of natural ventilation in a Gothic multitunnel greenhouse designed to produce rose (Rosa spp.) in the high-Andean tropic. Ornamental Horticulture, 25(2), 133-143[19] Villagrán, E. A., Romero, E. J. B., &Bojacá, C. R. (2019). Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosystems Engineering, 188, 288-304.[20] Sanchez, L., Vásquez, C., & Viloria, A. (2018, June). Conglomerates of Latin American countries and public policies for the sustainable development of the electric power generation sector. In International Conference on Data Mining and Big data (pp. 759-766). Springer, Cham.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/de5313fd-2529-43d3-a2c9-ac6118e163ce/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALBayesian networks applied to climate conditions inside a naturally ventilated greenhouse.pdfBayesian networks applied to climate conditions inside a naturally ventilated greenhouse.pdfapplication/pdf93049https://repositorio.cuc.edu.co/bitstreams/f22973f5-a2c0-4879-bca4-94a8fc0490b0/download0f4b97a9a8d6975475bc0bd8710c1eb8MD51Bayesian networks applied to climate conditions inside a naturally.pdfBayesian networks applied to climate conditions inside a naturally.pdfapplication/pdf1559466https://repositorio.cuc.edu.co/bitstreams/eccdf10f-4224-4322-a40c-acf3fe5fc8fa/downloadc3e0a6f63b067032fac74b5a7f2b02d7MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/425223b3-8be7-4e0f-a927-27c806308bf0/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILBayesian networks applied to climate conditions inside a naturally ventilated greenhouse.pdf.jpgBayesian networks applied to climate conditions inside a naturally ventilated greenhouse.pdf.jpgimage/jpeg28409https://repositorio.cuc.edu.co/bitstreams/14b86d2a-49ea-42a9-95f5-6a016e4dcff2/download7dc26e2fac73ebac163da34dee581cc6MD54Bayesian networks applied to climate conditions inside a naturally.pdf.jpgBayesian networks applied to climate conditions inside a naturally.pdf.jpgimage/jpeg35787https://repositorio.cuc.edu.co/bitstreams/426a1ef7-6079-4d88-af45-82f40bf8e3f0/download6aeffd38f2717f8679fa70a556cf2256MD56TEXTBayesian networks applied to climate conditions inside a naturally ventilated greenhouse.pdf.txtBayesian networks applied to climate conditions inside a naturally ventilated greenhouse.pdf.txttext/plain888https://repositorio.cuc.edu.co/bitstreams/99cb72fa-6c84-4ec0-90f2-24bbfd0001e8/download5c8cdad168d56f5a69ed9f63912dcff2MD57Bayesian networks applied to climate conditions inside a naturally.pdf.txtBayesian networks applied to climate conditions inside a naturally.pdf.txttext/plain23387https://repositorio.cuc.edu.co/bitstreams/78d22103-371c-4266-88ca-d3fa8bb47b89/download6ed23bf9374967b11f92fbf72a7b97e0MD5811323/7825oai:repositorio.cuc.edu.co:11323/78252024-09-17 12:48:30.92http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |