Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse

The prediction of gradients in a naturally ventilated greenhouse is difficult to achieve, due to the inherently stochastic nature of the airflow. Bayesian networks are numerical uncertainty techniques that can be used to study this problem. A set of experimental data was obtained: air temperature, a...

Full description

Autores:
Silva, Jesús
NAVARRO, EVARISTO
Varela Izquierdo, Noel
Pineda, Omar
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7825
Acceso en línea:
https://hdl.handle.net/11323/7825
https://repositorio.cuc.edu.co/
Palabra clave:
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_1137730538290749d6fdb4f347a4f1ab
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7825
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse
title Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse
spellingShingle Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse
title_short Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse
title_full Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse
title_fullStr Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse
title_full_unstemmed Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse
title_sort Bayesian networks applied to climate conditions inside a naturally ventilated greenhouse
dc.creator.fl_str_mv Silva, Jesús
NAVARRO, EVARISTO
Varela Izquierdo, Noel
Pineda, Omar
dc.contributor.author.spa.fl_str_mv Silva, Jesús
NAVARRO, EVARISTO
Varela Izquierdo, Noel
Pineda, Omar
description The prediction of gradients in a naturally ventilated greenhouse is difficult to achieve, due to the inherently stochastic nature of the airflow. Bayesian networks are numerical uncertainty techniques that can be used to study this problem. A set of experimental data was obtained: air temperature, air humidity, wind speed, and CO2 concentration at one and three meters above the ground in the growing space. The data set was discretized and used to develop a Bayesian Network model that describes the relationships between the studied variables. The model shows the differences that allow to identify the degree of dependence of the variables, as well as to quantify their inference.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-02-04T23:21:47Z
dc.date.available.none.fl_str_mv 2021-02-04T23:21:47Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7825
dc.identifier.doi.spa.fl_str_mv 10.1088/1757-899X/872/1/012028
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7825
https://repositorio.cuc.edu.co/
identifier_str_mv 10.1088/1757-899X/872/1/012028
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Jung, D. H., Kim, H. S., Jhin, C., Kim, H. J., & Park, S. H. (2020). Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse. Computers and Electronics in Agriculture, 173, 105402.
[2] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371
[3] Silveira. Soil prediction using artificial neural networks and topographic attributes. Geoderma,. 2013. 2013, IEEE, págs. 192-197.
[4] Noh, D. H., An, S. Y., & Kim, J. (2017, July). Implementation of optimal greenhouse control: Multiple influences approach. In 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 261-265).
[5] Cañadas, J., Sánchez-Molina, J. A., Rodríguez, F., & del Águila, I. M. (2017). Improving automatic climate control with decision support techniques to minimize disease effects in greenhouse tomatoes. Information Processing in Agriculture, 4(1), 50-63
[6] Borunda, M., Jaramillo, O. A., Reyes, A., &Ibargüengoytia, P. H. (2016). Bayesian networks in renewable energy systems: A bibliographical survey. Renewable and Sustainable Energy Reviews, 62, 32-45.
[7] Hemming, S., de Zwart, F., Elings, A., Righini, I., &Petropoulou, A. (2019). Remote Control of Greenhouse Vegetable Production with Artificial Intelligence—Greenhouse Climate, Irrigation, and Crop Production. Sensors, 19(8), 1807
[8] Yan, J., Li, X., Shi, Y., Sun, S., & Wang, H. (2019). The effect of intention analysis-based fraud detection systems in repeated supply Chain quality inspection: A context of learning and contract. Information & Management, 103177.
[9] de Wilde, P., & Tian, W. (2009, September). Identification of key factors for uncertainty in the prediction of the thermal performance of an office building under climate change. In Building Simulation (Vol. 2, No. 3, pp. 157-174). Tsinghua Press
[10] Søvik, A. K., Augustin, J., Heikkinen, K., Huttunen, J. T., Necki, J. M., Karjalainen, S. M., ... &Teiter, S. (2006). Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. Journal of environmental quality, 35(6), 2360-2373.
[11] Roldán, J. J., Garcia-Aunon, P., Garzón, M., De León, J., Del Cerro, J., & Barrientos, A. (2016). Heterogeneous multi-robot system for mapping environmental variables of greenhouses. Sensors, 16(7), 1018.
[12] Rasheed, A., Lee, J. W., Kim, H. T., & Lee, H. W. (2019). Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse. 시설원예· 식물공장, 28(3), 225-233.
[13] Akrami, M., Javadi, A. A., Hassanein, M. J., Farmani, R., Dibaj, M., Tabor, G. R., &Negm, A. (2020). Study of the Effects of Vent Configuration on Mono-Span Greenhouse Ventilation Using Computational Fluid Dynamics. Sustainability, 12(3), 986.
[14] Yang, R., Zhang, X., Ye, X., Wang, C., & Li, X. (2020). Ventilation modes and greenhouse structures affect 222 Rn concentration in greenhouses in China. Journal of Radioanalytical and Nuclear Chemistry, 1-9
[15] Abdel-Ghany, A. M., & Al-Helal, I. M. (2020). Toward Sustainable Agriculture: Net-Houses Instead of Greenhouses for Saving Energy and Water in Arid Regions. In Sustaining Resources for Tomorrow (pp. 83-98). Springer, Cham.
[16] Tallaksen, J., Johnston, L., Sharpe, K., Reese, M., & Buchanan, E. (2020). Reducing life cycle fossil energy and greenhouse gas emissions for Midwest swine production systems. Journal of Cleaner Production, 246, 118998
[17] Esmaeli, H., &Roshandel, R. (2020). Optimal design for solar greenhouses based on climate conditions. Renewable Energy, 145, 1255-1265.
[18] Munar, E. A. V., & Aldana, C. R. B. (2019). Study of natural ventilation in a Gothic multitunnel greenhouse designed to produce rose (Rosa spp.) in the high-Andean tropic. Ornamental Horticulture, 25(2), 133-143
[19] Villagrán, E. A., Romero, E. J. B., &Bojacá, C. R. (2019). Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosystems Engineering, 188, 288-304.
[20] Sanchez, L., Vásquez, C., & Viloria, A. (2018, June). Conglomerates of Latin American countries and public policies for the sustainable development of the electric power generation sector. In International Conference on Data Mining and Big data (pp. 759-766). Springer, Cham.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv ICMSMT
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://iopscience.iop.org/article/10.1088/1757-899X/872/1/012028/pdf
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/7825/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/7825/1/Bayesian%20networks%20applied%20to%20climate%20conditions%20inside%20a%20naturally%20ventilated%20greenhouse.pdf
https://repositorio.cuc.edu.co/bitstream/11323/7825/5/Bayesian%20networks%20applied%20to%20climate%20conditions%20inside%20a%20naturally.pdf
https://repositorio.cuc.edu.co/bitstream/11323/7825/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/7825/4/Bayesian%20networks%20applied%20to%20climate%20conditions%20inside%20a%20naturally%20ventilated%20greenhouse.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/7825/6/Bayesian%20networks%20applied%20to%20climate%20conditions%20inside%20a%20naturally.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/7825/7/Bayesian%20networks%20applied%20to%20climate%20conditions%20inside%20a%20naturally%20ventilated%20greenhouse.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/7825/8/Bayesian%20networks%20applied%20to%20climate%20conditions%20inside%20a%20naturally.pdf.txt
bitstream.checksum.fl_str_mv e30e9215131d99561d40d6b0abbe9bad
0f4b97a9a8d6975475bc0bd8710c1eb8
c3e0a6f63b067032fac74b5a7f2b02d7
4460e5956bc1d1639be9ae6146a50347
7dc26e2fac73ebac163da34dee581cc6
6aeffd38f2717f8679fa70a556cf2256
5c8cdad168d56f5a69ed9f63912dcff2
6ed23bf9374967b11f92fbf72a7b97e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400146496487424
spelling Silva, Jesúse17281d02925301aa71681ad0d7b3e03NAVARRO, EVARISTO2505f8e1e11f4eaac7d18144f393f310Varela Izquierdo, Noel484160b66adc1de7303e235ec7894532Pineda, Omaraf4b322b3d3157067b1e466da357fb982021-02-04T23:21:47Z2021-02-04T23:21:47Z2020https://hdl.handle.net/11323/782510.1088/1757-899X/872/1/012028Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The prediction of gradients in a naturally ventilated greenhouse is difficult to achieve, due to the inherently stochastic nature of the airflow. Bayesian networks are numerical uncertainty techniques that can be used to study this problem. A set of experimental data was obtained: air temperature, air humidity, wind speed, and CO2 concentration at one and three meters above the ground in the growing space. The data set was discretized and used to develop a Bayesian Network model that describes the relationships between the studied variables. The model shows the differences that allow to identify the degree of dependence of the variables, as well as to quantify their inference.application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ICMSMThttps://iopscience.iop.org/article/10.1088/1757-899X/872/1/012028/pdfBayesian networks applied to climate conditions inside a naturally ventilated greenhouseArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Jung, D. H., Kim, H. S., Jhin, C., Kim, H. J., & Park, S. H. (2020). Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse. Computers and Electronics in Agriculture, 173, 105402.[2] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371[3] Silveira. Soil prediction using artificial neural networks and topographic attributes. Geoderma,. 2013. 2013, IEEE, págs. 192-197.[4] Noh, D. H., An, S. Y., & Kim, J. (2017, July). Implementation of optimal greenhouse control: Multiple influences approach. In 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 261-265).[5] Cañadas, J., Sánchez-Molina, J. A., Rodríguez, F., & del Águila, I. M. (2017). Improving automatic climate control with decision support techniques to minimize disease effects in greenhouse tomatoes. Information Processing in Agriculture, 4(1), 50-63[6] Borunda, M., Jaramillo, O. A., Reyes, A., &Ibargüengoytia, P. H. (2016). Bayesian networks in renewable energy systems: A bibliographical survey. Renewable and Sustainable Energy Reviews, 62, 32-45.[7] Hemming, S., de Zwart, F., Elings, A., Righini, I., &Petropoulou, A. (2019). Remote Control of Greenhouse Vegetable Production with Artificial Intelligence—Greenhouse Climate, Irrigation, and Crop Production. Sensors, 19(8), 1807[8] Yan, J., Li, X., Shi, Y., Sun, S., & Wang, H. (2019). The effect of intention analysis-based fraud detection systems in repeated supply Chain quality inspection: A context of learning and contract. Information & Management, 103177.[9] de Wilde, P., & Tian, W. (2009, September). Identification of key factors for uncertainty in the prediction of the thermal performance of an office building under climate change. In Building Simulation (Vol. 2, No. 3, pp. 157-174). Tsinghua Press[10] Søvik, A. K., Augustin, J., Heikkinen, K., Huttunen, J. T., Necki, J. M., Karjalainen, S. M., ... &Teiter, S. (2006). Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. Journal of environmental quality, 35(6), 2360-2373.[11] Roldán, J. J., Garcia-Aunon, P., Garzón, M., De León, J., Del Cerro, J., & Barrientos, A. (2016). Heterogeneous multi-robot system for mapping environmental variables of greenhouses. Sensors, 16(7), 1018.[12] Rasheed, A., Lee, J. W., Kim, H. T., & Lee, H. W. (2019). Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse. 시설원예· 식물공장, 28(3), 225-233.[13] Akrami, M., Javadi, A. A., Hassanein, M. J., Farmani, R., Dibaj, M., Tabor, G. R., &Negm, A. (2020). Study of the Effects of Vent Configuration on Mono-Span Greenhouse Ventilation Using Computational Fluid Dynamics. Sustainability, 12(3), 986.[14] Yang, R., Zhang, X., Ye, X., Wang, C., & Li, X. (2020). Ventilation modes and greenhouse structures affect 222 Rn concentration in greenhouses in China. Journal of Radioanalytical and Nuclear Chemistry, 1-9[15] Abdel-Ghany, A. M., & Al-Helal, I. M. (2020). Toward Sustainable Agriculture: Net-Houses Instead of Greenhouses for Saving Energy and Water in Arid Regions. In Sustaining Resources for Tomorrow (pp. 83-98). Springer, Cham.[16] Tallaksen, J., Johnston, L., Sharpe, K., Reese, M., & Buchanan, E. (2020). Reducing life cycle fossil energy and greenhouse gas emissions for Midwest swine production systems. Journal of Cleaner Production, 246, 118998[17] Esmaeli, H., &Roshandel, R. (2020). Optimal design for solar greenhouses based on climate conditions. Renewable Energy, 145, 1255-1265.[18] Munar, E. A. V., & Aldana, C. R. B. (2019). Study of natural ventilation in a Gothic multitunnel greenhouse designed to produce rose (Rosa spp.) in the high-Andean tropic. Ornamental Horticulture, 25(2), 133-143[19] Villagrán, E. A., Romero, E. J. B., &Bojacá, C. R. (2019). Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosystems Engineering, 188, 288-304.[20] Sanchez, L., Vásquez, C., & Viloria, A. (2018, June). Conglomerates of Latin American countries and public policies for the sustainable development of the electric power generation sector. In International Conference on Data Mining and Big data (pp. 759-766). Springer, Cham.LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/7825/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessORIGINALBayesian networks applied to climate conditions inside a naturally ventilated greenhouse.pdfBayesian networks applied to climate conditions inside a naturally ventilated greenhouse.pdfapplication/pdf93049https://repositorio.cuc.edu.co/bitstream/11323/7825/1/Bayesian%20networks%20applied%20to%20climate%20conditions%20inside%20a%20naturally%20ventilated%20greenhouse.pdf0f4b97a9a8d6975475bc0bd8710c1eb8MD51open accessBayesian networks applied to climate conditions inside a naturally.pdfBayesian networks applied to climate conditions inside a naturally.pdfapplication/pdf1559466https://repositorio.cuc.edu.co/bitstream/11323/7825/5/Bayesian%20networks%20applied%20to%20climate%20conditions%20inside%20a%20naturally.pdfc3e0a6f63b067032fac74b5a7f2b02d7MD55open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstream/11323/7825/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52open accessTHUMBNAILBayesian networks applied to climate conditions inside a naturally ventilated greenhouse.pdf.jpgBayesian networks applied to climate conditions inside a naturally ventilated greenhouse.pdf.jpgimage/jpeg28409https://repositorio.cuc.edu.co/bitstream/11323/7825/4/Bayesian%20networks%20applied%20to%20climate%20conditions%20inside%20a%20naturally%20ventilated%20greenhouse.pdf.jpg7dc26e2fac73ebac163da34dee581cc6MD54open accessBayesian networks applied to climate conditions inside a naturally.pdf.jpgBayesian networks applied to climate conditions inside a naturally.pdf.jpgimage/jpeg35787https://repositorio.cuc.edu.co/bitstream/11323/7825/6/Bayesian%20networks%20applied%20to%20climate%20conditions%20inside%20a%20naturally.pdf.jpg6aeffd38f2717f8679fa70a556cf2256MD56open accessTEXTBayesian networks applied to climate conditions inside a naturally ventilated greenhouse.pdf.txtBayesian networks applied to climate conditions inside a naturally ventilated greenhouse.pdf.txttext/plain888https://repositorio.cuc.edu.co/bitstream/11323/7825/7/Bayesian%20networks%20applied%20to%20climate%20conditions%20inside%20a%20naturally%20ventilated%20greenhouse.pdf.txt5c8cdad168d56f5a69ed9f63912dcff2MD57open accessBayesian networks applied to climate conditions inside a naturally.pdf.txtBayesian networks applied to climate conditions inside a naturally.pdf.txttext/plain23387https://repositorio.cuc.edu.co/bitstream/11323/7825/8/Bayesian%20networks%20applied%20to%20climate%20conditions%20inside%20a%20naturally.pdf.txt6ed23bf9374967b11f92fbf72a7b97e0MD58open access11323/7825oai:repositorio.cuc.edu.co:11323/78252023-12-14 15:01:42.983Attribution-NonCommercial-NoDerivatives 4.0 International|||http://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==