Optimización energética de bombas centrífugas a través de un análisis paramétrico en CFD y modelos de pérdida de energía
Introducción− La optimización energética de bombas centrífugas comprende diversas formas de estudio, entre ellas, la aplicación de análisis paramétricos sobre una bomba centrífuga comercial, generando cambios dimensionales que puedan ser estudiados a través de CFD y que permitan obtener una configur...
- Autores:
-
Fontalvo Conrado, Cesar Andrés
Pineda Arrieta, Rafael
Duarte Forero, Jorge
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/12253
- Palabra clave:
- parameterization
energy loss models
turbulent kinetic energy
CFD
energy optimization
parametrización
modelos de pérdida de energía
turbulent kinetic energy
CFD
optimización energética
- Rights
- openAccess
- License
- INGE CUC - 2020
id |
RCUC2_1112d61c6520406257c4ad892971ba1b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/12253 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimización energética de bombas centrífugas a través de un análisis paramétrico en CFD y modelos de pérdida de energía |
dc.title.translated.eng.fl_str_mv |
Energy optimization of centrifugal pumps through parametric analysis in CFD and energy loss models |
title |
Optimización energética de bombas centrífugas a través de un análisis paramétrico en CFD y modelos de pérdida de energía |
spellingShingle |
Optimización energética de bombas centrífugas a través de un análisis paramétrico en CFD y modelos de pérdida de energía parameterization energy loss models turbulent kinetic energy CFD energy optimization parametrización modelos de pérdida de energía turbulent kinetic energy CFD optimización energética |
title_short |
Optimización energética de bombas centrífugas a través de un análisis paramétrico en CFD y modelos de pérdida de energía |
title_full |
Optimización energética de bombas centrífugas a través de un análisis paramétrico en CFD y modelos de pérdida de energía |
title_fullStr |
Optimización energética de bombas centrífugas a través de un análisis paramétrico en CFD y modelos de pérdida de energía |
title_full_unstemmed |
Optimización energética de bombas centrífugas a través de un análisis paramétrico en CFD y modelos de pérdida de energía |
title_sort |
Optimización energética de bombas centrífugas a través de un análisis paramétrico en CFD y modelos de pérdida de energía |
dc.creator.fl_str_mv |
Fontalvo Conrado, Cesar Andrés Pineda Arrieta, Rafael Duarte Forero, Jorge |
dc.contributor.author.spa.fl_str_mv |
Fontalvo Conrado, Cesar Andrés Pineda Arrieta, Rafael Duarte Forero, Jorge |
dc.subject.eng.fl_str_mv |
parameterization energy loss models turbulent kinetic energy CFD energy optimization |
topic |
parameterization energy loss models turbulent kinetic energy CFD energy optimization parametrización modelos de pérdida de energía turbulent kinetic energy CFD optimización energética |
dc.subject.spa.fl_str_mv |
parametrización modelos de pérdida de energía turbulent kinetic energy CFD optimización energética |
description |
Introducción− La optimización energética de bombas centrífugas comprende diversas formas de estudio, entre ellas, la aplicación de análisis paramétricos sobre una bomba centrífuga comercial, generando cambios dimensionales que puedan ser estudiados a través de CFD y que permitan obtener una configuración paramétrica con mejores niveles de eficiencia. Adicionalmente, la incorporación de modelos de pérdida de energía sobre los análisis paramétricos, permite comprender de forma más detallada las causas de reducción de eficiencia bajo distintas condiciones de operación. Objetivo− En este estudio se busca optimizar una bomba centrifuga usando análisis paramétrico en CFD y modelos de perdida de energía, con el fin de mejorar la eficiencia energética. Metodología− Se realizó un análisis energético que combina estudios paramétricos y modelos de pérdida de energía, aplicando la dinámica de fluidos computacional (CFD) por medio del software OpenFOAM. Los modelos constaron de 4 configuraciones geométricas: número de álabes, diámetro de salida, ángulo de salida y espesor de salida del impeler. Los modelos energéticos para el estudio de pérdidas de energía se basaron en turbulent kinetic energy (TKE) y el comportamiento de la eficiencia hidráulica. Resultados− Finalmente, se obtuvo que el parámetro que tuvo mayor influencia en la eficiencia y la turbulencia fue el aumento del espesor, disminuyendo las pérdidas de energía más influyentes sobre el desempeño de la bomba, logrando aumentos en la eficiencia de 4.71% y reducción de la TKE en 4.24 m2/s2 respecto a la bomba original. Conclusiones− La interface entre el impulsor y la voluta genera turbulencia por el gradiente de velocidad presente en las partículas, debido a que pasan de altas velocidades a un medio de baja velocidad. Las configuraciones que aumentaban el área de flujo entre los álabes presentaban mayores niveles de eficiencia, al permitir desplazar una mayor cantidad de fluido, permitiendo un comportamiento de las velocidades más adecuado, reduciendo las pérdidas debida a la fricción del fluido con las paredes de la voluta. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-01-27 00:00:00 2024-04-09T20:17:39Z |
dc.date.available.none.fl_str_mv |
2020-01-27 00:00:00 2024-04-09T20:17:39Z |
dc.date.issued.none.fl_str_mv |
2020-01-27 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-6517 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/12253 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/ingecuc.16.1.2020.01 |
dc.identifier.doi.none.fl_str_mv |
10.17981/ingecuc.16.1.2020.01 |
dc.identifier.eissn.none.fl_str_mv |
2382-4700 |
identifier_str_mv |
0122-6517 10.17981/ingecuc.16.1.2020.01 2382-4700 |
url |
https://hdl.handle.net/11323/12253 https://doi.org/10.17981/ingecuc.16.1.2020.01 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Inge Cuc |
dc.relation.references.spa.fl_str_mv |
CETIM, D. Reeves, NESA, TUDa, “Study on improving the energy efficiency of pumps,” EC, Br, Be, Tech. Report AEAT-6559/ v 5.1, Feb. 2001. P. Roudolf and R. Klas, “Numerical simulation of pump-intake vortices,” in EPJ Web Conf., May. 2015, vol. 92, no. 02077, p. 1–6. https://doi.org/10.1051/epjconf/20159202077 P. Olszewski, “Genetic optimization and experimental verification of complex parallel pumping station with centrifugal pumps,” Appl. Energy, vol. 178, no. 7, pp. 527–539, Sep. 2016. https://doi.org/10.1016/j.apenergy.2016.06.084 F. Meng, H. Zhang, F. Yang, X. Hou, B. Lei, L. Zhang, Y. Wu, J. Wang and Z. Shi, “Study of efficiency of a multistage centrifugal pump used in engine waste heat recovery application,” Appl. Therm. Eng., vol. 110, no. 1, pp. 779–786, Jan. 2017. https://doi.org/10.1016/j.applthermaleng.2016.08.226 S. R. Shah, S. V. Jain, R. N. Patel and V. J. Lakhera, “CFD for Centrifugal Pumps: A Review of the State-of-the-Art,” Procedia Eng., vol. 51, no. 1, pp. 715–720, Dec. 2013. https://doi.org/10.1016/j.proeng.2013.01.102 J. Duarte, W. Guillín y J. Sánchez, “Desarrollo de una metodología para la predicción del volumen real en la cámara de combustión de motores diésel utilizando elementos finitos,” INGE CUC, vol. 14, no. 1, pp. 122–132, Aug. 2018. https://doi.org/10.17981/ingecuc.14.1.2018.11 T. Ouchbel, S. Zouggar, M. L. Elhafyani, M. Seddik, M. Oukili, A. Aziz and F. Z. Kadda, “Power maximization of an asynchronous wind turbine with a variable speed feeding a centrifugal pump,” Energy Convers. Manag., vol. 78, pp. 976–984, Feb. 2014. https://doi.org/10.1016/j.enconman.2013.08.063 H. Keck and M. Sick, “Thirty years of numerical flow simulation in hydraulic turbomachines,” Acta Mech., vol. 201, pp. 211–229, Sept. 2008. https://doi.org/10.1007/s00707-008-0060-4 M. Kawaguti, “Numerical Solution of the Navier-Stokes Equations for the Flow around a Circular Cylinder at Reynolds Number 40,” J. Phys. Soc. Japan, vol. 8, no. 6, pp. 747–757, Nov. 1953. https://doi.org/10.1143/JPSJ.8.747 J. C. Páscoa, A. C. Mendes and L. M. C. Gato, “A fast iterative inverse method for turbomachinery blade design,” Mech. Res. Commun., vol. 36, no. 5, pp. 630–637, Jul. 2009. https://doi.org/10.1016/j.mechrescom.2009.01.008 R. Barrio, J. Parrondo and E. Blanco, “Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points,” Comput. Fluids, vol. 39, no. 5, pp. 859–870, May. 2010. https://doi.org/10.1016/j.compfluid.2010.01.001 J. Pei, S. Yuan, X. Li and J. Yuan, “Numerical prediction of 3-D periodic flow unsteadiness in a centrifugal pump under part-load condition,” J. Hydrodyn. Ser. B, vol. 26, no. 2, pp. 257–263, Apr. 2014. https://doi.org/10.1016/S1001-6058(14)60029-9 E. Dick, J. Vierendeels, S. Serbruyns and J. Voorde, “Performance Prediction of Centrifugal Pumps with CFD-Tools,” Task Q., vol. 5, no. 4, pp. 579–594, Jan. 2001. Available from https://task.gda.pl/files/quart/TQ2001/04/TQ0405E7.PDF H. Chen, J. He and C. Liu, “Design and experiment of the centrifugal pump impellers with twisted inlet vice blades,” J. Hydrodyn. Ser. B, vol. 29, no. 6, pp. 1085–1088, Dec. 2017. https://doi.org/10.1016/S1001-6058(16)60822-3 X. Zhu, G. Li, W. Jiang and L. Fu, “Experimental and numerical investigation on application of half vane diffusers for centrifugal pump,” Int. Commun. Heat Mass Transf., vol. 79, pp. 114–127, Dec. 2016. https://doi.org/10.1016/j.icheatmasstransfer.2016.10.015 H. Hou, Y. Zhang, J. Zhang and Z. Li, “Effects of radial diffuser hydraulic design on a double-suction centrifugal pump,” IOP Conf. Ser. Mater. Sci. Eng., 7th International Conference on Pumps and Fans (ICPF2015), Oct. 18–21, 2015, Hangzhou, China, vol. 129, pp. 1–8. https://doi.org/10.1088/1757-899X/129/1/012017 A. A. E.-A. Aly, A. F. Hassan and H. M. Abdallah, “Numerical Study of the Semi-Open Centrifugal Pump Impeller Side Clearance,” Aerosp. Sci. Technol., vol. 47, pp. 247–255, Dec. 2015. https://doi.org/10.1016/j.ast.2015.09.033 A. J. Stepanoff, Centrifugal and Axial Flow Pumps: Theory, Design, and Application, 2nd ed. New York, USA: Jhon Wiley & Sons, Inc., 1948. C. Mataix, Mecánica de fluidos y máquinas hidráulicas, 2nd ed. Madrid, Esp.: Ediciones del Castillo, S. A., 1986. C. Wang, W. Shi, X. Wanga, X. Jiang, Y. Yang, W. Li and L. Zhou, “Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics,” Appl. Energy, vol. 187, pp. 10–26, Feb. 2017. https://doi.org/10.1016/j.apenergy.2016.11.046 B. Neumann, The interaction between geometry and performance of a centrifugal pump, London, UK: Mechanical Engineering Publications, 1991. S. Li, The un-design condition and optimization of blade-pump, Beijing, CN: China Mach. Press, 2006. G. Lu, Z. Zuo, D. Liu and S. Liu, “Energy balance and local unsteady loss analysis of flows in a low specific speed model pump-turbine in the positive slope region on the pump performance curve,” Energies, vol. 12, no. 10, pp. 1–22. May. 2019. https://doi.org/10.3390/en12101829 D. Deshmukh and A. Samad, “CFD-based analysis for finding critical wall roughness on centrifugal pump at design and off-design conditions,” J. Brazilian Soc. Mech. Sci. Eng., vol. 41, no. 58, Feb. 2019. https://doi.org/10.1007/s40430-018-1557-y W. Shi, L. Zhou, W. Lu, B. Pei and T. Lang, “Numerical prediction and performance experiment in a deep-well centrifugal pump with different impeller outlet width,” in Chinese J. Mech. Eng., vol. 26, no. 1, pp. 46–52, Feb. 2013. https://doi.org/10.3901/CJME.2013.01.046 X. Cheng, W. Bao, L. Fu and X. Ye, “Sensitivity analysis of nuclear main pump annular casing tongue blend,” Adv. Mech. Eng., vol. 9, no. 7, p. 1–9, Jul. 2017. https://doi.org/10.1177/1687814017706599 F. Lai, X. Zhu, G. Li, L. Zhu and F. Wang, “Numerical Research on the Energy Loss of a Single-Stage Centrifugal Pump with Different Vaned Diffuser Outlet Diameters,” Energy Procedia, vol. 158, pp. 5523–5528, Feb. 2019. https://doi.org/10.1016/j.egypro.2019.01.592 E. Meneses, J. Jaramillo-Ibarra y E. Mas, “Análisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela,” INGE CUC, vol. 15, no. 1, pp. 133–141, Jun. 2019. https://doi.org/10.17981/ingecuc.15.1.2019.12 P. Yan, N. Chu, D. Wu, L. Cao, S. Yang and P. Wu, “Computational Fluid Dynamics-Based Pump Redesign to Improve Efficiency and Decrease Unsteady Radial Forces,” J. Fluids Eng., vol. 139, no. 1, pp. 11101–11111, Oct. 2016. https://doi.org/10.1115/1.4034365 F. Gao, H. Wang and H. Wang, “Comparison of different turbulence models in simulating unsteady flow,” Procedia Eng., vol. 205, pp. 3970–3977, Oct. 2017. https://doi.org/10.1016/j.proeng.2017.09.856 F. Mentzoni, I. S. Ertesvåg, K. E. Rian and R. N. Kleiveland, “Numerical modeling of turbulence above offshore helideck – Comparison of different turbulence models,” J. Wind Eng. Ind. Aerodyn., vol. 141, pp. 49–68, Jun. 2015. https://doi.org/10.1016/j.jweia.2015.02.005 S. Selim, M. Hosien, S. El-Behery and M. Elsherbiny, “Numerical Analysis of Turbulent Flow In Centrifugal Pump,” in Proceedings of the 17th Int. AMME, vol. 17, Apr. 19-21, 2016. Cairo, Egypt. https://doi.org/10.21608/amme.2016.35279 O. Babayigit, O. Kocaaslan, M. Aksoy, K. Guleren and M. Ozgoren, “Numerical identification of blade exit angle effect on the performance for a multistage centrifugal pump impeller,” in EFM14, vol. 92, no. 02003, May. 6, 2015. https://doi.org/10.1051/epjconf/20159202003 A. Škerlavaj, L. Škerget, J. Ravnik and A. Lipej, “Choice of a turbulence model for pump intakes,” Power Energy, vol. 225, no. 6, pp. 764–778, Jul. 2011. https://doi.org/10.1177/0957650911403870 L. Tian, E. Jin, Z. Li, H. Mei, Y. Wang and Y. Shang, “The fluid control mechanism of bionic structural heterogeneous composite materials and its potential application in enhancing pump efficiency,” Adv. Mech. Eng., vol. 7, no. 11, pp. 1–11, Nov. 2015. https://doi.org/10.1177/1687814015619551 P. M. Doran, Bioprocess Engineering Principles, San Diego, CA, USA: Academic Press, 1995. W. Versteeg and H. K. Malalasekera, An introduction to Computational Fluid Dynamics, New York, USA: Longman Scientific & Technical, 1995. P. Muiruri and O. Seraga, “Three Dimensional CFD Simulations of A Wind Turbine Blade Section; Validation,” JESTR, vol. 11, no. 1, pp. 138–145, Feb. 2018. https://doi.org/10.25103/jestr.111.16 Z. Ali, P. Tucker and S. Shahpar, “Optimal mesh topology generation for CFD,” Comput Method Appl M, vol. 317, pp. 431–457. https://doi.org/10.1016/j.cma.2016.12.001 Rotodynamic pumps-Hydraulic perfomance acceptance tests – Grades 1 and 2, ISO 9906:1999, BSI, London, 2002. J. Pei, W. Wang, and S. Yuan, “Multi-point optimization on meridional shape of a centrifugal pump impeller for performance improvement,” J. Mech. Sci. Technol., vol. 30, no. 11, pp. 4949–4960, Nov. 2016. https://doi.org/10.1007/s12206-016-1015-7 C. W. S. P. Maitelli, F. V. M. Bezerra and W. Mata, “Simulation of flown in a centrifugal pump of ESP systems using computational fluid dynamics,” Brazilian J. Pet. gas, vol. 4, no. 1, pp. 001–009, Jan. 2010. Available from http://www.portalabpg.org.br/bjpg/index.php/bjpg/article/view/107 O. A. Price, “Vortex Pumps, or, Slip in the Centrifugal Pump,” Proc. Inst. Mech. Eng., vol. 142, no. 1, pp. 413–458, Jun. 1939. https://doi.org/10.1243/PIME_PROC_1939_142_033_02 B. P. M. van Esch and N. P. Kruyt, “Hydraulic Performance of a Mixed-Flow Pump: Unsteady Inviscid Computations and Loss Models,” J. Fluids Eng., vol. 123, no. 2, pp. 256–264, Jan. 2001. https://doi.org/10.1115/1.1365121 R. Spence and J. Amaral-Teixeira, “A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump,” Comput. Fluids, vol. 38, no. 6, pp. 1243–1257, Jun. 2009. https://doi.org/10.1016/j.compfluid.2008.11.013 M. Šavar, H. Kozmar, and I. Sutlović, “Improving centrifugal pump efficiency by impeller trimming,” Desalination, vol. 249, no. 2, pp. 654–659, Dec. 2009. https://doi.org/10.1016/j.desal.2008.11.018 S. Shiels, “When trimming a centrifugal pump impeller can save energy and increase flow rate,” World Pumps, vol. 1999, no. 398, pp. 37–40, Nov. 1999. https://doi.org/10.1016/S0262-1762(00)87460-X L. M. Tsang, “A Theoretical Account of Impeller Trimming of the Centrifugal Pump,” P I Mech Eng C-J. Mec, vol. 206, no. 33, pp. 213–214, May. 1992. https://doi.org/10.1243/PIME_PROC_1992_206_117_02 M.-G. Tan, H. Liu, S. Yuan, Y. Wang and K. Wang, “Effects of Blade Outlet Width on Flow Field and Characteristic of Centrifugal Pumps,” Pro. Paper FEDSM2009-78064, UJS, JS, PRC, Jul. 2009. https://doi.org/10.1115/FEDSM2009-78064 M. H. Shojaeefard, M. Tahani, M. B. Ehghaghi, M. A. Fallahian and M. Beglari, “Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid,” Comput. Fluids, vol. 60, pp. 61–70, May. 2012. https://doi.org/10.1016/j.compfluid.2012.02.028 J. Cai, J. Pan and A. Guzzomi, “The flow field in a centrifugal pump with a large tongue gap and back blades,” J. Mech. Sci. Technol., vol. 28, no. 11, pp. 4455–4464, Jan. 2014. https://doi.org/10.1007/s12206-014-1013-6 M. Sinha and J. Katz, “Quantitative Visualization of the Flow in a Centrifugal Pump With Diffuser Vanes—I: On Flow Structures and Turbulence,” J. Fluids Eng., vol. 122, no. 1, pp. 97–107, Nov. 1999. https://doi.org/10.1115/1.483231 X.-Q. Jia, Z.-C. Zhu, X.-L. Yu and Y.-L. Zhang, “Internal unsteady flow characteristics of centrifugal pump based on entropy generation rate and vibration energy,” J. Process Mech. Eng., vol. 233, no. 3, pp. 456–473, Mar. 2018. https://doi.org/10.1177/0954408918765289 R. Dong, S. Chu and J. Katz, “Quantitative Visualization of the Flow Within the Volute of a Centrifugal Pump. Part B: Results and Analysis,” J. Fluids Eng., vol. 114, no. 3, pp. 396–403, Sep. 1992. https://doi.org/10.1115/1.2910044 J. Pei, S. Yuan and J. Yuan, “Numerical analysis of periodic flow unsteadiness in a single-blade centrifugal pump,” Sci. China Technol. Sci., vol. 56, no. 1, pp. 212–221, Oct. 2013. https://doi.org/10.1007/s11431-012-5044-x H. Ding, Z. Li, X. Gong and M. Li, “The influence of blade outlet angle on the performance of centrifugal pump with high specific speed,” Vacuum, vol. 159, pp. 239–246, Jan. 2019. https://doi.org/10.1016/j.vacuum.2018.10.049 W. G. Li and Z. M. Hu, “Time-averaged turbulent flow LDV measurements in a centrifugal pump impeller,” Pump Technol, vol. 4, pp. 18–29, 1996. H. Yousefi, Y. Noorollahi, M. Tahani, R. Fahimi and S. Saremian, “Numerical simulation for obtaining optimal impeller’s blade parameters of a centrifugal pump for high-viscosity fluid pumping,” Sustain. Energy Technol. Assessments, vol. 34, pp. 16–26, Aug. 2019. https://doi.org/10.1016/j.seta.2019.04.011 |
dc.relation.citationendpage.none.fl_str_mv |
21 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
16 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2635/2565 https://revistascientificas.cuc.edu.co/ingecuc/article/download/2635/3495 https://revistascientificas.cuc.edu.co/ingecuc/article/download/2635/3507 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2020 : (Enero-Junio) |
dc.rights.spa.fl_str_mv |
INGE CUC - 2020 |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
INGE CUC - 2020 http://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf text/html application/xml |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/2635 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c8b2e42c-8bde-4290-b540-92458556fc59/download |
bitstream.checksum.fl_str_mv |
d4a04f480fc836efd468aa462a062e0c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166880412565504 |
spelling |
Fontalvo Conrado, Cesar AndrésPineda Arrieta, RafaelDuarte Forero, Jorge2020-01-27 00:00:002024-04-09T20:17:39Z2020-01-27 00:00:002024-04-09T20:17:39Z2020-01-270122-6517https://hdl.handle.net/11323/12253https://doi.org/10.17981/ingecuc.16.1.2020.0110.17981/ingecuc.16.1.2020.012382-4700Introducción− La optimización energética de bombas centrífugas comprende diversas formas de estudio, entre ellas, la aplicación de análisis paramétricos sobre una bomba centrífuga comercial, generando cambios dimensionales que puedan ser estudiados a través de CFD y que permitan obtener una configuración paramétrica con mejores niveles de eficiencia. Adicionalmente, la incorporación de modelos de pérdida de energía sobre los análisis paramétricos, permite comprender de forma más detallada las causas de reducción de eficiencia bajo distintas condiciones de operación. Objetivo− En este estudio se busca optimizar una bomba centrifuga usando análisis paramétrico en CFD y modelos de perdida de energía, con el fin de mejorar la eficiencia energética. Metodología− Se realizó un análisis energético que combina estudios paramétricos y modelos de pérdida de energía, aplicando la dinámica de fluidos computacional (CFD) por medio del software OpenFOAM. Los modelos constaron de 4 configuraciones geométricas: número de álabes, diámetro de salida, ángulo de salida y espesor de salida del impeler. Los modelos energéticos para el estudio de pérdidas de energía se basaron en turbulent kinetic energy (TKE) y el comportamiento de la eficiencia hidráulica. Resultados− Finalmente, se obtuvo que el parámetro que tuvo mayor influencia en la eficiencia y la turbulencia fue el aumento del espesor, disminuyendo las pérdidas de energía más influyentes sobre el desempeño de la bomba, logrando aumentos en la eficiencia de 4.71% y reducción de la TKE en 4.24 m2/s2 respecto a la bomba original. Conclusiones− La interface entre el impulsor y la voluta genera turbulencia por el gradiente de velocidad presente en las partículas, debido a que pasan de altas velocidades a un medio de baja velocidad. Las configuraciones que aumentaban el área de flujo entre los álabes presentaban mayores niveles de eficiencia, al permitir desplazar una mayor cantidad de fluido, permitiendo un comportamiento de las velocidades más adecuado, reduciendo las pérdidas debida a la fricción del fluido con las paredes de la voluta.Introduction− The energy optimization of centrifugal pumps includes several ways of study, among them, the application of parametric analysis on a commercial centrifugal pump, generating dimensional changes that can be studied through CFD and that allow obtaining a geometric configuration with better levels of efficiency. Additionally, the incorporation of energy loss models in the parametric analyses allows a more detailed understanding of the causes of efficiency reduction on different operating conditions. Objective− This study seeks to optimize a centrifugal pump using parametric analysis in CFD and energy loss models, to improve energy efficiency. Methodology− An energy analysis was performed combining parametric studies and energy loss models, applying computational fluid dynamics (CFD) through OpenFOAM software. The models consisted of 4 geometric configurations: number of blades, output diameter, output angle, and impeller output thickness. The energy models for the study of energy losses were based on turbulent kinetic energy (TKE) and the behavior of hydraulic efficiency. Results− Finally, it was obtained that the parameter that had the greatest influence on efficiency and turbulence was the increase on thickness, decreasing the most influential energy losses on pump performance, achieving increases in efficiency of 4.71% and reduction of the TKE by 4.24 m2/s2 concerning the original pump. Conclusions− The interface between the impeller and the volute generates turbulence due to the velocity gradient present in the particles since they go from high velocities to a low-velocity medium. The configurations that increased the flow area between the blades had higher levels of efficiency, allowing to displace a greater amount of fluid, allowing a more adequate velocity behavior, reducing losses due to the friction of the fluid with the walls of the volute.application/pdftext/htmlapplication/xmlspaUniversidad de la CostaINGE CUC - 2020http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/2635parameterizationenergy loss modelsturbulent kinetic energyCFDenergy optimizationparametrizaciónmodelos de pérdida de energíaturbulent kinetic energyCFDoptimización energéticaOptimización energética de bombas centrífugas a través de un análisis paramétrico en CFD y modelos de pérdida de energíaEnergy optimization of centrifugal pumps through parametric analysis in CFD and energy loss modelsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge Cuc CETIM, D. Reeves, NESA, TUDa, “Study on improving the energy efficiency of pumps,” EC, Br, Be, Tech. Report AEAT-6559/ v 5.1, Feb. 2001. P. Roudolf and R. Klas, “Numerical simulation of pump-intake vortices,” in EPJ Web Conf., May. 2015, vol. 92, no. 02077, p. 1–6. https://doi.org/10.1051/epjconf/20159202077 P. Olszewski, “Genetic optimization and experimental verification of complex parallel pumping station with centrifugal pumps,” Appl. Energy, vol. 178, no. 7, pp. 527–539, Sep. 2016. https://doi.org/10.1016/j.apenergy.2016.06.084 F. Meng, H. Zhang, F. Yang, X. Hou, B. Lei, L. Zhang, Y. Wu, J. Wang and Z. Shi, “Study of efficiency of a multistage centrifugal pump used in engine waste heat recovery application,” Appl. Therm. Eng., vol. 110, no. 1, pp. 779–786, Jan. 2017. https://doi.org/10.1016/j.applthermaleng.2016.08.226 S. R. Shah, S. V. Jain, R. N. Patel and V. J. Lakhera, “CFD for Centrifugal Pumps: A Review of the State-of-the-Art,” Procedia Eng., vol. 51, no. 1, pp. 715–720, Dec. 2013. https://doi.org/10.1016/j.proeng.2013.01.102 J. Duarte, W. Guillín y J. Sánchez, “Desarrollo de una metodología para la predicción del volumen real en la cámara de combustión de motores diésel utilizando elementos finitos,” INGE CUC, vol. 14, no. 1, pp. 122–132, Aug. 2018. https://doi.org/10.17981/ingecuc.14.1.2018.11 T. Ouchbel, S. Zouggar, M. L. Elhafyani, M. Seddik, M. Oukili, A. Aziz and F. Z. Kadda, “Power maximization of an asynchronous wind turbine with a variable speed feeding a centrifugal pump,” Energy Convers. Manag., vol. 78, pp. 976–984, Feb. 2014. https://doi.org/10.1016/j.enconman.2013.08.063 H. Keck and M. Sick, “Thirty years of numerical flow simulation in hydraulic turbomachines,” Acta Mech., vol. 201, pp. 211–229, Sept. 2008. https://doi.org/10.1007/s00707-008-0060-4 M. Kawaguti, “Numerical Solution of the Navier-Stokes Equations for the Flow around a Circular Cylinder at Reynolds Number 40,” J. Phys. Soc. Japan, vol. 8, no. 6, pp. 747–757, Nov. 1953. https://doi.org/10.1143/JPSJ.8.747 J. C. Páscoa, A. C. Mendes and L. M. C. Gato, “A fast iterative inverse method for turbomachinery blade design,” Mech. Res. Commun., vol. 36, no. 5, pp. 630–637, Jul. 2009. https://doi.org/10.1016/j.mechrescom.2009.01.008 R. Barrio, J. Parrondo and E. Blanco, “Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points,” Comput. Fluids, vol. 39, no. 5, pp. 859–870, May. 2010. https://doi.org/10.1016/j.compfluid.2010.01.001 J. Pei, S. Yuan, X. Li and J. Yuan, “Numerical prediction of 3-D periodic flow unsteadiness in a centrifugal pump under part-load condition,” J. Hydrodyn. Ser. B, vol. 26, no. 2, pp. 257–263, Apr. 2014. https://doi.org/10.1016/S1001-6058(14)60029-9 E. Dick, J. Vierendeels, S. Serbruyns and J. Voorde, “Performance Prediction of Centrifugal Pumps with CFD-Tools,” Task Q., vol. 5, no. 4, pp. 579–594, Jan. 2001. Available from https://task.gda.pl/files/quart/TQ2001/04/TQ0405E7.PDF H. Chen, J. He and C. Liu, “Design and experiment of the centrifugal pump impellers with twisted inlet vice blades,” J. Hydrodyn. Ser. B, vol. 29, no. 6, pp. 1085–1088, Dec. 2017. https://doi.org/10.1016/S1001-6058(16)60822-3 X. Zhu, G. Li, W. Jiang and L. Fu, “Experimental and numerical investigation on application of half vane diffusers for centrifugal pump,” Int. Commun. Heat Mass Transf., vol. 79, pp. 114–127, Dec. 2016. https://doi.org/10.1016/j.icheatmasstransfer.2016.10.015 H. Hou, Y. Zhang, J. Zhang and Z. Li, “Effects of radial diffuser hydraulic design on a double-suction centrifugal pump,” IOP Conf. Ser. Mater. Sci. Eng., 7th International Conference on Pumps and Fans (ICPF2015), Oct. 18–21, 2015, Hangzhou, China, vol. 129, pp. 1–8. https://doi.org/10.1088/1757-899X/129/1/012017 A. A. E.-A. Aly, A. F. Hassan and H. M. Abdallah, “Numerical Study of the Semi-Open Centrifugal Pump Impeller Side Clearance,” Aerosp. Sci. Technol., vol. 47, pp. 247–255, Dec. 2015. https://doi.org/10.1016/j.ast.2015.09.033 A. J. Stepanoff, Centrifugal and Axial Flow Pumps: Theory, Design, and Application, 2nd ed. New York, USA: Jhon Wiley & Sons, Inc., 1948. C. Mataix, Mecánica de fluidos y máquinas hidráulicas, 2nd ed. Madrid, Esp.: Ediciones del Castillo, S. A., 1986. C. Wang, W. Shi, X. Wanga, X. Jiang, Y. Yang, W. Li and L. Zhou, “Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics,” Appl. Energy, vol. 187, pp. 10–26, Feb. 2017. https://doi.org/10.1016/j.apenergy.2016.11.046 B. Neumann, The interaction between geometry and performance of a centrifugal pump, London, UK: Mechanical Engineering Publications, 1991. S. Li, The un-design condition and optimization of blade-pump, Beijing, CN: China Mach. Press, 2006. G. Lu, Z. Zuo, D. Liu and S. Liu, “Energy balance and local unsteady loss analysis of flows in a low specific speed model pump-turbine in the positive slope region on the pump performance curve,” Energies, vol. 12, no. 10, pp. 1–22. May. 2019. https://doi.org/10.3390/en12101829 D. Deshmukh and A. Samad, “CFD-based analysis for finding critical wall roughness on centrifugal pump at design and off-design conditions,” J. Brazilian Soc. Mech. Sci. Eng., vol. 41, no. 58, Feb. 2019. https://doi.org/10.1007/s40430-018-1557-y W. Shi, L. Zhou, W. Lu, B. Pei and T. Lang, “Numerical prediction and performance experiment in a deep-well centrifugal pump with different impeller outlet width,” in Chinese J. Mech. Eng., vol. 26, no. 1, pp. 46–52, Feb. 2013. https://doi.org/10.3901/CJME.2013.01.046 X. Cheng, W. Bao, L. Fu and X. Ye, “Sensitivity analysis of nuclear main pump annular casing tongue blend,” Adv. Mech. Eng., vol. 9, no. 7, p. 1–9, Jul. 2017. https://doi.org/10.1177/1687814017706599 F. Lai, X. Zhu, G. Li, L. Zhu and F. Wang, “Numerical Research on the Energy Loss of a Single-Stage Centrifugal Pump with Different Vaned Diffuser Outlet Diameters,” Energy Procedia, vol. 158, pp. 5523–5528, Feb. 2019. https://doi.org/10.1016/j.egypro.2019.01.592 E. Meneses, J. Jaramillo-Ibarra y E. Mas, “Análisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela,” INGE CUC, vol. 15, no. 1, pp. 133–141, Jun. 2019. https://doi.org/10.17981/ingecuc.15.1.2019.12 P. Yan, N. Chu, D. Wu, L. Cao, S. Yang and P. Wu, “Computational Fluid Dynamics-Based Pump Redesign to Improve Efficiency and Decrease Unsteady Radial Forces,” J. Fluids Eng., vol. 139, no. 1, pp. 11101–11111, Oct. 2016. https://doi.org/10.1115/1.4034365 F. Gao, H. Wang and H. Wang, “Comparison of different turbulence models in simulating unsteady flow,” Procedia Eng., vol. 205, pp. 3970–3977, Oct. 2017. https://doi.org/10.1016/j.proeng.2017.09.856 F. Mentzoni, I. S. Ertesvåg, K. E. Rian and R. N. Kleiveland, “Numerical modeling of turbulence above offshore helideck – Comparison of different turbulence models,” J. Wind Eng. Ind. Aerodyn., vol. 141, pp. 49–68, Jun. 2015. https://doi.org/10.1016/j.jweia.2015.02.005 S. Selim, M. Hosien, S. El-Behery and M. Elsherbiny, “Numerical Analysis of Turbulent Flow In Centrifugal Pump,” in Proceedings of the 17th Int. AMME, vol. 17, Apr. 19-21, 2016. Cairo, Egypt. https://doi.org/10.21608/amme.2016.35279 O. Babayigit, O. Kocaaslan, M. Aksoy, K. Guleren and M. Ozgoren, “Numerical identification of blade exit angle effect on the performance for a multistage centrifugal pump impeller,” in EFM14, vol. 92, no. 02003, May. 6, 2015. https://doi.org/10.1051/epjconf/20159202003 A. Škerlavaj, L. Škerget, J. Ravnik and A. Lipej, “Choice of a turbulence model for pump intakes,” Power Energy, vol. 225, no. 6, pp. 764–778, Jul. 2011. https://doi.org/10.1177/0957650911403870 L. Tian, E. Jin, Z. Li, H. Mei, Y. Wang and Y. Shang, “The fluid control mechanism of bionic structural heterogeneous composite materials and its potential application in enhancing pump efficiency,” Adv. Mech. Eng., vol. 7, no. 11, pp. 1–11, Nov. 2015. https://doi.org/10.1177/1687814015619551 P. M. Doran, Bioprocess Engineering Principles, San Diego, CA, USA: Academic Press, 1995. W. Versteeg and H. K. Malalasekera, An introduction to Computational Fluid Dynamics, New York, USA: Longman Scientific & Technical, 1995. P. Muiruri and O. Seraga, “Three Dimensional CFD Simulations of A Wind Turbine Blade Section; Validation,” JESTR, vol. 11, no. 1, pp. 138–145, Feb. 2018. https://doi.org/10.25103/jestr.111.16 Z. Ali, P. Tucker and S. Shahpar, “Optimal mesh topology generation for CFD,” Comput Method Appl M, vol. 317, pp. 431–457. https://doi.org/10.1016/j.cma.2016.12.001 Rotodynamic pumps-Hydraulic perfomance acceptance tests – Grades 1 and 2, ISO 9906:1999, BSI, London, 2002. J. Pei, W. Wang, and S. Yuan, “Multi-point optimization on meridional shape of a centrifugal pump impeller for performance improvement,” J. Mech. Sci. Technol., vol. 30, no. 11, pp. 4949–4960, Nov. 2016. https://doi.org/10.1007/s12206-016-1015-7 C. W. S. P. Maitelli, F. V. M. Bezerra and W. Mata, “Simulation of flown in a centrifugal pump of ESP systems using computational fluid dynamics,” Brazilian J. Pet. gas, vol. 4, no. 1, pp. 001–009, Jan. 2010. Available from http://www.portalabpg.org.br/bjpg/index.php/bjpg/article/view/107 O. A. Price, “Vortex Pumps, or, Slip in the Centrifugal Pump,” Proc. Inst. Mech. Eng., vol. 142, no. 1, pp. 413–458, Jun. 1939. https://doi.org/10.1243/PIME_PROC_1939_142_033_02 B. P. M. van Esch and N. P. Kruyt, “Hydraulic Performance of a Mixed-Flow Pump: Unsteady Inviscid Computations and Loss Models,” J. Fluids Eng., vol. 123, no. 2, pp. 256–264, Jan. 2001. https://doi.org/10.1115/1.1365121 R. Spence and J. Amaral-Teixeira, “A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump,” Comput. Fluids, vol. 38, no. 6, pp. 1243–1257, Jun. 2009. https://doi.org/10.1016/j.compfluid.2008.11.013 M. Šavar, H. Kozmar, and I. Sutlović, “Improving centrifugal pump efficiency by impeller trimming,” Desalination, vol. 249, no. 2, pp. 654–659, Dec. 2009. https://doi.org/10.1016/j.desal.2008.11.018 S. Shiels, “When trimming a centrifugal pump impeller can save energy and increase flow rate,” World Pumps, vol. 1999, no. 398, pp. 37–40, Nov. 1999. https://doi.org/10.1016/S0262-1762(00)87460-X L. M. Tsang, “A Theoretical Account of Impeller Trimming of the Centrifugal Pump,” P I Mech Eng C-J. Mec, vol. 206, no. 33, pp. 213–214, May. 1992. https://doi.org/10.1243/PIME_PROC_1992_206_117_02 M.-G. Tan, H. Liu, S. Yuan, Y. Wang and K. Wang, “Effects of Blade Outlet Width on Flow Field and Characteristic of Centrifugal Pumps,” Pro. Paper FEDSM2009-78064, UJS, JS, PRC, Jul. 2009. https://doi.org/10.1115/FEDSM2009-78064 M. H. Shojaeefard, M. Tahani, M. B. Ehghaghi, M. A. Fallahian and M. Beglari, “Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid,” Comput. Fluids, vol. 60, pp. 61–70, May. 2012. https://doi.org/10.1016/j.compfluid.2012.02.028 J. Cai, J. Pan and A. Guzzomi, “The flow field in a centrifugal pump with a large tongue gap and back blades,” J. Mech. Sci. Technol., vol. 28, no. 11, pp. 4455–4464, Jan. 2014. https://doi.org/10.1007/s12206-014-1013-6 M. Sinha and J. Katz, “Quantitative Visualization of the Flow in a Centrifugal Pump With Diffuser Vanes—I: On Flow Structures and Turbulence,” J. Fluids Eng., vol. 122, no. 1, pp. 97–107, Nov. 1999. https://doi.org/10.1115/1.483231 X.-Q. Jia, Z.-C. Zhu, X.-L. Yu and Y.-L. Zhang, “Internal unsteady flow characteristics of centrifugal pump based on entropy generation rate and vibration energy,” J. Process Mech. Eng., vol. 233, no. 3, pp. 456–473, Mar. 2018. https://doi.org/10.1177/0954408918765289 R. Dong, S. Chu and J. Katz, “Quantitative Visualization of the Flow Within the Volute of a Centrifugal Pump. Part B: Results and Analysis,” J. Fluids Eng., vol. 114, no. 3, pp. 396–403, Sep. 1992. https://doi.org/10.1115/1.2910044 J. Pei, S. Yuan and J. Yuan, “Numerical analysis of periodic flow unsteadiness in a single-blade centrifugal pump,” Sci. China Technol. Sci., vol. 56, no. 1, pp. 212–221, Oct. 2013. https://doi.org/10.1007/s11431-012-5044-x H. Ding, Z. Li, X. Gong and M. Li, “The influence of blade outlet angle on the performance of centrifugal pump with high specific speed,” Vacuum, vol. 159, pp. 239–246, Jan. 2019. https://doi.org/10.1016/j.vacuum.2018.10.049 W. G. Li and Z. M. Hu, “Time-averaged turbulent flow LDV measurements in a centrifugal pump impeller,” Pump Technol, vol. 4, pp. 18–29, 1996. H. Yousefi, Y. Noorollahi, M. Tahani, R. Fahimi and S. Saremian, “Numerical simulation for obtaining optimal impeller’s blade parameters of a centrifugal pump for high-viscosity fluid pumping,” Sustain. Energy Technol. Assessments, vol. 34, pp. 16–26, Aug. 2019. https://doi.org/10.1016/j.seta.2019.04.011211116https://revistascientificas.cuc.edu.co/ingecuc/article/download/2635/2565https://revistascientificas.cuc.edu.co/ingecuc/article/download/2635/3495https://revistascientificas.cuc.edu.co/ingecuc/article/download/2635/3507Núm. 1 , Año 2020 : (Enero-Junio)PublicationOREORE.xmltext/xml2742https://repositorio.cuc.edu.co/bitstreams/c8b2e42c-8bde-4290-b540-92458556fc59/downloadd4a04f480fc836efd468aa462a062e0cMD5111323/12253oai:repositorio.cuc.edu.co:11323/122532024-09-17 14:21:21.23http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2020metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |